waveSZ: A Hardware-Algorithm Co-Design of **Efficient Lossy Compression for Scientific Data**

Jiannan Tian The University of Alabama Sheng Di Argonne National Laboratory Chengming Zhang The University of Alabama Xin Liang University of California. Riverside The University of Alabama Sian lin Dazhao Cheng University of North Carolina at Charlotte Dingwen Tao The University of Alabama Franck Cappello Argonne National Laboratory

February 24, 2020 PPoPP '20 at San Diego, California, USA

Background ●○○○ Introduction

Proposed Design of waveSZ

Experimental Evaluation

Conclusion and Future Work

Trend of Supercomputing Systems

Storage capacity and bandwidth are developing more slowly compared to computational capability.

supercomputer	year	class	PF	MS	SB	MS/SB	PF/SB
Cray Jaguar	2008	1 PFLOPS	1.75 PFLOPS	360 TB	240 GB/s	1.5k	7.3k
Cray Blue Waters	2012	10 PFLOPS	13.3 PFLOPS	1.5 PB	1.1 TB/s	1.3k	13k
Cray CORI	2017	10 PFLOPS	30 PFLOPS	1.4 PB	1.7 TB/s*	0.8k	17k
IBM Summit	2018	100 PFLOPS	200 PFLOPS	$> 10 \text{ PB}^{\star\star}$	2.5 TB/s	>4k	80k

PF: peak FLOPS MS: memory size SB: storage bandwidth

* when using burst buffer ** counting only DDR4

Source: F. Cappello (ANL)

Table 1: Three classes of supercomputers showing their performance, MS and SB.

Feb. 24, 2020 $\,\cdot\,$ PPoPP '20, San Diego, California, USA $\,\cdot\,$ waveSZ $\,\cdot\,$ 2 / 17

Background	
0000	

Introduction O Proposed Design of waveSZ

Experimental Evaluation

Conclusion and Future Work

Current Status of Scientific Applications

Today's scientific research is data driven at a large scale (simulations or instruments). PB to process & analyze. (PB datasets are coming.) Data reduction is on demand.

- cosmology simulation HACC ^a generates **1** 20 PB data per one-trillion-particle (10¹²) simulation, **2** exhausting the FS ^b and **3** taking long to store ^c. **4** Reduction at rate **10** needed.
- climate simulation CESM generates 1 TB data per compute day, 2 increasing hardware budget in storage (NCAR), from 20% (2013) to 50% (2017).8 Reduction rate at 10+ needed [A. Baker et al., HPDC '16].
- APS-U Project (High-Energy X-ray Beams Experiments) brain initiatives: 1 multi-hundred PB of storage. 2 Data analysis performed off-site on ANL Mira, with connection at 100 GB/s ^{d,e}. 3 Reduction rate at 100 needed.
- a Hardware/Hybrid Accelerated Cosmology Code
- b Mira at ANL has 26 PB FS, 20 PB/26 PB $\approx 80\%$
- c NSF Blue Waters (1TB/s I/O bandwidth), 5h30m to store the data
- d $\,$ Would take $\sim\!$ 115 days to transfer the data
- e There is no 100 PB buffer at the APSL :(

Background	
0000	

Introduction

Proposed Design of waveSZ

Experimental Evaluation

Conclusion and Future Work

(Error-Bounded) Lossy Compression Matters

- Scientific datasets lossless-compressed at rate 2:1 [Son et al. 2014]
 - represented in floating-point
 - We need 10:1 or even higher!
- ► Industry lossy compressors offer much higher reduction rate.
 - designed/optimized considering human perception
 - not suitable for supercomputer applications
- Strict error control toward scientific discovery solution accurate postanalysis
 - data analysis with lossy datasets (after or during simulation)
 - execution restarting from failures
 - calculation from lossy data in memory
- Need diverse compression modes
 - absolute error bound (L^{∞} norm error)
 - pointwise relative error bound
 - RMSE error bound (L^2 norm error)
 - fixed bitrate
- SZ [Di and Cappello 2016; Tao et al. 2017; Xin et al. 2018]
 - prediction-based lossy compressor framework for scientific data
 - strictly control the global upper bound of compression error

JPEG, reduction rate decreasing and hence quality increasing, left to right

lossy compression for scientific data at varying reduction rate figure from Peter Lindstrom, LLNL

Background	Introduction
0000	•

Proposed Design of WAVESZ

Experimental Evaluation

Issues with SZ and Its Current FPGA Implementation

Conclusion and Future Work

- ► lack of parallelism: SIMD and SIMT cannot apply
- Limitations in FPGA GhostSZ
 - totally performance-driven design
 - 3 predictors in use, need extra bits to encode
 - more "workflow pipelines" (more resource)
 - Iow compression ratio

encoding prediction error in quantized form (16 bits)

- New use scenarios of adopting FPGA
 - real-time processing; "inline processing" (Intel, 2018)
 - ExaNet—an FPGA-based direct network architecture of the European exascale systems [Ammendola et al. 2018]

Figure 1: Loop-carried dependencies due to writeback.

Figure 3: CESM-ATM CLDLOW.

