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Why Compression
* Large-scale scientific applications generate extremely large amounts of data
* Limited storage capacity (even for large-scale parallel computers)
* The I/0 bandwidth can create bottlenecks in the transmission

application data scale passive solution (?) to reduce
= HACC 20PB useup FS  10x
cosmology simulation  per one-trillion-particle 26 PB for Mira@ANL in need
simulation
Jriginal 652 GB CESM 20% vs 50% 5h30m to store 1 ox
Sompressed 41 GB climate simulation of h/w budget for storage =~ NSF Blue Waters, I/O at 1 TBps  in need
SZ - 2013 vs 2017
APS-U hundreds of P BB 100-PB .. 100x
High-Energy X-Ray brain initiatives or, connection at 100 GBps in need
Beams Experiments

T Nyx cosmological simulation: can generate up to 2.8 PB of data at 4096 scale
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Why Compression
« Large-scale scientific simulations generate extremely large amounts of data
* Limited storage capacity (even for large-scale parallel computers)
* The I/0 bandwidth can create bottlenecks in the transmission
e  Write is slow!

application data scale passive solution (?) to reduce
Lossy Compression HACC 20PB  useupFS 10x
. . . cosmology simulation per one-trillion-particle 26 PB for Mira@ANL in need
e High compression ratio simulation
° 1 o
Controllable compression error  CEGM  1:,,50%  5h30m ... 10x
* Improve overall performance! climate simulation  of h/w budget for storage  NSF Blue Waters, /O at 1 TBps  in need
2013 vs 2017
APS-U hundreds of P BB 100-PB ..« 100x
High-Energy X-Ray brain initiatives or, connection at 100 GBps in need

Beams Experiments
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Parallel 1/0 Libraries for HPC Applications

* Access and manage scientific data
e ffl cie ntly Application Application Application Application

P —— —— e

[ . . . .

. Compression/ Compression/ Compression/ Compression/

. Decompression ~ Decompression  Decompression  Decompression
1
1

 Move data between compute nodes and
storage

* Compression Filter e (S b L Previous (-
_/ Parallel Scientific Data Management Library

* Reduce storage footprint )

\s_________—

* Improve 1/0 performance Parallel /O
Parallel Parallel Parallel Parallel
File System File System File System File System

T Scientific data management with compression.
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Parallel 1/0 Libraries for HPC Applications 40
* Access and manage scientific data é ol
efficiently 5 25
 Move data between compute nodes and “g?‘; :
38T
 Compression Filter 0 iR AR e Aol fio
* Reduce storage footprint Bit-Rate (bits/value)
* Improve I/0 performance 7 Compression bit-rate distribution on a Nyx dataset with 512
partitions. Every partition uses the same compression configuration.

What Are The Limitation?

* High overhead: compression and [/0O are in sequential

 Compression is not deeply integrated
e Compression information is unknown to I/0O libraries
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Our Solution & Contributions
¢ EXtend the prediCtion mOdel to estimate Application Application Application Application
the offset and performance of parallel I/0 i b e e e \
Compression/ Compression/ Compression/ Compression/

e Overlap I/0 with compression

* Optimization for reorder compression
tasks to achieve higher performance

* Improve the parallel-write performance
by up to 4.5X and 2.9 X compared to
the HDF5 write without compression and
with the SZ lossy compression filter,
respectively, with only 1.5% storage
overhead

Decompression  Decompression  Decompression ~ Decompression

So -

Parallel Scientific Data Management Library

$ Ours
Parallel I/O
Parallel Parallel Parallel Parallel
File System File System File System File System

T Scientific data management with compression.
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2% —|_
2D Lorenzo Predictor Error Bound |
fror=ern We may need much less than 256 Huffman Coding
(x-Ly-1) (ry-1) & (Real intervals (that 8 bits can represent).
2x | b Value il e
Error Bound 2 P N
(x-1Ly) (x.y) = 12% "”\/\ \wm
First-Phase _, A 9% 1" Very centrally / \’ f \’
: Error o oo
3D Lorenzo Predictor Predict Value - } Bounda NP 8% | distributed - '7 \’f: p ?./ \:‘ L/Xo I /(o
6% 1](0 2, e (kg 2
2x 4% n| |13 I:IX\ 17
Error Bound 1 (0
o —t— 2% f 7
2x 0% / \‘i
ErrorBound | J_ TTRNeIhorNe5o T RTRRE R RNRIR ‘/\0 :
- Error-Bounded Uniform Quantization Code
prediction quantization coding

