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Abstract—With ever-increasing volumes of scientific data produced by high-performance computing applications, significantly
reducing data size is critical because of limited capacity of storage space and potential bottlenecks on I/O or networks in writing/reading
or transferring data. SZ and ZFP are two leading BSD licensed open source C/C++ libraries for compressed floating-point arrays that
support high throughput read and write random access. However, their performance is not consistent across different data sets and
across different fields of some data sets, which raises the need for an automatic online (during compression) selection between SZ and
ZFP, with minimal overhead. In this paper, the automatic selection optimizes the rate-distortion, an important statistical quality metric
based on the signal-to-noise ratio. To optimize for rate-distortion, we investigate the principles of SZ and ZFP. We then propose an
efficient online, low-overhead selection algorithm that predicts the compression quality accurately for two compressors in early
processing stages and selects the best-fit compressor for each data field. We implement the selection algorithm into an open-source
library, and we evaluate the effectiveness of our proposed solution against plain SZ and ZFP in a parallel environment with 1,024 cores.
Evaluation results on three data sets representing about 100 fields show that our selection algorithm improves the compression ratio up
to 70 percent with the same level of data distortion because of very accurate selection (around 99 percent) of the bestfit compressor,

with little overhead (less than 7 percent in the experiments).

Index Terms—Lossy compression, scientific data, rate-distortion, compression ratio, high-performance computing

1 INTRODUCTION

AN efficient scientific data compressor is increasingly
critical to the success of today’s scientific research
because of the extremely large volumes of data produced by
today’s high-performance computing (HPC) applications.
The Community Earth Simulation Model (CESM) [1], [2], for
instance, produces terabytes of data every day. In the Hard-
ware/Hybrid Accelerated Cosmology Code (HACC) [3] (a
well-known cosmology simulation code), the number of par-
ticles to simulate could reach up to 3.5 trillion, which may
produce 60 petabytes of data to store. On the one hand, such
large volumes of data cannot be stored even in a parallel file
system (PFS) of a supercomputer, such as the Mira [4] super-
computer at Argonne because it has only 20 petabytes of stor-
age space. On the other hand, the I/O bandwidth may also
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become a serious bottleneck. The memory of extreme-scale
systems continues to grow, with a factor of 5 or more
expected for the next generation of systems compared with
the current one (e.g., the Aurora supercomputer [5] has over
5 PB total memory); however, although the Burst Buffer tech-
nology [6] can relieve the I/O burden to some extent, the
bandwidth of PFS is still developing relatively slowly com-
pared with the memory capacity and peak performance.
Hence, storing application data to file systems for postanaly-
sis will take much longer than in current systems.
Error-controlled lossy compressors for scientific data sets
have been studied for years, because they not only signifi-
cantly reduce data size but also keep decompressed data
valid to users. The existing lossy compressors, however,
exhibit largely different compression qualities depending
on various data sets because of their different algorithms
and the diverse features of scientific data. The atmosphere
simulation (called ATM) in the CESM model, for example,
has over 100 fields (i.e., variables), each of which may have
largely different features. We note that various variables or
data sets work better with different compression techni-
ques. For instance, SZ [7], [8], [9] exhibits better compres-
sion quality than does ZFP [10], [11] on some data sets,
whereas ZFP is better on others. With the same level of dis-
tortion of data—peak signal-to-noise ratio (PSNR), for
instance—SZ exhibits a better compression ratio than does
ZFP on 72.8 percent of the fields in the ATM simulation
data, while ZFP wins on the remaining 27.2 percent fields.
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One key question is: Can we develop a lightweight online
selection method that can estimate on the fly the best-fit
compression technique for any data set, such that the over-
all compression quality can be improved significantly for
that application?

In this work, we propose a novel online selection method
for optimizing the error-controlled lossy compression quality
of structured HPC scientific data in terms of rate-distortion,
which is the first attempt to our knowledge. The lossy com-
pression quality is assessed mainly by rate-distortion in
the scientific data compression community [8], [10], [12].
However, designing an effective method that can select the
best-fit compressor based on rate-distortion is challenging
because rate-distortion is not a single metric for a given data
set; rather it involves a series of compression cases with differ-
ent data distortions and compression ratios. Hence, selecting
the best-fit compressor based on rate-distortion by simply
running SZ and ZFP once based on sampled data points is
impossible. Unlike Lu et al.’s work [11], which selects the best
compressor based on a specific error bound and sampled data
points, we have to model accurately the principles of the two
state-of-the-art lossy compressors both theoretically and
empirically. This is nontrivial because of the diverse data fea-
tures and multiple complicated compression stages involved
in the two COmMpressors. Moreover, we must assure that our
estimation algorithm has little computation cost, in order to
keep a high overall execution performance for the in situ
compression.

The contributions of this paper are as follows.

e We conduct an in-depth analysis of the existing lossy
compression techniques and divide the procedure of
lossy compression into three stages: lossless transfor-
mation for energy compaction; lossy compression for
data reduction; and lossless entropy encoding, which
is a fundamental step for the compression-quality
estimation.

e We explore a series of efficient strategies to predict
the compression quality (such as compression ratio
and data distortion) for the two leading lossy com-
pressors (i.e., SZ and ZFP) accurately. Specifically,
we derive some formulas and approaches for accu-
rate prediction of PSNR and the number of bits to
represent a data value on average (i.e., bit-rate)
based on in-depth analysis of their compression
principles with the three compression stages.

e Based on our compression-quality estimation, we
develop a novel online method to select the best-fit
compressor between SZ and ZFP for each data set,
leading to the best lossy compression results. We
adopt rate-distortion as the selection criterion because
it involves both compression ratio and data distor-
tion and it has been broadly used to assess compres-
sion quality in many domains [2], [8], [10].

e We evaluate the performance and compression qual-
ity of our proposed solution on a parallel system
with 1,024 cores. Experiments on structured data
sets from real-world HPC simulations show that our
solution can significantly improve the compression
ratio with the same level of data distortion and com-
parable performance. The compression ratio can be
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improved by up to 70 percent because of a very high
accuracy (around 99 percent) in selecting the best
compressor in our method. With our solution, the
overall performance in loading and storing data can
be improved by 79 and 68 percent on 1,024 cores,
respectively, compared with the second-best evalu-
ated approach.

The remainder of this paper is organized as follows. In
Section 2, we discuss the related work in scientific data com-
pression. In Section 3, we introduce the overall architecture
of our proposed automatic online selection method. In
Section 4, we analyze the three critical stages in detail based
on existing lossy compressors. In Section 5, we discuss how
to predict the compression quality for SZ and ZFP accu-
rately. In Section 6, we present and analyze the experimen-
tal results. In Section 7, we provide concluding remarks and
a brief discussion of future work.

2 RELATED WORK

The issue of scientific data compression has been studied for
years. The data compressors can be split into two categories:
lossless compressor and lossy compressor.

Lossless compressors make sure that reconstructed data
set after decompression is exactly the same as the original
data set. Such a constraint significantly limits their compres-
sion ratio on scientific data, for whatever generic byte-
stream compressors (such as Gzip [13] and bzip2 [14]) or
whatever floating-point data compressors (such as FPC [15]
and FPZIP [16]). The reason is that scientific data is com-
posed mainly of floating-point values and their tailing man-
tissa bits could be too random to compress effectively [17].