Background	Introdu
0000	0

ntroduction

Proposed Design of waveSZ

Experimental Evaluation

Conclusion and Future Work

(c) SZ-1.4 dependency in Manhattan distance.

dependency in Manhattan distance.

(**b**) GhostSZ memory access pattern.

(d) GhostSZ dependency in Manhattan distance.

Figure 4: SZ-1.4 and GhostSZ: memory access pattern and data

- Dependencies denoted with Manhattan distance from • zero point
- ► SZ-1.4
 - iterate against the dependencies, see Fig. 4(c)
 - RAW at the last cycle, impossible to extract parallelism
- GhostSZ
 - overlook multidimensional smoothness
 - slice data of dimensionality into 1D
 - hence multiple zero points
 - no dependency "vertically"

Feb. 24, 2020 · PPoPP '20, San Diego, California, USA · waveSZ · 7/17

Memory Access Pattern and Dependency (cont'd)

Figure 5: SZ-1.4 and waveSZ: memory access pattern and data dependency in Manhattan distance.

 Dependencies denoted with Manhattan distance from • zero point

WAVESZ

- iterate along the aligned dependency-free points
- exploit the parallelism by pipelining
- Pipelining
 - not to change too much
 - expect platform-support pipelining control

Feb. 24, 2020 · PPoPP '20, San Diego, California, USA · waveSZ · 8/17

Background	Introduction
0000	0

Explicit Pipeline

Proposed Design of waveSZ ○○●○ Experimental Evaluation

Conclusion and Future Work

- How pipeline works
 - *depth*: #cycles to complete one iteration
 - ▶ *initiation interval* (II): #cycles to wait until the next iteration
 - ► total latency = $(\#task 1) \times II + depth$
 - speedup = (depth × #task) / total latency
 - ▶ II=1 → II=2, speedup: $2.78 \times \rightarrow 3.57 \times (28\%$ better) for this demo.
 - Suppose #task $\rightarrow \infty$, speedup = $\frac{\text{depth} \times \text{#task}}{(\text{#task}-1) \times \text{II} + \text{depth}} \sim \frac{\text{depth}}{\text{II}}$, hence, II matters.
- ► Reason why is not (always) II=1
 - data dependency (loop carried)
 - resource in use (e.g., memory port)

Feb. 24, 2020 $\,\cdot\,$ PPoPP '20, San Diego, California, USA $\,\cdot\,$ waveSZ $\,\cdot\,$ 9 / 17

Background	Introduction	Proposed Design of waveSZ	Experimental Evaluation	Conclusion and Future Work
0000	0	0000	0000	000
				THE UNIVERSITY OF

Temporal-Spatial Mapping

- FPGA + wavefront memory layout = more pipelining control
- Ideally, suppose Λ cycles to finish (prediction + quantization), no stall if
 II = 1, and ② (vertically) iterating over Λ points from (r, c) to (r, c+1)
- **b** BODY ("perfect loop") unrolled with factor Λ (= vertical dimension) and II = 1

Background	Introduction
0000	0

Performance

Proposed Design of WAVESZ

Experimental Evaluation

Conclusion and Future Work

ALABAMA Argonne

			# fields	type	dimensions	example fields
►	Platform	CESM-ATM	79	float32	$1800{ imes}3600$	CLDHGH, CLDLOW
	 target board: Xilinx ZC706 programming: C/C++ and high-level synthesis 	Hurricane NYX	20 6	float32 float32	$100 \times 500 \times 500$ $512 \times 512 \times 512$	CLOUDf48, Uf48 baryon_density
	programming. C/C// and mgn level synthesis					

► HLS: C/C++ semantics to HDL

unroll with II=1, loops become pipelined commands

Datasets

- Scientific Data Reduction Benchmarks (SDRB) suite from https://sdrbench.github.io
- ► 3 representative datasets, a diversity of fields
- Synthesis report
 - ► successfully unroll BODY, the "perfect loop" with II=1
 - ► WAVES7 use less resource

Figure 6: Representative datasets.

	total	WAVESZ	(%)	GhostSZ	(%)
BRAM_18K	1090	9	0.84	162	14.86
DSP48E	900	0	0.00	63	7.00
FF	437,200	4473	1.02	19470	4.45
LUT	218,600	8208	3.75	27030	12.37

Table 2: Resource utilization from synthesis.

Background	
0000	

Introduction

Proposed Design of waveSZ

Experimental Evaluation

Conclusion and Future Work

Performance (cont'd)

- Baseline: CPU SZ-1.4, and GhostSZ
- Multilane waveSZ on FPGA vs OpenMP SZ
- Compressor configuration
 - error bound set to 10^{-3} relative to value range
 - 16-bit quantization code, waveSZ, ompSZ
 - 14-bit quantization code, 2-bit predictor code for GhostSZ

Performance, in MB/s

	WAVESZ	GhostSZ	SZ-1.4
CESM-ATM	995	130	114
Hurricane	838	101	122
NYX	986	110	125

- Scaling up
 - ► OpenMP parallelizes sublinearly, 59% at 32 cores
 - OpenMP version support 3D only
 - FPGA implementations saturate at PCIe bandwidth

Figure 7: Performance.