Error Bounded Lossy Compression
* Compression ratio: ratio between original and compressed data size
* Bit-Rate: bits per value to encode the data
» Data distortion: reconstructed data quality compared to the original
* Error Bound: ensures differences between original and reconstructed
data do not exceed the error bound
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Process 1 Process 2 Process 3 Process 4
Prediction Prediction Prediction Prediction Overall Design
: : All Gather : : e Predict ratio and throughput
Optimization Optimization Optimization Optimization * Distribute th_e_ estimated compression ratio
| | | | of each partition to all processes
* Computes the offset for parallel write
* Optimize the order of compressing
, . , , different data fields in each process
Compression Compression Compression Compression _ _
* Overlap compressions and writes
IOI /o L Ol I'OI  Distribute overflow information
I
All Gather * Handle overflowed data
\ \Z \Z \Z
Overflow Overflow Overflow Overflow
Handling Handling Handling Handling

1 Overview of our proposed solution.
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(2) Lossy Compression
With Collective Write

S
h
]
—_—

(3) Overlap Compression & 1/0

I/0

(4) Compression Scheduling Optimization Compression (1) Original -

1 Timeline of data aggregation with 5 processes and 2 data fields.

How We Improves Over Previous Solutions
* Previous solutions:
* (1) Original: non-compression solution
* (2) Lossy compression solution using HDF5 filter (H5-SZ)
* Our Solutions:
* (3) Overlap compression & 1/0
* (4) Overlap compression & I/0 + compression scheduling optimization
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Compressor Throughput Estimation

* Min & max compression throughput are similarly bounded across different data samples
* Bitrate-throughput curve for each data sample is highly consistent

Tcomp — D/S
—Qa a
— (Bori X n)/(((Cmaa: - szn) X 3 )B + szn)

300 300
w2
% 250 --9--o--cr--o--g-6—-(2-9--0-9--0--9--c'---'O'-9-'0'-9-'0--9-9----'0----0--0'--“0-5--{ 250 —e— Baryon —&— Dark-matter
< 2 o— Temp A— Velosity x
2 200 | % 200 —>%—RTM |
E; 5

1 - 150
é 50 __.___.__.___.__.__.__.__'__.__.__.__‘__'__!__.__:_..._.__.__.__.._._____'._.__.__!__'__.__" % 7'\; > —a
= 100 | 2 100 |
8 E
& 50 50
o o 5
=) eMIN °MAX
E 1 1 1
8 0 1 1 1 1 1 O 1 1 1

0 5 10 15 20 25 30 0 1 2 3 4 5 6 7
Sampled Data Bit-Rate (bits/value)

1 Minimum and maximum compression throughput of a given data 1 Single-core compression throughput with different bit-rates on a
partition based on 30 samples from Baryon density Nyx and a RTM datasets
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Compressor Throughput Estimation
* Min & max compression throughput are similarly bounded across different data samples
* Bitrate-throughput curve for each data sample is highly consistent

Teomp = D/ S

— (Bom' X n)/(((Cmaa: - szn) X B_G)Ba + Cm'm,)
Write Time Estimation 0 e
* Not to provide a highly accurate write-time _
estimation for each data partition, but to
provide a capability to estimate the relative
write time across different data sizes
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Throughput (MB/s)
o0
[«

60
* Stabilizes after the data size reaches a 40
certain point 20
0 1 1 1 1 1 1
Towrite = ( B x n) /Cthr 0 10 20 30 40 50 60 70

Data Size Per Process (MB)

1 Independent write I/0 throughput per process with different
data sizes per process
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Overlapping Compression and Write Predicted Compressed Size Extra Space Origin|a11 Data
* Estimate the offset based on predicted pp— —
compression ratio — I .
* Reserve an extra space for unpredicted — . — | I s  Shared HDES Eile
compressed data overflow ' i g T

 Extra space ratio can be adjusted to |

balance between performance and Actual Compressed Size Overflowed data
compresse d size overhead 1 Overflow data handling with preserved extra space.