Lossy compression techniques for scientific data sets gen-
erated by HPC applications also have been studied for
years, and the existing state-of-the-art compressors include
Sz [71, 18], [9], ZFP [10], ISABELA [18], FPZIP [16], SSEM
[19], VAPOR [20], and NUMARCK [21]. Basically, their
compression models can be summarized into two catego-
ries: prediction-based model [8], [16], [18], [21], [22] and
transform-based model [10], [19]. A prediction-based com-
pressor needs to predict data values for each data point and
encodes the difference between every predicted value and
its corresponding real value based on a quantization
method. Typical examples are SZ [7], [8], [9], ISABELA [18],
and FPZIP [16]. The block transform-based compressor
transforms original data to another space where the major-
ity of the generated data are very small (close to zero), such
that they can be stored with a certain loss in terms of the
user’s required error bound. For instance, JPEG [23], SSEM
[19] and VAPOR [20], and ZFP [10] adopt discrete cosine
transform, discrete wavelet transform and a customized
orthogonal transform, respectively.

Recently, many research studies [7], [8], [9], [10], [11], [24],
[25], [26], [27], [28], [29] have showed that SZ and ZFP are
two leading lossy compressors for HPC scientific data. Spe-
cifically, SZ predicts each data point’s value by its preceding
neighbors in the multidimensional space and then performs
an error-controlled quantization and customized Huffman
coding to shrink the data size significantly. ZFP splits the
whole data set into many small blocks with an edge size of 4
along each dimension and compresses the data in each block
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Fig. 1. Three stages in lossy compression for HPC scientific data.

separately by a series of carefully designed steps, including
alignment of exponent, orthogonal transform, fixed-point
integer conversion, and bit-plane-based embedded coding.
For more details, we refer readers to [8] and [10] for SZ and
ZFP, respectively. Fu et al. [30] proposed an on-the-fly lossy
compression method for a high-performance earthquake
simulation. Their lossy compression can reduce the memory
cost by 50 percent and improve the overall performance 24
percent on Sunway TaihuLight supercomputer [31]. This
on-the-fly lossy compression scheme reduces 32-bit floating-
point data to 16-bit by using an adaptive binary represen-
tation. We exclude this approach in our work because it is
limited compression ratio of 2.

How to integrate different compression techniques into
one framework and use their distinct advantages to optimize
the compression quality is a challenging topic. Blosc [32] is a
successful lossless compressor based on multiple different
lossless compression methods, including FastLZ [33], LZ4/
LZAHC [34], Snappy [35], Zlib [36], and Zstandard [37]. How-
ever, no such a compressor has been designed based on dif-
ferent lossy compression techniques for optimizing the rate-
distortion, leading to a huge gap for the demand of efficient
error-controlled compression on scientific data sets. Although
Lu et al. [11] model the compression performance of SZ and
ZFP to select the best compressor in-between, they focus only
on the compression ratio given a specific maximum error.
Their method does not model and select the best compressor
based on statistical metrics such as RMSE (root mean square
error) or PSNR (a simple derivation from RMSE). Such aver-
age error metrics are more important for visualization of sci-
entific data than is the maximum error [2], [38]. Although
there are some more complex metrics (such as Structural Sim-
ilarity Index) that can also evaluate compression schemes in
terms of visual quality, for generality and simplicity [39], our
research focuses on maximizing PSNR for a given compression
ratio, by modeling and selecting online the best compressor
between SZ and ZFP with low performance overhead.

3 ARCHITECTURE OF PROPOSED ONLINE
AUTOMATIC SELECTION METHOD FOR LOSSY
COMPRESSION

Lossy compression can be divided into three stages as shown
in Fig. 1. In Stage I, the original data is transformed to
another data domain (e.g., frequency domain) by lossless
transformations. Here lossless transformation means the
reconstructed data will be lossless if one transforms the origi-
nal data and does the corresponding inverse-transformation
right away. The transformed data is easier to compress
because of the efficient energy compaction [40]. Energy com-
paction means that the energy is more concentrated in some
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Fig. 2. Workflow of proposed online, low-overhead selection method for
lossy compression of HPC scientific data.

elements of the transformed data compared to the distribu-
tion of energy in the original data. Stage II reduces the data
size but also introduces errors. The most commonly used
techniques for Stage II are vector quantization [41] (static
quantization) and embedded coding [42] (dynamic quantiza-
tion). Stage III performs entropy coding for further lossless
data reduction, and it is sometimes optional. Fig. 1 shows
four state-of-the-art lossy compressors for HPC scientific
data and their corresponding techniques in each stage.

We design our online selection method based on the
analysis of the three critical compression stages. Specifically,
we propose a novel optimization strategy comprising four
steps as shown in Fig. 2. The first step takes the input scien-
tific data sets and performs Stage I's transformation on the
sampled data points. The second step uses the transformed
data points from Step 1 to estimate the compression quality
(including compression ratio and distortion of data) based
on our proposed estimation model. The third step selects
the best-fit lossy compression strategy based on SZ and
ZFP. The fourth step constructs a lossy compressor and
uses it for compressing the data set. As confirmed by recent
research [8], [10], [11], [22], [24], [25], [43], SZ and ZFP are
two leading lossy compressors for HPC scientific data and
can well represent prediction-based and transformation-
based lossy compressors, respectively. Accordingly, our
online selection method mainly is based on these two state-
of-the-art lossy compressors without loss of generality.

In this paper, we adopt a practical in situ model [44] as
many state-of-the-art lossy compressors (such as ISABELA,
SZ, and ZFP) use as well. Here in situ means data analysis,
visualization, and compression happen without first writing
data to persistent storage. Thus, in the in situ compression
model, the compression will be conducted after the entire
computation in each simulation time step such that the
entire analysis data is already kept in memory. Overall, our
online method can select the best-fit compressor on-the-fly
during the in situ compression, aiming at reducing data
storage and I/O time overheads.

4 ANALYSIS OF LOSSLESS TRANSFORMATIONS
FOR ENERGY COMPACTION IN STAGE |

In this section, we provide an in-depth analysis of the impact
of Stage I (i.e., prediction-based transformation (PBT) and block
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Fig. 3. Prediction-based transformation (PBT) and inverse prediction-based
transformation (iPBT).

orthogonal transformation (BOT)) on the overall distortion of
data. As presented in Fig. 1, Stage I is lossless. However, this
does not mean that if the data in the transformed domain is
changed, the overall distortion level (such as mean squared
error (MSE)) of the finally reconstructed data can stay the
same as that of the transformed data. The reason is that the
data in the new transformed domain will be largely different
from the original data. Based on an in-depth analysis of the
two transformation methods in Stage I, we prove that the
L*-norm-based error value (e.g,, MSE) keeps unchanged
after the inverse transformation of PBT and BOT. This funda-
mental analysis implies that we can predict the overall dis-
tortion of the finally decompressed data for SZ and ZFP by
estimating the data distortion in Stage II.

