
1

Accelerating Parallel Write via Deeply Integrating Predictive 
Lossy Compression with HDF5 

Sian Jin⋆, Dingwen Tao⋆, Houjun Tang‡, Sheng Di†, Suren Byna‡, Zarija Lukic‡, Franck Cappello†
⋆Luddy School of Computing, Informatics, and Engineering, Indiana University, Bloomington, IN, USA

†Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA
‡Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA



2

Introduction

Why Compression
• Large-scale scientific applications generate extremely large amounts of data
• Limited storage capacity (even for large-scale parallel computers)
• The I/O bandwidth can create bottlenecks in the transmission

↑ Nyx cosmological simulation: can generate up to 2.8 PB of data at 4096 scale



3

Introduction

Why Compression
• Large-scale scientific simulations generate extremely large amounts of data
• Limited storage capacity (even for large-scale parallel computers)
• The I/O bandwidth can create bottlenecks in the transmission
• Write is slow!

Lossy Compression
• High compression ratio
• Controllable compression error
• Improve overall performance!



4

Introduction

Parallel I/O Libraries for HPC Applications
• Access and manage scientific data
efficiently

• Move data between compute nodes and
storage

• Compression Filter
• Reduce storage footprint
• Improve I/O performance

↑ Scientific data management with compression.

Application

Compression/
Decompression

Compression/
Decompression

Compression/
Decompression

Compression/
Decompression

Parallel Scientific Data Management Library

Parallel I/O

Parallel
File System

Parallel
File System

Parallel
File System

Parallel
File System

Application Application Application

Previous



5

Introduction

Parallel I/O Libraries for HPC Applications
• Access and manage scientific data
efficiently

• Move data between compute nodes and
storage

• Compression Filter
• Reduce storage footprint
• Improve I/O performance

What Are The Limitation?
• High overhead: compression and I/O are in sequential
• Compression is not deeply integrated

• Compression information is unknown to I/O libraries

↑ Compression bit-rate distribution on a Nyx dataset with 512
partitions. Every partition uses the same compression configuration.



6

Introduction

Our Solution & Contributions
• Extend the prediction model to estimate
the offset and performance of parallel I/O

• Overlap I/O with compression
• Optimization for reorder compression
tasks to achieve higher performance

• Improve the parallel-write performance
by up to 4.5× and 2.9× compared to
the HDF5 write without compression and
with the SZ lossy compression filter,
respectively, with only 1.5% storage
overhead

↑ Scientific data management with compression.

Application

Compression/
Decompression

Compression/
Decompression

Compression/
Decompression

Compression/
Decompression

Parallel Scientific Data Management Library

Parallel I/O

Parallel
File System

Parallel
File System

Parallel
File System

Parallel
File System

Application Application Application

Previous

Ours



7

Background

Error Bounded Lossy Compression
• Compression ratio: ratio between original and compressed data size
• Bit-Rate: bits per value to encode the data
• Data distortion: reconstructed data quality compared to the original
• Error Bound: ensures differences between original and reconstructed
data do not exceed the error bound



8

Design Methodology

Overall Design
• Predict ratio and throughput
• Distribute the estimated compression ratio
of each partition to all processes

• Computes the offset for parallel write
• Optimize the order of compressing
different data fields in each process

• Overlap compressions and writes
• Distribute overflow information
• Handle overflowed data

↑ Overview of our proposed solution.



9

Design Methodology

How We Improves Over Previous Solutions
• Previous solutions:

• (1) Original: non-compression solution
• (2) Lossy compression solution using HDF5 filter (H5-SZ)

• Our Solutions:
• (3) Overlap compression & I/O
• (4) Overlap compression & I/O + compression scheduling optimization

↑ Timeline of data aggregation with 5 processes and 2 data fields.



10

Design Methodology

Compressor Throughput Estimation
• Min & max compression throughput are similarly bounded across different data samples
• Bitrate-throughput curve for each data sample is highly consistent

↑ Minimum and maximum compression throughput of a given data
partition based on 30 samples from Baryon density

↑ Single-core compression throughput with different bit-rates on a
Nyx and a RTM datasets



11

Design Methodology

Compressor Throughput Estimation
• Min & max compression throughput are similarly bounded across different data samples
• Bitrate-throughput curve for each data sample is highly consistent

↑ Independent write I/O throughput per process with different
data sizes per process

Write Time Estimation
• Not to provide a highly accurate write-time
estimation for each data partition, but to
provide a capability to estimate the relative
write time across different data sizes

• Stabilizes after the data size reaches a
certain point



12

Design Methodology

Overlapping Compression and Write
• Estimate the offset based on predicted
compression ratio

• Reserve an extra space for unpredicted
compressed data overflow

• Extra space ratio can be adjusted to
balance between performance and
compressed size overhead

Extra Space Ratio
• Default at 1.25 for most partitions
• Adjusted for partitions with high estimated
compression ratio

↑ Overflow data handling with preserved extra space.

Trade-off between performance overhead and compression size overhead ↑



13

Design Methodology

Compression Order Optimization
• Improve overlapping efficiency

• I/O of each partition happens after compression
• Avoid unnecessary wait time for I/O

• Suitable: compression time and I/O time are similar
• Limited improvement:

• I/O is significantly longer
• Compression is significantly longer

↑ An example of extremely unbalanced compression time and write time, limiting the benefit from our reordering.