70% 50%

Extra Space Ratio S 60% | S

. o { 40% 5

* Default at 1.25 for most partitions 8 50% 8

. .. . . . = i 1 30% &

* Adjusted for partitions with high estimated 2 2
. . 30% |

compression ratio 8 o 120% g

3 20% A

; £ .o | 1 10% g

rspace — mln(2, ]. + (Rspace - ].) X 4), cg lg;’ 0% %

[5) 0 1 1 1 1 0 [5)

where  Tcomp > 32. = 1.1 1.2 1.3 1.4 15 B

Extra Space Ratio 8

Size Overhead

Performance Overhead

Trade-off between performance overhead and compression size overhead 1
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Algorithm 1 Compression Order Optimization

Notation: data fields in current process: ¢; compression queue: ); com-

CompreSSion Order Optlmlzatlon pression queue after insert and additional data: Q°; possible insert locations
. . in a queue: 3; time to compress: t.; time to write:t,,; predicted compression
y Improve Overlapplng efflCIenCy time: P.({); predicted write time: Py, (£)

Global: P.(¢), Py, (£)

* I/0 of each partition happens after compression arocedurs TIME()

* Avoid unnecessary wait time for 1/0 2 teytw < 0
« Suitable: compression time and 1/0 time are similar  , " ff_dtatiﬁf:ld&;n g do
 Limited improvement: S g Puld) + max(le tw)
* [/0 is significantly longer 7 return ty
. . . . 8 end procedure
* Compression is significantly longer 9
16 procedure SCHEDULINGOPTIMIZATOR
11 for ¢ < data fields in current process do
12 for 8 < all possible insert location do
Compression I/0 13 Q° < insert £ to 3
14 if TIME(Q°) < TIME(Q) or first 3 then
:_— 15 Q $— Qo
16 end if
(a) Compression time is significantly shorter 17 end for
18 end for

. 19 return Q
20 end procedure

(b) Compression time is significantly longer

1 An example of extremely unbalanced compression time and write time, limiting the benefit from our reordering.
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Evaluation Setup
* Implemented our approach with HDF5 and SZ3
* Two HPC systems
 The Summit at ORNL, up to 4096 ranks
 IBM POWERS9 processors, Mellanox EDR InfiniBand interconnect
 The Bebop at ANL, up to 512 ranks
e two 18-core Intel Xeon E5-2695v4 CPUs, Omni-Path Fabric Interconnect
I/0-Intensive HPC Applications Name Description Scale Size
° NyX Cosmology Simulation 4096 X 4096 4096 2.47 TB
* hydrodynamics code designed to model nyx [18] | Cosmology simulation ig;zxzmxm‘m 20025 °B
X 10241024 25.76 GB
astrophysical reacting flows S 12%512%512 3 22 GB
* VPIC (vector particle-in-cell) plasma physics VPIC [52] | Particle simulation | 161,297,451,573 | 4.62 TB

simulation

1 Details of Tested Datasets.
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0.08
Accuracy of Compression and 1/0 Throughput 007 ——
Estimation -éo% W . .
. . . . . o Cestod°°°
* High accuracy on compression time estimation £ gos | L v
» Different partitions £ .04 ’_’ﬂ‘lﬁ'
» Different data scale §0_03 4
e High accuracy on write time estimation 002 . . . . .
 Have some distortion but NOT affect our 0 : 4 3 4 2 & 1
.. ] Bit Rate (bits/value)
optimization 1 Accuracy of our compression-time estimation on 512 scale Nyx
data samples (red line is predicted time; black dots are actual time)
0.08 0.08
e _ 007 } g
0.06 2 006 | ’
= e 'E*o.os s
;50.04 T el § 0.04 ,
o N £ 0.03
— ° ° .' ° E
0.02 ;.: WP £ 0.02
O
;u*"‘ 0.01
o 2 - 0 - - - - - -
0 1 2 3 0 1 2 3 4 5 6 7
Bit Rate (bits/value) Bit Rate (bits/value)

1 Accuracy of our write time estimation on 1024 scale Nyx data 7 Accuracy of our compression-time estimation on 1024 scale Nyx
data samples. Red line is predicted time; black dots are actual time.

samples. Red line is predicted time; black dots are actual time.