4.1 Prediction-Based Transformation (PBT)

In this subsection, we introduce prediction-based lossy com-
pression, and then we infer that the pointwise compression
error (i.e., the difference between any original data value and
its decompressed value) is equal to the error introduced by
vector quantization or embedded encoding in Stage II.

In the compression phase of the prediction-based lossy
compression (as shown in the top subfigure of Fig. 3), the
first step is to predict the value of each data point and calcu-
late the prediction errors. We define PBT as the process of
generating a set of prediction errors (denoted by X,,) based
on the original data set (denoted by X), data point by data
point during the compression. The prediction error will be
quantized or encoded in Stage II.

During the decompression, one needs to reconstruct the
prediction errors based on quantization method or embed-
ded encoding and then reconstruct the overall data set by
an inverse PBT (as presented in the bottom subfigure of
Fig. 3). We define the inverse PBT (denoted iPBT) as the pro-
cedure of constructing the decompressed data set (denoted
X), data point by data point, based on the reconstructed
prediction errors (denoted X,) during the decompression.

In what follows, we infer that the following equation
must hold for PBT.

X-X= Xpbt - Xpbt- (1)
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During the compression, the prediction method generally
predicts the value of each data point based on the data points
nearby in space because of the potential high consecutiveness
of the data set. The Lorenzo predictor [45], for example,
approximates each data point by the values of its preceding
adjacent data points." Since the neighboring data values to be
used to reconstruct each data point during the decompres-
sion are actually the decompressed values instead of the
original values, in practice, one has to assure that the com-
pression and decompression stage have exactly the same pre-
diction procedure (including the data values used in the
prediction method); otherwise, the data loss will be propa-
gated during the decompression. Hence, the predicted values
during the compression must be equal to the predicted values
during the decompression. That is, we have X0 = Xpred-
Then, we can derive Equation (1) based on the following two
equations: X, = X — X,cq and X = Xpbt +X pred-

Based on Equation (1), we can easily derive the following
theorem.

Theorem 1. The pointwise compression error in the original data
space is the same as the pointwise compression error in the
PBT-transformed data space.

4.2 Block Orthogonal Transformation (BOT)

In the following discussion, we first introduce the principle
of the block orthogonal transformation. We then prove a
critical feature: the Lo-norm based compression error (such as
MSE) in the original data space is the same as the compression
error in the BOT transformed data space.

Let us first describe the elementwise tensor (matrix)
norms that we will use in the following discussion. One can
treat a tensor as a vector and calculate its elementwise norm
based on a specific vector norm. For example, by using vec-
tor p-norm, we can define the elementwise L, norm of a ten-
sor X as follow.

1/p
X1, = llvec(X)], = <Z :c”) . )

zeX

Further, if X is an M x M matrix and we choose p = 2,
Equation (2) can be simplified to

MM 1/2
(1X1|, = <ZZCEZ> = /trace(X! - X), 3)

i=1 j=1

where trace() returns the sum of diagonal entries of a
square matrix. Equation (3) defines the elementwise L,
norm (a.k.a. Frobenius norm) of a square matrix.

Block transformation-based lossy compressors divide the
entire data set into multiple data blocks and perform block-
wise transformation at Stage I. Unlike prediction-based
transformation, each block transformation has no depen-
dency and can be performed independently. Each block
transformation is composed of several 1D linear transforma-
tions that can be performed along each axis within the

1. Lorenzo predictor uses 1 neighbor per data point for 1D data, 3
neighbors per data point for 2D data, and 7 neighbors per data point
for 3D data.
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block. For example, in a 2D data array, 1D linear transfor-
mation is applied to each row (z-axis) and each column
(y-axis). Each 1D linear transformation can be calculated as
a multiplication of the transformation matrix and 1D vector.

Many lossy compressors adopt orthogonal matrices in
their transformations. For example, SSEM uses the Haar
wavelet transform and ZFP uses a self-optimized orthogo-
nal matrix. Here an orthogonal matrix 7" means its columns
and rows are orthogonal unit vectors, i.e., T - T" = I, where
I is the identity matrix. The most significant advantage of
using orthogonal transformation is the property of Ly-norm
invariance after transformation, that is,

17+ X, = \/trace(T - X)' - (T - X))
= \/trace(X* - T" - T - X) )

= /trace(X! - X) = || X||,-

Based on this property, we can prove that the Ly-norm-based
compression error in the original data space is the same as
the compression error in the BOT-transformed data space.
We will prove it later in this subsection.

The block size in the BOT-based lossy compressor is usu-
ally set to the power of 2. ZFP and SSEM, for example, set
the block size to 4", where n is the dimension size (n =
1,2,3). JPEG uses 8 x 8 as the block size in 2D image data.
In our work, without loss of generality, we consider the
block size in BOT to be 4" and do not limit the dimension n
of the data set. Note that here the “dimension” represents
the dimensionality of each data point rather than the num-
ber of fields in the data sets.

Based on prior research [10], the transformation matrix of
most existing well-known BOTSs can be expressed as a uni-
form parametric form as

1 1 1
s —s —c
-1 -1 1
-c ¢ -5

s = \/isingt c= \/icosgt,

N
I
|
P s

where ¢ € [0,1] is a parameter. Specifically, t =0 and ¢ =1
corresponds to discrete HWT and DCT II, respectively,
which are two most common transforms. Moreover, t =
{Ztan'1 2 tan "'l 1} represents slant transform, high-
correlation transform, and Walsh-Hadamard transform.

In what follows, we discuss the unified formulas of BOT
for any dimensional data. We use T}, to denote the BOT and
X to denote the data block. X can be represented by a 4" ten-
SO (%, iy ) 4x..xg Where 1 <iy,... 4, < 4. Since the orthogo-
nal transformation is performed on the 1D 4 x 1 vector, we
need to rearrange X’s elements to form an 4 x 4”1 matrix
and do a matrix-matrix multiplication. The n dimensional
tensor X can be unfolded along the n directions by index
mapping. We use D;-axis, Dy-axis, ..., D,-axis to denote the
n directions. Specifically, the unfolding along the kth direc-
tion Dj-axis (1 < k < n) will map the tensor element z;,..;, to
the matrix element (i, j), where j= f;ll 4= — 1)+

e 472(i = 1). We use unfoldp, (), unfoldp,(), ...
unfoldp, () to denote the unfolding operations along the
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Ds-axis, Ds-axis, ..., Dy-axis, respectively. Accordingly, we
can fold the tensor from the unfolded matrix by the inverse
index mapping, denoted by foldp, (), foldp,(), ..., foldp,().
Thus, T;,.+ can be expressed as the following n operations.

1. X = foldp, (T - un foldp, (X))
2. X = foldp, (T - un foldp, (X))

n. X = foldp, (T - unfoldp, (X)).
Next, we propose Lemma 2 and Theorem 3 and prove
them.

Lemma 2. Block orthogonal transformation (BOT) preserves the
Ly norm on any dimenstional data sets.