14

Evaluation

Evaluation Setup
• Implemented our approach with HDF5 and SZ3
• Two HPC systems

• The Summit at ORNL, up to 4096 ranks
• IBM POWER9 processors, Mellanox EDR InfiniBand interconnect

• The Bebop at ANL, up to 512 ranks
• two 18-core Intel Xeon E5-2695v4 CPUs, Omni-Path Fabric Interconnect

↑ Details of Tested Datasets.

I/O-Intensive HPC Applications
• Nyx cosmology simulation

• hydrodynamics code designed to model
astrophysical reacting flows

• VPIC (vector particle-in-cell) plasma physics
simulation



15

Evaluation

Accuracy of Compression and I/O Throughput
Estimation

• High accuracy on compression time estimation
• Different partitions
• Different data scale

• High accuracy on write time estimation
• Have some distortion but NOT affect our
optimization ↑ Accuracy of our compression-time estimation on 512 scale Nyx

data samples (red line is predicted time; black dots are actual time)

↑ Accuracy of our compression-time estimation on 1024 scale Nyx
data samples. Red line is predicted time; black dots are actual time.

↑ Accuracy of our write time estimation on 1024 scale Nyx data
samples. Red line is predicted time; black dots are actual time.



16

Evaluation

Evaluation on Extra Space Ratio
• Trade-off curve between performance and storage are highly similar
• Lower the extra space ratio can result in extremely high performance overhead
• We choose the extra space ratio of 1.25 as default
• Can also custom the extra space ratio

↑ Trade-off between performance overhead and storage overhead based on different extra space ratios on Nyx dataset
(6 data fields) and VPIC dataset (7 data fields) on both Bebop and Summit with 512 processes.



17

Evaluation

Comparison
• Original: non-compression solution
• Previous: compression filter solution
• Overlap: our solution
• Reordering: overlap + reorder technique

↑ Evaluation on the consistency of the storage and
performance overheads using the same extra space
ratio of 1.25 with 512 processes on Summit.

Performance comparison among our solution (overlapping and
reordering), original non-compression solution, and previous
compression-write solution on 40963 Nyx dataset with 512 processes. ↑

Performance Improvement
• Stable performance over timesteps
• Original → Previous: 1.87×
• Previous → Overlap: 1.79×
• Overlap → Reordering: 1.30×
• Overall: 2.91× improvement from
previous with a 1.5% storage overhead
compared to original size.



18

Evaluation

↑ Performance improvement with different overall data reduction ratios. Dashed red line is the baseline of HDF5
without compression. Left: 40963 Nyx dataset, right: VPIC dataset. Evaluated with 512 processes on Summit.

Performance with Different Overall Ratios
• Limited improvement from reordering optimization under extremely high/low bit-rate

• High bit-rate: I/O time significantly larger than compression time
• Low bit-rate: compression time significantly larger than I/O time

• Storage overhead is stable
• Performance improvement over previous is more significant at bit-rate of ~2 bits

• Low/high bit-rate: compression-time/write-time dominate, less overlap efficiency



19

Evaluation

↑ Performance improvement (overall) and storage overhead of our solution compared to the previous solution
on both 40963 scale Nyx and VPIC datasets. Evaluated with 512 processes on Summit.

Performance with Different Overall Ratios
• Limited improvement from reordering optimization under extremely high/low bit-rate

• High bit-rate: I/O time significantly larger than compression time
• Low bit-rate: compression time significantly larger than I/O time

• Storage overhead is stable
• Performance improvement over previous is more significant at bit-rate of ~2 bits

• Low/high bit-rate: compression-time/write-time dominate, less overlap efficiency



20

Evaluation

↑ Performance improvement with different scale on both Nyx (left) and VPIC (right) datasets. Dashed red line is the
baseline of HDF5 without compression. Average bit-rate is 2. 2563 or 39, 379, 260 data values per field for each rank.

Performance with Different Scales
• Improvement from reordering optimization is stable
• Storage overhead is stable
• Performance improvement over previous is more significant towards larger scale

• Asynchronous write typically provides better scalability compared to the collective
write used by the previous compression-write solution



21

Evaluation

↑ Performance improvement (overall) and storage overhead of our solution compared to the previous solution
on both Nyx and VPIC datasets. (c) and (d) are evaluated with a target bit-rate of 2.

Performance with Different Scales
• Improvement from reordering optimization is stable
• Storage overhead is stable
• Performance improvement over previous is more significant towards larger scale

• Asynchronous write typically provides better scalability compared to the collective
write used by the previous compression filter solution



22

Conclusion

Conclusion
• We extend the prediction model for compression ratio to predict the throughputs of
compression and parallel write for prediction-based lossy compression

• We propose a new compression-write scheme with HDF5 that can efficiently overlap
compression with write based on our prediction models

• We optimize the execution order of compression tasks in each process to achieve higher
parallel-write performance

• Our solution improves the parallel-write performance by up to 4.5× and 2.9× compared
to the HDF5 write without compression and with the SZ lossy compression filter,
respectively, with only 1.5% storage overhead

Future Works
• Extend our solution to other parallel I/O libraries such as ADIOS
• Support more lossy compressors such as ZFP
• Evaluate our solution on more real-world HPC datasets



23

Thank you!
Any questions are welcome!

Contact Dingwen Tao: ditao@iu.edu
Sian Jin: sianjin@iu.edu

mailto:sian.jin@wsu.edu