15
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90% 50% 80% 50%
< 80% " o S% _
et 1 40% £ -t 1 40% &
g 70% | y M% T 0% | e
= 60% J < = <
2 500/o \ 1 30% 2 L 20% [; 1 30% 2
+ St et
el L Sy
o r o

g 120% o 2 30% 120% o
E 30% b E oo
= 20% £
5 20% | { 10% g 8 2% { 10% £

S 10% 3 10% |

Ay Al ~
0% 1 1 1 1 1 1 1 1 0% 0% 1 1 1 1 1 1 1 1 0%
1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45
left y-axis Extra Space Ratio | right y-axis left y-axis Extra SpacF Ratio | _g Energy right
—&—Bebop Dark_Matter ~—Baryon —&—Bebop Uy —8—Ux y-axis
®— Summit Temperature Vx — Summit Uz X
Vy Vz y Z
a) Nyx (b) VPIC
o /

1 Trade-off between performance overhead and storage overhead based on different extra space ratios on Nyx dataset
(6 data fields) and VPIC dataset (7 data fields) on both Bebop and Summit with 512 processes.

Evaluation on Extra Space Ratio
* Trade-off curve between performance and storage are highly similar
* Lower the extra space ratio can result in extremely high performance overhead
* We choose the extra space ratio of 1.25 as default
e Can also custom the extra space ratio
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35%
. 30% = ® —e ==
Comparison 25% |
* Original: non-compression solution 8 20 | ° T,
=
* Previous: compression filter solution 215% |
* Overlap: our solution 10% |
° Reordering: Overlap + reorder technique 5% | —@— Storage Overhead =~ —@— Performance Overhead |
0%
40 42 44 46 48 50 52 54 56
Performance Improvement .
_ Red Shift (z)
e Stable performance over timesteps 7 Evaluation on the consistency of the storage and
. Original — Previous: 1.87 X performance overheads using the same extra space

ratio of 1.25 with 512 processes on Summit.

* Previous — Overlap: 1.79 X

* Overlap — Reordering: 1.30 X Reordering
* Overall: 2.91x improvement from Overlap v
previous with a 1.5% storage overhead
. . . Previous Y A
compared to original size.
Original 7777777722, A )
0 50 100 150 200 250 300 350 400
Performance comparison among our solution (overlapping and Time (s)

reordering), original non-compression solution, and previous
compression-write solution on 40963 Nyx dataset with 512 processes. 1

moptimization Ocompression BEwrite Ooverflow
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600 7 1200
500 % : ; 1000 | 7
Z Reordering Overlap Previous Reordering Overlap Previous
» 7 @
o 400 % Original Write Time TE; 800 I |
E "' 5
= 300 % % = 600 7 Original Write Time
= 7 ; -
= 200 % % _ = 400
oo L B o _ % _ % 200 | B
% A Y % =5 = [ % | E | E H
000 ddf A alll i 8l =8A
9 3.09 2.01 1.30 0.88 0.52 6.66 3.30 2.31 1.04 0.37
Bit-Rate (Bits) Bit-Rate (Bits)
BReordering OCompression BAI/O DOOverflow BRedordering DOCompression @I/O OOverflow

1 Performance improvement with different overall data reduction ratios. Dashed red line is the baseline of HDF5
without compression. Left: 40963 Nyx dataset, right: VPIC dataset. Evaluated with 512 processes on Summit.