Proof. We still denote the orthogonal transformation matrix
by T. Because the un foldp, () and foldp, () are both index
mapping operations, the values and elementwise norm
will remain unchanged. Thus, we can write

|| foldp, (T" - un foldp, (X))|l, = | T - un foldp, (X)||,.
Then, based on Equation (4), we can get
IT - un foldp, (X)lly = [[unfoldp, (X)[ly = | X][,-

So || foldp, (T - un foldp, (X))|l, = || X]|, is held for the kth
operation (1 < k <n), which demonstrates that every
operation in the BOT can keep || X||, unchanged. There-
fore, we have proved this theorem. O

We still use X to denote the decompressed block data,
Xyt to denote the transformed block data in the compres-
sion, and X, to denote the decompressed transformed
block data in the decompression. We have

Xhot = Tbot(X)7
and
Xbot = Tbot(X)~

Thus, due to the linearity of 7;,;, we have

Xbot - Xbof, = T})m‘,(X) - Tbot(X) = T‘bm‘,(X - X)

Based on Lemma 2, we have

1 X0t = Kot lly = [ Toor (X = X5 = 1X = X]],-

This equation also holds when X is composed of multiple
data blocks. That is, we already prove the following
theorem.

Theorem 3. The Ly-norm-based compression error in the origi-
nal data space is the same as the compression error in the BOT-
transformed data space on any dimenstional data sets.

Note that the reasons that Theorem 3 focuses on L, norm
include two aspects: on one hand, the “norm invariance”
property (as shown in Equation (4)) of BOT only holds for
Ly norm in terms of the elementwise L, norms because of
Equation (3); on the other hand, Ly-norm-based error (such
as MSE or PSNR) has been considered as one of the most
critical indicators to assess the overall data distortion in lit-
erature, because it is closely related to the visual quality
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Fig. 4. Example of the distribution and vector quantization of the prediction
errors generated by SZ lossy compressor on one ATM field.

[46], unlike maximum compression error (i.e., Li,-norm
based error).

4.3 Data Sampling for Compression-Quality
Estimation

In our proposed automatic online selection method, we first
sample the data points (i.e., Step 1) and then perform the
transformations on them (i.e., Step 2) in order to estimate
the overall compression quality, as shown in Fig. 2. The dis-
tance between two data blocks sampled nearby will be fixed
in the same dimension and different across dimensions,
such that all sampled blocks can be distributed uniformly
throughout the entire data set. We use the term sampling
rate to represent the sampling frequency, which is denoted
by 7. In the evaluation section, we present the accuracy of
our estimation model with respect to different sampling
rates. Based on our experiments (to be shown later), a sam-
pling rate of 5 percent can provide a good accuracy with
low performance overhead. Therefore, we choose 5 percent
as the default sampling rate in our implementation. Note
that for PBT, the prediction over the sampled data points is
actually based on their original real neighbors instead of their
neighbors in the sampled points. Thus, the sampling pro-
cess for PBT will not introduce additional errors.

5 COMPRESSION QUALITY ESTIMATION OF LOSSY
DATA REDUCTION IN STAGE Il

In this section, we provide an in-depth analysis of the lossy
data reduction in Stage II. We then propose a general estima-
tion model to predict the compression quality (including
compression ratio and compression error) accurately for
lossy compressors with vector quantization or embedded
coding in Stage Il based on the theorems derived in Section 4.
After that, we apply our estimation model specifically to SZ
and ZFP to predict their compression quality (i.e., Step 2 as
shown in Fig. 2). We then discuss the implementation details
of our proposed online automatic selection algorithm.

For notation, we use X(?) = {x?), . ,a:g;zr)} to denote the
transformed data from the original data X. That is, X 2 are
the input data of Stage II and the output data of Stage I.

5.1 Estimation Based on Static Quantization

Unlike data-dependent quantization approach (such as
embedded coding that will be discussed later), static
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quantization is determined before performing quantization.
Vector quantization [41] is one of the most popular static
quantization methods. It converts X (i.e., prediction errors
in PBT or transformed data in BOT) to another set of integer
values, which are easier to compress. Specifically, the value
range is split into multiple intervals (i.e., quantization bins)
based on some method, such as equal-size quantization or
log-scale quantization (discussed later). Then, the compres-
sor needs to go through all the transformed data (X)) to
determine in which bins they are located, and represents
their values by the corresponding bin indexes, which are
integer values. During the decompression, the midpoint of
each quantization bin will be used to reconstruct the data
that are located in the bin; it is called the estimated value (or
quantized value) in the following discussion. The effective-
ness of the data reduction in vector quantization depends on
the distribution of the transformed data X?). Moreover, the
quantization step introduces errors to X(?, and such errors
will be added to the decompressed data.

We build a model to estimate the data reduction level
(e.g., compression ratio) and the data distortion level (e.g.,
mean squared error), based on a vector quantization
method with a specific distribution of X®. In the following,
we define some important notations to be used. We denote
P(z) as the probability density function (PDF) of X%, that
is, X ~ P(z). Based on our observation, the probability
distribution of X is symmetric in a large majority of cases.
The blue area in Fig. 4 exemplifies the typical probability
distribution of the prediction errors generated by the SZ
lossy compressor using the ATM data set. All other tested
data sets show the same symmetry. Therefore, we assume
P(x) to be symmetric without loss of generality (i.e., P() is
equal to P(2n — i) as illustrated in Fig. 4), and the number
of vector quantization bins is represented by 2n — 1. We
denote §; the length of the ith quantization bin, where
8; = 89,,—; because of the symmetry property.

5.1.1 Estimation of Bit-Rate

Bit-rate is defined as the average number of bits used in the
compressed data as per value. As discussed previously, a
large number of transformed data values generated by the
vector quantization are supposed to gather in a few quanti-
zation bins. That is, they are represented by a few integer
bin indexes (Stage II), such that the data size can be reduced
significantly by entropy encoding (Stage III). We combine
our discussion for Stage II and Stage III, in order to estimate
the overall reduction size achieved by the quantization.

Given a number of symbols, an entropy encoding method
(such as Huffman coding [47] and arithmetic coding [48])
can assign a number of bits to represent these symbols based
on their frequencies. Since Shannon entropy theory [49] gives
the expected number of bits to represent these symbols, we
can use the entropy value of the 2n — 1 bins to estimate the
expected bit rate used to represent all quantized values.
The estimation equation is shown as follows:

2n—1
BR=— ) P -log,P, ®)

1=1

where P, is the probability of the ith quantization bin.
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The probability of each bin can be calculated by the inte-
gral of its probability density function value. Specifically,
P = [T P(;z:)dm, where [s;, s,4+1) is the ith quantization bin
and s1+11 ; = 8;. Since the integral is relatively complex to
compute, we use §; - P(*-55L) to approximate S Po( )da:
Therefore, the estimation of the bit rate based on the X
PDF is

2n—1

Si + Sit1 Si + Si+1
BR=—3_ 6P(*5) logs (8P(*5 )

To further simply the equation, let m; denote the mid-
point of the ith bin, namely, (s; + s,41)/2. Then we have

2n—1
BR =~ §P(m;)-log,(8P(m)
=1
2n—1 2n—1
== Z P(m;)éilog y8; — Z 8;P(m;)log y P(m;)),

=1 =1
where m; = (s; + si11)/2 = Z;;ll 8;+8;/2. Note that the
midpoint of the nth bin is 0 (i.e., m, = 0) according to the
symmetry property.

