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Background
Ø Influence Maximization (IM) Problem
• Given a graph G=(V,E), find k vertices that can activate maximal number 

of vertices in G
• Wide applications in viral marketing, politics, public health, sensor 

networks and bioinformatics

Ø Approximate Solutions
• A NP-hard optimization problem (Kempe et al.)
• Use Monte Carlo (MC) simulations to approximate (Borgs et al.)

o Intensive Computation cost (Sampling 𝜃 ≈ 10! diffusions)
o High Memory usage (store intermediate results)
o Easy Analysis (Counting and “Pruning”)

Japanese graph novel*

* The dynamics of viral marketing, Jure et al. 2007
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Background
Ø Influence Maximization via Martingales Algorithm (IMM) 
• Diffusion Models

o Independent Cascade (IC)

• Random Reverse Reachable (RRR) Set
o Intermediate results of visited vertices

• Sampling
o Repeat many (𝜃 ≈ 10!) times

• Selection
o Count the frequency of each vertex
o Select the most frequent vertex (𝑢∗)
o “Pruning” RRRs that contain 𝑢∗
o Reconstruct &ℎ and repeat k times

IC diffusion: Each activated vertex has one chance (at time step t!) to activate its 
neighbors with some probabilities (edge weights)

Computation and Memory challenging!

IC Samples
𝑅! 𝑣" 𝑣#

𝑅" 𝑣$ 𝑣%

𝑅# 𝑣& 𝑣# 𝑣$

𝑅$ 𝑣#

𝑅% 𝑣"

𝑅& 𝑣" 𝑣& 𝑣# 𝑣%

𝑅' 𝑣# 𝑣$

sampling
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o Repeat many (𝜃 ≈ 10!) times

• Selection
o Count the frequency of each vertex
o Select the most frequent vertex (𝑢∗)
o “Pruning” RRRs that contain 𝑢∗
o Reconstruct &ℎ and repeat k times

IC diffusion: Each activated vertex has one chance (at time step t!) to activate its 
neighbors with some probabilities (edge weights)

Computation and Memory challenging!

IC Samples
𝑅! 𝑣" 𝑣#

𝑅" 𝑣$ 𝑣%

𝑅# 𝑣& 𝑣# 𝑣$

𝑅$ 𝑣#

𝑅% 𝑣"

𝑅& 𝑣" 𝑣& 𝑣# 𝑣%

𝑅' 𝑣# 𝑣$

#ℎ

𝑣" 3

𝑣& 2

𝑣# 5

𝑣$ 3

𝑣% 2

𝑢∗ = 𝑣#

sampling counting
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𝑣& 2

𝑣# 5

𝑣$ 3

𝑣% 2

𝑢∗ = 𝑣#

sampling counting pruning



6

Motivation

Ø Memory Challenges Unaddressed 
• Huge memory inflation (30x~165x) during computation
• Same for many stochastic graph applications
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Memory usage of Ripples to store intermediate RRR sets

Ø Address Computation Challenges 
• Parallelization on shared and distributed-memory systems

o Ripples (Minutoli et al.)
• Accelerated by GPUs 

o cuRipples (Minutoli et al.),
o gIM (Shahrouz et al.)

Ø Research Questions
• Can we leverage compression techniques?
• Can we compute with compressed data to preserve memory saving?
• If yes, which compression algorithms should we use?
• What are the benefits to reduce memory usage? 
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HBMax: Select Suitable Compression
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Memory Inflation on six large social network graphs 

Characterization of intermediate RRR sets distributions
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Ø Profiling Memory Usage  
• Huge memory inflation (30x~165x) during computation

Ø Characterize Intermediate RRR Sets
• RRR sets have various distributions

o Highly-skewed, Linear-decay, Flat-headed
• RRR sets have various densities

o Sparse, Dense
Graph Skewness Density

DBLP 11.46 0.26%

YouTube 9.01 0.63%

Skitter 5.38 2.03%

Orkut 0.75 27.7%

Pokec -1.43 66.0%

LiveJournal -0.99 53.3%

Huffman Coding (H)

bitmap Coding (B)
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HBMAX: Overview of Workflow 
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Ø Sampling-and-Encoding
• Parallelize by OpenMP
• Consider NUMA effects
• Swap by data localities (H)

Ø Selection
• Partially-decode and Early-Stop (H)
• Bit-Operations w/o Decoding (B)

