
HBMax: Optimizing Memory Efficiency for Parallel Influence
Maximization on Multicore Architectures

Xinyu Chen (Washington State University)
Marco Minutoli (Pacific Northwest National Laboratory)

Jiannan Tian (Indiana University Bloomington)
Mahantesh Halappanavar (Pacific Northwest National Laboratory)

Ananth Kalyanaraman (Washington State University)
Dingwen Tao (Indiana University Bloomington)

2

Background
Ø Influence Maximization (IM) Problem
• Given a graph G=(V,E), find k vertices that can activate maximal number

of vertices in G
• Wide applications in viral marketing, politics, public health, sensor

networks and bioinformatics

Ø Approximate Solutions
• A NP-hard optimization problem (Kempe et al.)
• Use Monte Carlo (MC) simulations to approximate (Borgs et al.)

o Intensive Computation cost (Sampling 𝜃 ≈ 10! diffusions)
o High Memory usage (store intermediate results)
o Easy Analysis (Counting and “Pruning”)

Japanese graph novel*

* The dynamics of viral marketing, Jure et al. 2007

3

......

tkt1t0

0. 2
0. 3

0. 5

0. 1

0. 1

0. 2

0. 1

0. 7

0. 4

0. 9

0. 1
0. 50. 2

0. 3
0. 5

0. 1

0. 1

0. 2

0. 1

0. 7

0. 4

0. 9

0. 1
0. 5 0. 2

0. 3
0. 5

0. 1

0. 1

0. 2

0. 1

0. 7

0. 4

0. 9

0. 1
0. 5

Background
Ø Influence Maximization via Martingales Algorithm (IMM)
• Diffusion Models

o Independent Cascade (IC)

• Random Reverse Reachable (RRR) Set
o Intermediate results of visited vertices

• Sampling
o Repeat many (𝜃 ≈ 10!) times

• Selection
o Count the frequency of each vertex
o Select the most frequent vertex (𝑢∗)
o “Pruning” RRRs that contain 𝑢∗
o Reconstruct &ℎ and repeat k times

IC diffusion: Each activated vertex has one chance (at time step t!) to activate its
neighbors with some probabilities (edge weights)

Computation and Memory challenging!

IC Samples
𝑅! 𝑣" 𝑣#

𝑅" 𝑣$ 𝑣%

𝑅# 𝑣& 𝑣# 𝑣$

𝑅$ 𝑣#

𝑅% 𝑣"

𝑅& 𝑣" 𝑣& 𝑣# 𝑣%

𝑅' 𝑣# 𝑣$

sampling

4

......

tkt1t0

0. 2
0. 3

0. 5

0. 1

0. 1

0. 2

0. 1

0. 7

0. 4

0. 9

0. 1
0. 50. 2

0. 3
0. 5

0. 1

0. 1

0. 2

0. 1

0. 7

0. 4

0. 9

0. 1
0. 5 0. 2

0. 3
0. 5

0. 1

0. 1

0. 2

0. 1

0. 7

0. 4

0. 9

0. 1
0. 5

Background
Ø Influence Maximization via Martingales Algorithm (IMM)
• Diffusion Models

o Independent Cascade (IC)

• Random Reverse Reachable (RRR) Set
o Intermediate results of visited vertices

• Sampling
o Repeat many (𝜃 ≈ 10!) times

• Selection
o Count the frequency of each vertex
o Select the most frequent vertex (𝑢∗)
o “Pruning” RRRs that contain 𝑢∗
o Reconstruct &ℎ and repeat k times

IC diffusion: Each activated vertex has one chance (at time step t!) to activate its
neighbors with some probabilities (edge weights)

Computation and Memory challenging!

IC Samples
𝑅! 𝑣" 𝑣#

𝑅" 𝑣$ 𝑣%

𝑅# 𝑣& 𝑣# 𝑣$

𝑅$ 𝑣#

𝑅% 𝑣"

𝑅& 𝑣" 𝑣& 𝑣# 𝑣%

𝑅' 𝑣# 𝑣$

#ℎ

𝑣" 3

𝑣& 2

𝑣# 5

𝑣$ 3

𝑣% 2

𝑢∗ = 𝑣#

sampling counting

5

......

tkt1t0

0. 2
0. 3

0. 5

0. 1

0. 1

0. 2

0. 1

0. 7

0. 4

0. 9

0. 1
0. 50. 2

0. 3
0. 5

0. 1

0. 1

0. 2

0. 1

0. 7

0. 4

0. 9

0. 1
0. 5 0. 2

0. 3
0. 5

0. 1

0. 1

0. 2

0. 1

0. 7

0. 4

0. 9

0. 1
0. 5

Background
Ø Influence Maximization via Martingales Algorithm (IMM)
• Diffusion Models

o Independent Cascade (IC)

• Random Reverse Reachable (RRR) Set
o Intermediate results of visited vertices

• Sampling
o Repeat many (𝜃 ≈ 10!) times

• Selection
o Count the frequency of each vertex
o Select the most frequent vertex (𝑢∗)
o “Pruning” RRRs that contain 𝑢∗
o Reconstruct &ℎ and repeat k times

IC diffusion: Each activated vertex has one chance (at time step t!) to activate its
neighbors with some probabilities (edge weights)

Computation and Memory challenging!