Therefore, we can estimate the bit rate value by Equa-
tion (6) given the probability density function of X*). (We
discuss our method to estimate the X®’s PDF in detail
later.) Note that the compression ratio can be calculated by
dividing the number of bits per floating-point value by the
bit-rate, for example, 32/bit-rate for single-precision data
and 64/bit-rate for double-precision data.

(6)

5.1.2 Estimate of Compression Error

As proved in Theorem 1 and 3, the PBT and BOT are
both L?*-norm-preserving transformations. Thus, the L*-
norm-based error, such as the mean squared error (MSE),
introduced by Stage II stays unchanged after decompres-
sion. Therefore, we can estimate the L?-norm based com-
pression error by estimating the error of Stage II.

We denote X as the quantized values of X*). The MSE
between X and X® can be calculated by

MSE(X', Xt) = Ex:[(X' — X*)?]
+oo 2 (7)
= /_ (x — )" - P(x)dz,

o0

where E[-] represents the expectation. Note that & is a step
function, since the values in each bin are quantized to the
same value. Lossy compressors such as NUMARACK [21],
SSEM [19], and SZ [8] often use the midpoint of the quanti-
zation bin to approximate the values located in it. Therefore,
T = S”% =m; when s; <z < s;;1. We can further esti-
mate the MSE based on the probability density function
P(x) and the step function z as follows:

2n—1 Sit1

MSE = Z/
1 7%

(x—2)°-

P(z)dx
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After that, we can calculate the root mean squared error
(RMSE), normalized root mean squared error (NRMSE),
and peak signal-to-noise ratio (PSNR) as follows:

NRMSE = ]\[SE

(%: 8 P(m; ) /(2V3 - VR)

PSNR = —20 - log ,(NRMSE) ®)

2n—1
=-10- <log 10 (Z 8?P(m,-)> —2-log)VR — log 1012),

where VR represents the value range of the original data
X, Thus far, we have established the estimation equations
for bit rate and L?>-norm based compression error. We are
now ready to derive the estimation of the most significant
metric: rate-distortion.

5.1.3 Estimation of Rate-Distortion

Rate-distortion is an important metric to compare different
lossy compressors, such as fixed rate lossy compressors
(e.g., ZFP) and fixed accuracy lossy compressors (e.g., SZ).
For fair comparison, people usually plot the rate-distortion
curve for the different lossy compressors and compare the
distortion quality with the same rate. Generally, the higher
the rate-distortion curve, the better the lossy compression
quality. Here the term “rate” means bit rate in bits/value,
and “distortion” usually adopts PSNR.

Based on the estimation of bit rate and PSNR proposed
above (i.e., Equations (6) and (8)), the rate-distortion
depends only on 81,8, ...,82,-1, given the probability dis-
tribution of X®. However, it is difficult to optimize the
2n —1 values {§;}.";' for the rate-distortion during the
preparation stage, even if the probability distribution is clas-
sic distribution, such as Gaussian distribution. In the follow-
ing, we analyze three common, effective vector quantization
approaches; the analysis can be extended by including more
vector quantization methods.

5.1.4 Detailed Analysis of three Vector
Quantization Cases

e Linear quantization: This is the simplest yet effective
vector quantization approach, which is adopted by
SZ lossy compressor. Under this approach, all quan-
tization bins have the same length, (ie, §; =--- =
89n—1 = 8). On the other hand, the 2n — 1 quantiza-
tion bin can cover all the prediction errors as long
as the number of bins is large enough, hence,
S22 P(m;) = 1. So, Equations (6) and (8) can be
simplified as follows:

2n—1
BR,. = =8> P(mi)log,P(m;) —log 3, €)

PSNR;, =20 -log,,(VR/8) + 10 - log 1, 12. (10)

Equation (10) tells us that the PSNR depends only on
the unified quantization bin size regardless of the
distribution of transformed data from Stage I. For
example, the SZ lossy compressor sets the bin size §
to twice the absolute error bound (i.e., eby,) to make
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Fig. 5. lllustration of embedded coding scheme used in lossy compression.

sure the maximum pointwise compression error
within ebys. So, based on Equation (10), our PSNR
estimation for SZ lossy compressor becomes

PSNR,. = —20 - log 1(€bus/VR) + 10 - log 1y3. (1)

Note that eb,s/VR is the value-range-based relative
error bound [8] (denoted by eb,.) defined by SZ.
Unlike the pointwise relative error that is compared
with each data value, value-range-based relative
error is compared with value range of each data
field. Thus our model can estimate the SZ’s PSNR
precisely based on the value-range-based relative
error bound.

e Log-scale quantization: Log-scale quantization is an
alternative to the linear quantization, and its bin
sizes follows a logarithm distribution. Suppose one
is using 2n — 1 bins to quantize X 2 in order to
cover the maximum absolute value in X®, b is cho-
sen to be [log,, (max  {|z?|}]. If ¥ < 0, 2/? falls
into the n — |log,,(—\”)) Jth bin; if 2!” =0, 21* falls
into the nth bin; if 2/” > 0, 2\ falls into the
n+ |log ba:,EQ)jth bin. Thus, the log-scale quantization
uses 8,_; =b —b!, 8, =2b, 8,.; =0 — b~ as the
bin size where 1 < ¢ <n — 1. Compared with linear
quantization, log-scale quantization usually a has
higher PSNR but a lower compression ratio. The rea-
son is that log-scale quantization assigns a larger
number of finer bins to the high-frequency (central)
regions. Thus, according to Equation (7), log-scale
quantization’s PSNR can be higher than linear quan-
tization. On the other hand, the distribution of the
interval frequencies with log-scale quantization is
more even than with linear quantization, leading to
a poor entropy encoding result. Hence, for various
data, it is hard to tell directly which quantization
method is better in terms of rate-distortion. The most
effective way is to compare their rate-distortion
estimations.

o  Equal-probability quantization: This vector quantization
approach is employed by the NUMARCK lossy
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compressor. This method generates equal probability
for each quantization interval; hence, §; - P(m;) =
ﬁ. In this case, the estimation of bit rate equals
[log,(2n— 1)] = 1 + logyn. It shows that the entropy
encoding has no effect on the 2n — 1 intervals with the
same frequency. The PSNR estimation will be
—~10-log,, (31, 8%) +20-log ; (VR + 10 - log ;(67).
The bin size can be estimated by the clustering-based
approximation approach (proposed by Chen et al.
[21]), such as the K-means cluster algorithm, whose
time overhead is expensive.

5.2 Estimation Based on Dynamic Quantization
Dynamic quantization is a data-dependent manner and enc-
odes the data progressively. For example, embedded coding
(EC) [42] is the most commonly used dynamic quantization
approach. It is the most important part of the BOT-based
lossy compressors, such as JPEG2000 and ZFP. It generates
a stream of bits that are put into order based on their impact
on the error. Many variances of EC have been proposed in
previous work [50], [51], [52]. As we proved in Section 4.2,
the L*-norm based compression error in the original data
space is equal to the compression error in the transformed
space, so the bits in the same bit-plane (as shown as the blue
dash line in Fig. 5 should be encoded at a time, that is the
case for most of the EC variances.