Background	Introduction
0000	0

Proposed Design of waveSZ

Experimental Evaluation

Conclusion and Future Work

Statistics and Postanalysis

Compression Ratio (CR)

- How CR is affected
 - distribution of quantization code
 - the amount of the unpredictable/"outliers"
 - how it is losslessly encoded
- ► GhostSZ reserves 2 bits to encode predictors in use, diverging 3 peaks at 0b00..., 0b01..., 0b11....
- ► Techniques in use
 - ► G^{*} stands for gzip only,
 - H*G* stands for Huffman + gzip.
 - With G*, waveSZ shows higher CR than that of GhostSZ.
 - With simulated H*G*, waveSZ CR \approx SZ-1.4 CR.

Figure 8: Error bound changing impacts on CR.

		CESM-ATM	Hurricane	NYX
GhostSZ		7.9	6.2	6.6
WAVESZ	\mathbf{G}^{\star}	12.3	13.2	18.3
	H*G*	29.4	20.3	34.8
SZ-1.4		31.2	21.4	33.8

Table 3: Compression ratio.

Background	Int
0000	0

roduction

Proposed Design of WAVESZ

Experimental Evaluation 0000

0.5

0.0

Conclusion and Future Work

- \blacktriangleright $eb = 10^{-3}$ relative to value range
- GhostSZ has slightly higher PSNR
 - Curve fitting is more intuitive.
 - Lorenzo (multidimensionally linear) has lower chance to get high prediction accuracy in the similar-value areas.
 - in the case of CESM-ATM
- Tradeoff between these two predictors
 - multidimensionality (Lorenzo)
 - higher PSNR (curve fitting)
 - less resource use (Lorenzo)
 - ► higher CR (Lorenzo)

	GhostSZ	WAVESZ	SZ-1.4
CESM-ATM	73.9	65.1	64.9
Hurricane	70.6	66.0	65.0
NYX	74.5	66.5	65.2

Table 4: PSNR.

waveSZ error.abs.val

Feb. 24, 2020 · PPoPP '20, San Diego, California, USA · waveSZ · 14/17

Background

Introduction

Conclusion and Future Work

Proposed Design of waveSZ

Experimental Evaluation

Conclusion and Future Work ●○○

Conclusion

- We adopt a wavefront memory layout to alleviate dependency SZ-1.4 with arbitrary-dimensional predictor.
- We propose a co-design framework for SZ lossy compression, waveSZ, and implement it in HLS.
- We propose a hardware-algorithm co-optimization (e.g., via HLS directive, base-two algorithmic operations).
- ► We evaluate on three real-world datasets from SDRB suite, showing 2.1× CR and 5.8× througuput on average, compared with the current FPGA implementation.

Future Work

- Integrate open-source production-level gzip
- Integrate Huffman encoding

Thoughts on Future Systems

- Co-acceleration
 - FPGA is not in place of manycore accelerator
 - manycore + FPGA (the availability)

What's added

- feature: low latency (and high throughput)
- real-time processing in big-data analytics

Background	Introduction
0000	0

Acknowledgement

Proposed Design of waveSZ

Experimental Evaluation

Conclusion and Future Work $\circ \bullet \circ$

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy's Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications, and hardware technology, to support the nation's exascale computing imperative. The material was also supported by and supported by the National Science Foundation under Grant No. 1305624, No. 1513201, and No. 1619253.

EXASCALE COMPUTING PROJECT

THANK YOU ANY QUESTION? 🧐

THE UNIVERSITY OF

BackUp (Rasterization)

Due to the rasterization (an 1800×3600 datum is visualized with serval inches each dimension), the compression error for Lorenzo predictor seems significantly worse than that of Order-{0,1,2}. (top: origin, bottom left: GhostSZ error, bottom right: waveSZ error)

ALABAMA Argonne

Feb. 24, 2020 · PPoPP '20, San Diego, California, USA · waveSZ · 2/4

0000

BackUp (FPGA and GPU)

- Prediction + quantization
 - tight dependencies in the original SZ
 - alleviated with wavefront, dependency on one direction left
 - expensive synchronizations across iterations
- Lossless stage
 - we have open-source gzip
 - too many if-branches and random accesses

- waveSZ doesn't do any bit truncation to unpredictable data.
- Interestingly, on the NYX dataset, wAVESZ has a slightly higher CR (H*G*). wAVESZ goes along "y-direction" (corresponding to outer loop) to overlap the prediction and quantization latency and then change to the following point in the "x-direction" (as shown in Slide 10).

► Gaussian-like, with signum altering to Manhattan distance to the (polarized) current point (■).

$$G_{5\times5} = \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix} \quad \ell_{5\times5} = \begin{bmatrix} -1 & 4 & -6 & 4 & -1 \\ 4 & -16 & 24 & -16 & 4 \\ -6 & 24 & -36 & 24 & -6 \\ 4 & -16 & 24 & -16 & 4 \\ -1 & 4 & -6 & 4 & \blacksquare \end{bmatrix}$$

▶ Works for arbitrary dimension: from line to cube, to hypercube...