Ø Warm-up
• Characterize skewness and density
• Huffman Coding (H)
• bitmap Coding (B)

Blockwise Sampling
Release memory after compressed
Avoid peak memory usage
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HBMAX: Selection w/ Huffman Encoded Data (H)
Ø Partial-Decoding w/ Early-Stop  
• Leverage the data locality of skewed distributions
• Swap during encoding to enable Early-Stop in partially-decoding

Encode RRRs
Swap 𝑢∗ to the front
and encoding

Query RRRs
Early-stop after decompress 
𝑐∗ and 𝑢∗ is found
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HBMAX: Selection w/ bitmap Encoded Data (B)
Ø Query the encoded RRRs  
• Directly compute with encoded data
• Use POPCOUNT to construct frequency table
• Use 𝑣# AND (𝑣# XOR 𝑢∗) to remove 𝑅𝑅𝑅s 

Selection with bitmap data. Columns represent RRRs

R! R" R# R$ R% R& R' #ℎ

𝑣! 1 0 0 0 1 1 0 3

𝑣" 0 0 1 0 0 1 0 2

𝑢∗ 1 0 1 1 0 1 1 5

𝑣$ 0 1 1 0 0 0 1 3

𝑣% 0 1 0 0 0 1 0 2

R! R" R# R$ R% R& R' #ℎ

𝑣! 1 0 0 0 1 1 0 3

𝑣" 0 0 1 0 0 1 0 2

𝑢∗ 1 0 1 1 0 1 1 5

𝑣$ 0 1 1 0 0 0 1 3

𝑣% 0 1 0 0 0 1 0 2

POPCOUNT AND, XOR

R! R" R# R$ R% R& R' #ℎ

𝑣! 0 0 0 0 1 0 0 3

𝑣" 0 0 0 0 0 0 0 2

𝑢∗ 1 0 1 1 0 1 1 5

𝑣$ 0 1 0 0 0 0 0 3

𝑣% 0 1 0 0 0 0 0 2
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HBMAX: Selection u* w/ Parallel Merge
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Scalability of Parallel Merge and OpenMP reduction

Ø Parallel Merge   
• Select global maximum from local maxima
• Avoid parallel reduction to compute global frequency table
• Enhance scalability

For Skitter graph (n=1.6M, k=100)
Directly use OpenMP Reduce needs to 
reduce 1.6M×100×4 ≈ 650 MB data;

Our parallel Merge on 32 threads needs 
to reduce 32×100×4 ≈ 12.5 KB data.
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Evaluation: Setup

Ø DatasetsØ Platform

• One Regular Memory (RM) 
node from Bridges-2
o 2 AMD EPYC 7742 CPUs
o 256 GB RAM

• Compiled by GCC 8.3.1
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Evaluation: Reduced Memory Usage
Ø Reduction of memory footprint

• Up to 82.1% (LiveJournal) w/ bitmap coding
• Ripples cannot process the 2 largest graphs (OOM)

Scalability of Parallel Merge and OpenMP reductionTime-to-solution on tested graphs. Average time shortened is 14.5% on skew-distributed graphs. 

Memory footprint (in MB) and reduction ratio (in parenthesis)
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Evaluation: Faster Time-to-solution
Ø Reduction of Time-to-Solution

• Average 6.3% speedup 
• Reduced page fault 

Time-to-solution (in seconds) and overhead ratio (in parenthesis)

Reduced page fault in sampling steps
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Evaluation: Scalability
Ø Strong scalability

• 12.98x speedup on 64 cores
• HBMax scales better on highly-skewed graphs (DBLP, YouTube)
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Conclusion and Future Work
Ø A Compress-to-Compute approach

• Huffman or bitmap Coding
• Query by partially-decoding or no-decoding

Ø Evaluation on real-world large graphs
• Reduce memory usage up to 82.1%
• Average speedup is 6.3%
• Strong scalability with 12.98x speedup on 64 cores

Ø Future Work
• Extend to distributed-memory platforms
• Leverage GPU accelerators
• Explore compression techniques on broader graph algorithms   
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Thank You!
Any questions are welcome!

Contact Dingwen Tao: (ditao@iu.edu)
Xinyu Chen: (Xinyu.chen1@wsu.edu) 

mailto:ditao@iu.edu