Fig. 5 shows an example with 16 transformed (4 x 4 data
block) to be encoded. Each datum is represented by its binary
format. EC starts from the leftmost bit-plane and ends at the
maximum bit-plane, as shown as the purple dash line in the
figure. The maximum bit-plane is determined by the bit bud-
get or the error bound set by users. For each value, EC enco-
des only its significant bits (i.e., nonzero bits). We use a red
dashed line to indicate the significant bits for the 16 values.
The BOT-based transformed data is roughly in order (.e.,
large values appear ahead of small values). We can observe
that the red dashed line in Fig. 5 exhibits a staircase shape.
We can use this feature to estimate the bit-rate and compres-
sion error for embedded coding.

5.2.1 Estimation of Bit-Rate

To estimate the bit-rate after embedded coding, we need to
estimate the number of significant bits (denoted by n,) for
each value. We also use a sampling approach to make an
estimation. Specifically, we first sample some data points
(marked in green in the figure) and count their ny. After
that, we use these sampled data points and their n, to inter-
polate ng, for the remaining data points. We then calculate
the average of all ny (denoted by 7g) and use it as
the approximate bit-rate value, that is, 5. The key reason
we can adopt sampling and interpolation is that the signifi-
cant bits of BOT-based transformed data exhibit a staircase
shape, as discussed previously.

5.2.2 Estimation of Compression Error

Similar to the estimation of bit-rate, we can estimate the
compression error, for example, MSE by calculating the
MSE of all the sampled data points (denoted by MSE,),).
Note that after the first step of exponent alignment, different
blocks may have different exponent offsets and maximum
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bit-planes. Hence, in order to calculate the overall MSE for
all the sampled data points, each sampled data point’s error
is calculated by multiplication of its truncated error in
binary representation and its block’s exponent offset value.
Finally, we can estimate the overall PSNR by the PSNR of
the sampled data points: PSNR,, = —10 - log ;¢ MSE, 4 20-
log ,VR.

We use r,, to denote the sampling rate in Stage I and ) to
denote the sampling rate used in embedded coding. We
observe that low r{) may significantly affect the estimation
accuracy, but the estimation accuracy is not that sensitive to
4. Thus, as the default setting of our solution, we sample 3
data points for one 1D data block, 9 data points for one 4 x 4
2D data blocks, and 16 data points for one 3D 4 x 4 x 4 data
block. We adopt a low rate for sampling the data blocks such
that our estimation model can achieve both high estimation
accuracy and low overhead (illustrated later).

Algorithm 1. Proposed Automatic Online Selection
Method for Lossy Compression of HPC Scientific Data
Sets

Input: Data fields {X;}"; to compress, user-set error bound
€bgps or eb,.;, sampling rate r,, and r;";.

m

Output: Compressed-byte stream {C;};", with selection bits
{sitils-
1: for each datafield X; z =1,...,m) do
2:  Seteb = ebgs or by - VR (where VR is the value range of
Xi)
3:  Sample data points from set X; blockwise to form subset
X! with sampling rate r,
4:  Sample data points from subset X" pointwise to form
subset X with sampling rate 7
5. Estimate bit-rate of ZFP (i.e., BR.j,) by 7, based on Xf;
and eb
Estimate PSNR of ZFP (i.e., PSNR. ) by PSNR,,
7:  Calculate bin size § based on PSNR.j, and Equation (10)
with PSNR,. = PSNR.,
8:  Construct approximate probability density function P(-)
based on sampled data X?*
9:  Estimate bit-rate of SZ (i.e., BR.) by Equation (9) based

S

on P(-) and §

10:  if BR,. < BR.j, then

11: Perform SZ compression on X; with absolute error
bound 2 - §

12:  else

13: Perform ZFP compression on X; with absolute error
bound eb

14:  endif

15:  Output compressed bytes C; and selection bit s; (e.g.,
s; = O represents for SZ, s; = 1 represents for ZFP)
16: end for

5.3 Implementation of Proposed Online

Selection Method
We develop the automatic online selection method based
on our proposed estimation model for two leading error-
controlled lossy compressors. As discussed above, we apply
our estimation model to both SZ and ZFP to predict their
compression quality accurately. Specifically, SZ adopts a
multidimensional prediction model for its PBT in Stage I
and linear quantization for its vector quantization in Stage
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II. We use Equations (9) and (11) to predict its bit-rate and
PSNR, respectively. ZFP uses an optimized orthogonal
transformation for its BOT in Stage I and group-testing-
based EC [10] for its EC in Stage II. We use 7y, and PSNR,,
to predict its bit-rate and PSNR, respectively.

Our online selection method adopts the rate-distortion as
a criterion to select the best-fit compression technique
between SZ and ZFP. Specifically, for each field/variable,
our solution first estimates ZFP’s bit-rate and PSNR based
on a given error-bound set by users. Next, it estimates SZ’s
bit-rate based on the PSNR estimated for ZFP, due to the
high PSNR estimation accuracy in our model. Then, it
selects the bestfit compressor with smaller bit-rate estimated
and performs the corresponding lossy compression, as
shown in Algorithm 1. Note that the compression errors of
ZFP follow a Gaussian-like distribution while those of SZ
follow an uniform-like distribution [26]. Thus, in order to
keep the same PSNR, ZFP needs a larger error bound as an
input than does SZ. Accordingly, with PSNR,, = PSNR._,
(line 7), the calculated absolute error bound for SZ (i.e., 2 - §)
is smaller than the absolute error bound (i.e., eb,s), which
can guarantee the compression errors to be still bounded by
ebyys point-wise after decompression.

6 EVALUATION RESULTS AND ANALYSIS

In this section, we first describe the experimental platform
and the HPC scientific data sets used for evaluation. We
then evaluate the accuracy of our estimation model and ana-
lyze the time and memory overhead of our online selection
method. We then present the experimental results based on
a parallel environment with up to 1,024 cores.

6.1 Experimental Setting and Scientific

Simulation Data

We conduct our experimental evaluations on the Blues clus-
ter [53] at Argonne Laboratory Computing Resource Center
using 1,024 cores (i.e., 64 nodes, each with two Intel Xeon E5-
2670 processors and 64 GB DDR3 memory, and each proces-
sor with 16 cores). The storage system uses General Parallel
File Systems (GPFS). These file systems are located on a raid
array and served by multiple file servers. The I/O and stor-
age systems are typical high-end supercomputer facilities.
We use the file-per-process mode with POSIX I/O [54] on
each process for reading/writing data in parallel.”> We per-
form our evaluations on various single floating-point data
sets including 2D ATM data sets from climate simulations,
3D Hurricane data sets from the simulation of the hurricane
Isabela, and 3D NYX data sets from cosmology simulation.
The details of the data sets are described in Table 1. We use
SZ-1.4.11 with the default mode and ZFP-0.5.0 with the fixed
accuracy mode for the following evaluations.