Performance with Different Overall Ratios
* Limited improvement from reordering optimization under extremely high/low bit-rate
* High bit-rate: [/O time significantly larger than compression time
* Low bit-rate: compression time significantly larger than /0O time
e Storage overhead is stable
* Performance improvement over previous is more significant at bit-rate of ~2 bits
* Low/high bit-rate: compression-time/write-time dominate, less overlap efficiency
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- DD 50% - D 50%
= 1 40% g 1 40%
) Q o I o
> 2.5 E > 2.5 ﬁ
g 2 © ° 30% 9 B 2| —o——n_ 3-30%3
'g 1 5 0, % )g 1 5 o \‘ 0, (]
° 1 20% & o 1 20% &
g 1 £ g 1 &

. +— 5 . 0f =
E 0.5 —@— Performance improvement ~ —@-— Storage overhead 10% 3 g 0.5 —@— Performance improvement ~ —@- Storage Overhead 10% 3

)
(Fo) 0 1 1 1 1 1 1 0% E 0 1 1 1 1 1 1 0%
~ 0 1 2 3 4 5 6 7 a 0 1 2 3 4 5 6 7
Bit-Rate (Bits) Bit-Rate (Bits)
(a) Nyx with different compression ratio (b) VPIC with different compression ratio

1 Performance improvement (overall) and storage overhead of our solution compared to the previous solution
on both 40962 scale Nyx and VPIC datasets. Evaluated with 512 processes on Summit.

Performance with Different Overall Ratios
* Limited improvement from reordering optimization under extremely high/low bit-rate
* High bit-rate: [/O time significantly larger than compression time
* Low bit-rate: compression time significantly larger than /0O time
e Storage overhead is stable
* Performance improvement over previous is more significant at bit-rate of ~2 bits
* Low/high bit-rate: compression-time/write-time dominate, less overlap efficiency
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120 250
100 Reordering Overlap Previous 200 f Reordering Overlap Previous
g I} ==
= 60 r =
Q Q
£ ! 2 100
= b =
| 50 |
20 F 7
TINTINL aal ngll g :
0 0
256 512 1024 2048 4096 256 512 1024 2048 4096
Scale Scale
BReordering OCompression BI/O OOverflow BReordering OCompression B@I/O OOverflow

1 Performance improvement with different scale on both Nyx (left) and VPIC (right) datasets. Dashed red line is the
baseline of HDF5 without compression. Average bit-rate is 2. 2563 or 39, 379, 260 data values per field for each rank.

Performance with Different Scales
* Improvement from reordering optimization is stable

e Storage overhead is stable
* Performance improvement over previous is more significant towards larger scale

* Asynchronous write typically provides better scalability compared to the collective
write used by the previous compression-write solution
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. 3 50% . 3 50%
= =]
Q
£25 {4%§ E2° { 40% g
5 2§ —0Q ﬂ30vf‘3 B 2| —0300/':153
8 o> 8 o) o >
E‘I.SI/ 20!72 Elsk . 20*’/%
g 1t | g 1 * g
@] @]
g 05 r —@—Performance improvement ~ —@— Storage Overhead [ 1 10% & £ 05 —@— Performance improvement ~ —@— Storage Overhead | 1 10% 3
o
ﬁ 0 1 1 1 0% E 0 1 L 1 0%
A 256 512 1024 2048 4096 & 256 512 1024 2048 4096
Scale Scale
(c) Nyx with different scale (d) VPIC with different scale

1 Performance improvement (overall) and storage overhead of our solution compared to the previous solution
on both Nyx and VPIC datasets. (c) and (d) are evaluated with a target bit-rate of 2.

Performance with Different Scales
* Improvement from reordering optimization is stable
e Storage overhead is stable
* Performance improvement over previous is more significant towards larger scale
* Asynchronous write typically provides better scalability compared to the collective
write used by the previous compression filter solution
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Conclusion

 We extend the prediction model for compression ratio to predict the throughputs of
compression and parallel write for prediction-based lossy compression

 We propose a new compression-write scheme with HDF5 that can efficiently overlap
compression with write based on our prediction models

* We optimize the execution order of compression tasks in each process to achieve higher
parallel-write performance

* Our solution improves the parallel-write performance by up to 4.5x and 2.9x compared
to the HDF5 write without compression and with the SZ lossy compression filter,
respectively, with only 1.5% storage overhead

Future Works
e Extend our solution to other parallel I/0 libraries such as ADIOS
e Support more lossy compressors such as ZFP
e Evaluate our solution on more real-world HPC datasets
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Thank you!

Any questions are welcome!

Contact Dingwen Tao: ditao@iu.edu %

Sian Jin: sianjin@iu.edu iEI
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