IC Samples
𝑅! 𝑣" 𝑣#

𝑅" 𝑣$ 𝑣%

𝑅# 𝑣& 𝑣# 𝑣$

𝑅$ 𝑣#

𝑅% 𝑣"

𝑅& 𝑣" 𝑣& 𝑣# 𝑣%

𝑅' 𝑣# 𝑣$

IC Samples
𝑅! 𝑣" 𝑣#

𝑅" 𝑣$ 𝑣%

𝑅# 𝑣& 𝑣# 𝑣$

𝑅$ 𝑣#

𝑅% 𝑣"

𝑅& 𝑣" 𝑣& 𝑣# 𝑣%

𝑅' 𝑣# 𝑣$

#ℎ

𝑣" 3

𝑣& 2

𝑣# 5

𝑣$ 3

𝑣% 2

𝑢∗ = 𝑣#

sampling counting pruning

6

Motivation

Ø Memory Challenges Unaddressed
• Huge memory inflation (30x~165x) during computation
• Same for many stochastic graph applications

DBLP YouTube Skitter Orkut Pokec LiveJournal
0

20

40

60

80

100

B
ar

P
lo

t:
R
R
R

P
er

ce
nt

ag
e 425

87.45%

3, 146
94.25%

9, 838
96.24%

50, 997
95.86%

67, 374
98.95%

172, 430
99.01%

102

103

104

105

106

L
in

e:
T
ot

al
M

em
or

y
U

sa
ge

(M
B
)

Memory usage of Ripples to store intermediate RRR sets

Ø Address Computation Challenges
• Parallelization on shared and distributed-memory systems

o Ripples (Minutoli et al.)
• Accelerated by GPUs

o cuRipples (Minutoli et al.),
o gIM (Shahrouz et al.)

Ø Research Questions
• Can we leverage compression techniques?
• Can we compute with compressed data to preserve memory saving?
• If yes, which compression algorithms should we use?
• What are the benefits to reduce memory usage?

7

HBMax: Select Suitable Compression

DBLP YouTube Skitter Orkut Pokec LiveJournal
0

20

40

60

80

100

B
ar

P
lo

t:
R
R
R

P
er

ce
nt

ag
e 425

87.45%

3, 146
94.25%

9, 838
96.24%

50, 997
95.86%

67, 374
98.95%

172, 430
99.01%

102

103

104

105

106

Li
ne

:
T
ot

al
M

em
or

y
U

sa
ge

(M
B
)

Memory Inflation on six large social network graphs

Characterization of intermediate RRR sets distributions

0 25000 50000 75000

0K

5K

10K
DBLP

0 50000

0K

25K

50K

75K YouTube

0 20000 40000 60000

0K

50K

100K Skitter

0 5000 10000

0K

1, 000K

2, 000K Orkut

0 5000 10000

0K

500K

1, 000K
Pokec

0 5000 10000 15000

0K

1, 000K

2, 000K

3, 000K LiveJournal

0 25000 50000 75000

0K

5K

10K
DBLP

0 50000

0K

25K

50K

75K YouTube

0 20000 40000 60000

0K

50K

100K Skitter

0 5000 10000

0K

1, 000K

2, 000K Orkut

0 5000 10000

0K

500K

1, 000K
Pokec

0 5000 10000 15000

0K

1, 000K

2, 000K

3, 000K LiveJournal

0 25000 50000 75000

0K

5K

10K
DBLP

0 50000

0K

25K

50K

75K YouTube

0 20000 40000 60000

0K

50K

100K Skitter

0 5000 10000

0K

1, 000K

2, 000K Orkut

0 5000 10000

0K

500K

1, 000K
Pokec

0 5000 10000 15000

0K

1, 000K

2, 000K

3, 000K LiveJournal

Ø Profiling Memory Usage
• Huge memory inflation (30x~165x) during computation

Ø Characterize Intermediate RRR Sets
• RRR sets have various distributions

o Highly-skewed, Linear-decay, Flat-headed
• RRR sets have various densities

o Sparse, Dense
Graph Skewness Density

DBLP 11.46 0.26%

YouTube 9.01 0.63%

Skitter 5.38 2.03%

Orkut 0.75 27.7%

Pokec -1.43 66.0%

LiveJournal -0.99 53.3%

Huffman Coding (H)

bitmap Coding (B)

8

HBMAX: Overview of Workflow
Sampling
Block-1

Skewness
< 0

Density
≥ 3.12

BitMap

Coding

Huffman

Coding

Warm-Up
Phase

Decision
Making

Blockwise
Encoding

BitOperation
w/o

Decoding

Partial
Decoding

w/ Early-Stop
Selection

characterize

yes

no

no

yes

Sampling
Block-1

Density
≥ 3.12

BitMap
Coding

Huffman
Coding

Warm-Up
Phase

Decision
Making

Skewness
< 0

Blockwise
Encoding

BitOperation
w/o

Decoding

Partial
Decoding

w/ Early-Stop

Selection

characterize

yes

no

no

yes

Ø Sampling-and-Encoding
• Parallelize by OpenMP
• Consider NUMA effects
• Swap by data localities (H)