6.2 Accuracy of Compression-Quality Estimation

We evaluate our model based on three criteria: average
error of estimating bit-rate, average error of estimating
PSNR, and accuracy of selecting the best-fit compression

2. POSIX I/0O performance is close to other parallel I/O performance
such as MPI-IO [55] when thousands of files are written/read simulta-
neously on GPFS, as indicated by a recent study [56].
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TABLE 1
Data Sets Used in Experimental Evaluation
Data Source #Fields Data Size Example Fields
NYX Cosmology 6 147 GB  baryon_density, temperature
ATM Climate 79 15TB CLDHGH, CLDLOW
Hurricane Hurricane 13 62.4 GB QICE, PRECIP, U, V, W

technique under different sampling rates. Note that here we
use PSNR instead of MSE because previous work [8], [10]
usually adopt PSNR for rate-distortion evaluation.

Tables 2 and 3 show the average errors of bit-rate and
PSNR under different sampling rates (i.e., 1, 5, and 10 percent).
They exhibit that our estimation model has a relatively high
accuracy in estimating PSNR with low sampling rate. For
example, for both SZ and ZFP, with 5 percent sampling
rate, the average PSNR estimation errors are within 2 percent
for the ATM data sets and within 4 percent for the Hurricane
data sets.

As for the bit-rate estimation, the experiments based on
ATM and Hurricane data sets show that the bit-rate values
estimated for SZ are always lower than the real bit-rate val-
ues after compression, and the estimation error can be up to
19 percent in some cases. The reason is that our model
adopts the Shannon entropy theory (i.e., Equation (6)) to
approximate the bit-rate for SZ. Note that the entropy value
is the optimal value in theory, while the designed/imple-
mented entropy encoding algorithm (such as Huffman
encoding) may not reach such a theoretical optimum in
practice. This situation typically happens when the data set
has a lot of similar values such that it is easy to compress
with a high compression ratio.

To address the above issue, we improve the estimation
accuracy for SZ by introducing a positive offset, which is set
to 0.5 bits/value based on our experiments using real-world
simulation data. Tables 2, 3, 4, and 5 present the accuracy
(average and standard deviation of relative estimation error)
of the offset-based estimation for SZ and the original estima-
tion approach for ZFP. We can see that our final estimation
model can always predict both the bit-rate and PSNR accu-
rately for the two compressors. In relative terms, the bit-rate
estimation errors fall into the interval [-8.5%,7.5%] for
SZ. Note that here the negative values represent that the
estimated values are lower than the real values. As for ZFP,
the bit-rate estimation errors are limited within 5.7 percent
on the ATM data sets and 0.9 percent on the Hurricane data
sets, when the sampling rate is higher than 5 percent. The
PSNR estimation errors vary from -3.5 to -0.6 percent when
the sampling rate is set to 5 percent. Hence, we suggest
setting the sampling rate to 5 percent in practice, which also
has little time cost (presented latter).

TABLE 2
Average Relative Error of Our Estimation Model for
Compression Quality on 2D ATM Data Sets
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TABLE 3
Average Relative Error of Our Estimation Model for
Compression Quality on 3D Hurricane Data Sets

rep = 1% rsp = 5% rep = 10%
SZ ZFP SZ ZFP SZ ZFP
Bit-rate —-45% 8.0% —-85% 0.9% —4.6% 0.9%
PSNR —2.6% —-63% —-11% -35% —-08% —-31%

As illustrated in Tables 2 and 3, our estimation of bit-rate
is more accurate for ZFP than SZ in most instances. The rea-
son is that we estimate the bit-rate by calculating the entropy
value (i.e., Equation (5)) for SZ because of the Entropy encod-
ing step (Huffman coding) adopted in SZ. As mentioned
above, entropy value represents an optimal bit-rate (or lower
bound) in theory, which leads to a certain estimation error.
The tables also show that our estimation of PSNR is more
accurate for SZ than ZFP under all the tested sampling rates.
The key reason is that the symmetric distribution of predic-
tion errors in SZ is not related to its prediction accuracy, but
the staircase shape of transformed coefficients in ZFP is
highly dependent on its transformation efficiency. Therefore,
our PSNR modelling based on SZs quantization errors is
more accurate than that based on ZFPs truncation errors. We
also note that the standard deviation of bit-rate error is much
higher for ZFP than SZ on the ATM data sets, as shown in
Table 4. This is because ZFPs block orthogonal transforma-
tion may have low decorrelation efficiency on certain fields
in the ATM data sets, so the transformed coefficients can still
have high correlation and the staircase shape (as shown in
Fig. 5) cannot be always established on these fields, which
can result in large bit-rate error fluctuations and relatively
high standard deviation. In addition, we note that since our
proposed estimation of PSNR is based on the approach to
control the maximum Ly-norm-based compression error, the
estimated PSNRs are always lower than the real PSNRs,
leading to the negative PSNR errors shown in Tables 2 and 3.
Finally, it is worth noting that the Hurricane data sets have
more high-compression-ratio variables than the ATM data
sets. In other words, the Hurricane data sets are relatively
easier to compress compared with the ATM data sets. Hence,
using the entropy value (i.e., the optimal value in theory) to
estimate the bit-rate is more accurate for the Hurricane data
sets than for the ATM data sets. Consequently, considering
the 0.5 bits/value offset for SZ, the bit-rate errors are always
negative on the ATM data sets (as shown in Table 2 while
positive on the Hurricane data sets (as shown in Table 3). In
the future work, we can further improve our estimation
method by introducing the offset unless the data set is rela-
tively hard to compress.

TABLE 4
Standard Deviation of Relative Estimation Error for
Compression Quality on 2D ATM Data Sets

rsp = 1% rsp = 5% rsp = 10% rsp = 1% rgp = 5% T = 10%
SZ ZFP SZ ZFP SZ ZFP SZ ZFP SZ ZFP SZ ZFP
Bit-rate 7.5% 5.7% 7.4% 5.7% 7.3% 5.6% Bit-rate 8.9% 23.9% 8.8% 23.6% 8.8% 23.5%
PSNR -25% —-41% -11% -2.0% -0.6% —1.6% PSNR 5.6% 6.0% 3.1% 4.0% 1.5% 3.8%
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TABLE 5
Standard Deviation of Relative Estimation Error for
Compression Quality on 3D Hurricane Data Sets

rep = 1% Top = 5% rep = 10%
SZ ZFP SZ ZFP SZ ZFP
Bit-rate 10.4% 11.9% 16.0% 2.0% 10.8% 3.1%
PSNR 2.2% 51% 1.2% 3.3% 2.0% 1.0%

We next evaluate the selection accuracy, which is calcu-
lated as the ratio of the number of correct selections to the
total number of variables or data sets. The correct selection
means our model make a correct decision by selecting
the bestfit compression technique. The selection accuracy is
98.7 percent on the Hurricane data sets and 88.3 percent
on the ATM data sets. In fact, the 1.3 percent wrong selection
brings only 0.08 percent compression-ratio degradation
on the Hurricane data sets, and the 11.7 percent wrong selec-
tion leads to only 3.3 percent compression-ratio degradation
on the ATM data sets, as shown in Fig. 7. The reason the
wrong selections leads to little degradation is that almost all
the wrong selections actually happen only when the two
compressors exhibit close bit-rates with the same PSNR,
such that selecting either of them may not affect the final
overall compression quality by much.

6.3 Overhead Analysis

Next, we analyze the overhead of our automatic online
selection method with respect to both time and memory.