Ø Selection
• Partially-decode and Early-Stop (H)
• Bit-Operations w/o Decoding (B)

Ø Warm-up
• Characterize skewness and density
• Huffman Coding (H)
• bitmap Coding (B)

Blockwise Sampling
Release memory after compressed
Avoid peak memory usage

9

HBMAX: Selection w/ Huffman Encoded Data (H)
Ø Partial-Decoding w/ Early-Stop
• Leverage the data locality of skewed distributions
• Swap during encoding to enable Early-Stop in partially-decoding

Encode RRRs
Swap 𝑢∗ to the front
and encoding

Query RRRs
Early-stop after decompress
𝑐∗ and 𝑢∗ is found

10

HBMAX: Selection w/ bitmap Encoded Data (B)
Ø Query the encoded RRRs
• Directly compute with encoded data
• Use POPCOUNT to construct frequency table
• Use 𝑣# AND (𝑣# XOR 𝑢∗) to remove 𝑅𝑅𝑅s

Selection with bitmap data. Columns represent RRRs

R! R" R# R$ R% R& R' #ℎ

𝑣! 1 0 0 0 1 1 0 3

𝑣" 0 0 1 0 0 1 0 2

𝑢∗ 1 0 1 1 0 1 1 5

𝑣$ 0 1 1 0 0 0 1 3

𝑣% 0 1 0 0 0 1 0 2

R! R" R# R$ R% R& R' #ℎ

𝑣! 1 0 0 0 1 1 0 3

𝑣" 0 0 1 0 0 1 0 2

𝑢∗ 1 0 1 1 0 1 1 5

𝑣$ 0 1 1 0 0 0 1 3

𝑣% 0 1 0 0 0 1 0 2

POPCOUNT AND, XOR

R! R" R# R$ R% R& R' #ℎ

𝑣! 0 0 0 0 1 0 0 3

𝑣" 0 0 0 0 0 0 0 2

𝑢∗ 1 0 1 1 0 1 1 5

𝑣$ 0 1 0 0 0 0 0 3

𝑣% 0 1 0 0 0 0 0 2

11

HBMAX: Selection u* w/ Parallel Merge

2 4 8 16 32
0

2

4

6

8

10

R
ed

uc
ti
on

T
im

e
(s

)

openMP-Reduction

Parallel-Merge

0%

20%

40%

60%

% openMP-Reduction

% Parallel-Merge

Scalability of Parallel Merge and OpenMP reduction

Ø Parallel Merge
• Select global maximum from local maxima
• Avoid parallel reduction to compute global frequency table
• Enhance scalability

For Skitter graph (n=1.6M, k=100)
Directly use OpenMP Reduce needs to
reduce 1.6M×100×4 ≈ 650 MB data;

Our parallel Merge on 32 threads needs
to reduce 32×100×4 ≈ 12.5 KB data.

12

Evaluation: Setup

Ø DatasetsØ Platform

• One Regular Memory (RM)
node from Bridges-2
o 2 AMD EPYC 7742 CPUs
o 256 GB RAM

• Compiled by GCC 8.3.1

13

Evaluation: Reduced Memory Usage
Ø Reduction of memory footprint

• Up to 82.1% (LiveJournal) w/ bitmap coding
• Ripples cannot process the 2 largest graphs (OOM)

Scalability of Parallel Merge and OpenMP reductionTime-to-solution on tested graphs. Average time shortened is 14.5% on skew-distributed graphs.

Memory footprint (in MB) and reduction ratio (in parenthesis)

14

Evaluation: Faster Time-to-solution
Ø Reduction of Time-to-Solution

• Average 6.3% speedup
• Reduced page fault

Time-to-solution (in seconds) and overhead ratio (in parenthesis)

Reduced page fault in sampling steps

15

Evaluation: Scalability
Ø Strong scalability

• 12.98x speedup on 64 cores
• HBMax scales better on highly-skewed graphs (DBLP, YouTube)

16

Conclusion and Future Work
Ø A Compress-to-Compute approach

• Huffman or bitmap Coding
• Query by partially-decoding or no-decoding

Ø Evaluation on real-world large graphs
• Reduce memory usage up to 82.1%
• Average speedup is 6.3%
• Strong scalability with 12.98x speedup on 64 cores

Ø Future Work
• Extend to distributed-memory platforms
• Leverage GPU accelerators
• Explore compression techniques on broader graph algorithms

17

Thank You!
Any questions are welcome!

Contact Dingwen Tao: (ditao@iu.edu)
Xinyu Chen: (Xinyu.chen1@wsu.edu)

mailto:ditao@iu.edu