6.3.1 Time Overhead

Time overhead comes from two parts: the transformation of
sampled data points in Step 1 (as shown in Fig. 2) and the
estimation of compression quality in Step 2 (also shown in
Fig. 2). For the first part, the overhead of sampled data
transformation is scaled linearly with the sampling rate r,.
Hence, if we assume Stage I takes a percentage (denoted by
Tstage1) Of the total compression time, the overhead can be
expressed as O(r, - Tsige1 - IN), where N is the number of
data points. For example, 1 is up to 60 percent based on
our experiments, so the time overhead of the sampled data
transformation is up to 3 percent of SZ’s compression time,
under a default sampling rate of 5 percent. For the second
part, when we estimate compression quality, the time com-
plexity is O(n) with vector quantization based on Equa-
tions (6) and (8), where n is the number of quantization
bins, which is very small in general compared with the data
size N. Hence, the time overhead complexity with embed-
ded coding is O(ry), - T N). Therefore, the overall time

zFp |

sz | . . seescesescttanns

Data Fields
(a) Selection based on error bound

Data Fields

(b) Selection based on rate-distortion

Fig. 6. lllustration of different selection methods, i.e., (a) selection based
on error bound and (b) selection based on rate-distortion, on experimen-
tal data sets.

overhead can be expressed as O(ry, - N) with a low constant
coefficient, i.e., O(rf;; + Tstagel )-

Table 6 shows the time overhead on the NYX, ATM, and
Hurricane data sets compared with the compression time of
SZ and ZFP. It illustrates that the time overhead scales line-
arly with the sampling rate, consistent with our analysis.

6.3.2 Memory Overhead

Memory overhead results from the storage of the approxi-
mate probability density function. It can be expressed as
O(npay), where nyqy is the number of bins used to represent
the PDF. Note that although n,y is larger than n, n,; is still
very small compared with the data size N. Specifically, we
use 65,535 quantization bins (i.e., n,qf = 655, 35) in our eval-
uation. The dimensions of each field in the ATM and Hurri-
cane data sets are 1800 x 3600 and 100 x 500 x 500 (.e.,
N =6.48 x 105,2.5 x 107), respectively. Therefore, the mem-
ory overheads are about 1.0 and 0.3 percent on the ATM and
Hurricane data sets, respectively.

6.4 Analysis of Adaptability between Selection
Methods Based on Fixed-PSNR versus
Fixed-Maximum-Error

We compare our proposed selection method based on fixed

PSNR to the solution based on fixed maximum error (pro-

posed by Lu et al. [11]) using the NYX, ATM, and Hurricane

data sets, as shown in Fig. 6. Their solution simply selects the

compressor with the highest compression ratio based on a

fixed error bound (called selection based on error bound). Unlike

their work that adopted point-wise relative error bound [11],

we improved their selection method by using the absolute

error bound instead, since both SZ and ZFP have better rate-
distortions when using absolute error bound mode rather
than using pointwise relative error bound mode, as con-
firmed in the previous studies [25], [43]. Specifically, for each
data field, we set the absolute error bound to 10 of its value
range. Fig. 6a shows that the selection method based on error

TABLE 6
Average Time Overhead for One Field Compared with Compression Time of SZ and ZFP on NYX, ATM, and Hurricane Data Sets
reop = 1% rep = 5% rep = 10%
Time (sec.) Sz ZFP Time (sec.) SZ ZFP Time (sec.) SZ ZFP
NYX 1.8 x 1072 1.4% 1.2% 7.4 %1072 5.6% 4.7% 1.3 x 107! 9.8% 8.4%
ATM 6.0 x 1073 1.5% 1.9% 2.0 x 1072 4.9% 6.3% 3.8 x 1072 9.2% 11.9%
Hurricane 1.6 x 1072 1.3% 1.7% 7.1x1072 5.4% 7.2% 1.2 x 107! 9.2% 12.5%
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Fig. 7. Average compression ratios of SZ, ZFPF, and our solution on three
application datasets (with the same PSNR across compressors on each
field).

bound always chooses SZ as the best-fit compressor for all the
tested fields because SZ always leads to the higher compres-
sion ratios than ZFP does on these fields given a specific error
bound. We note that ZFP over-preserves the compression
error with respect to the user-set error bound. Thus, ZFP may

B Writing Uncompressed Data B ZFP: Comp + Writing Compressed Data
W SZ: Comp + Writing Compressed Data
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Fig. 8. Throughputs of storing data (compression + 1/O) with different
solutions on the Hurricane data sets (with the same PSNR).
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Fig. 9. Throughputs of loading data (decompression + 1/O) with different
solutions on the Hurricane data sets (with the same PSNR).

have a higher PSNR than does SZ, even if its compression ratio
is lower. Our proposed method is designed to select the com-
pressor that has lower bit-rate (i.e., higher compression ratio)
with the same PSNR (called selection based on rate-distortion),
leading to better overall rate-distortion result. Fig. 6b shows
that our method can select the different best-fit compressors
based on the rate-distortion for the different fields in the
tested data sets.

6.5 Empirical Performance Evaluation
We evaluate the overall performance of our proposed solu-
tion in parallel. Let us first consider the compression ratio
improvement achieved by our compressor. Fig. 7 shows that
the compression ratio of SZ, ZFP, and our solution on the
NYX, ATM, and Hurricane data sets with different error
bounds. Our solution can outperform both SZ and ZFP
because our online selection method attempt to select the bet-
ter compression approach for each field in the data sets. Note
that the optimum bar represents the compression ratios in an
ideal case assuming that the best-fit compressors can always
be selected for any fields in the data sets. Specifically, the
compression ratio of our solution outperforms that of the
worst solution by 62, 36, 19 percent on the Hurricane data
sets, by 28, 38, 20 percent on the ATM data sets, and 70, 17, 12
percent on the NYX data sets with the value-range-based rel-
ative error bound eb,, of 107, 107, 1075, respectively. We
compare our solution with the worst solution because our
proposed selection method can almost always select the
best-fit compressor; however, a user is likely to keep using
the same, but maybe the worst, compressor for all data sets.
In Figs. 8 and 9, we present the throughputs (in GB/s) of
storing and loading data to GPFS with different solutions.
We increase the scale from 1 to 1,024 processes. We set
the value-range-based relative error bound eb,; to a reason-
able value 10~*[8]. We test each experiment five times and
use their average time to calculate the throughputs. The
storing and loading throughputs are calculated based on
the compression/decompression time and I/O time. We
compare our solution with the other two solutions based on
SZ and ZFP compressors and a baseline solution. The base-
line solution is storing and loading the uncompressed data
directly without any compression. Figs. 8 and 9 illustrate
that our optimized compressor can achieve the highest stro-
ing and loading throughputs compared with SZ and ZFP.
Our optimized compressor can outperform the second-best
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solution by 68 percent of the storing throughput and by
79 percent of the loading throughput with 1,024 processes.
Our proposed solution has higher throughputs because it
can achieve higher compression ratios than both SZ and
ZFP with little extra overhead, so the time of writing and
reading data is reduced significantly, leading to higher
overall throughputs. Similarly, SZ has higher overall
throughputs than ZFP does because of achieving a higher
overall compression ratio on the tested data sets with the
same PSNR, although the compression/decompression
rates of SZ are lower than those of ZFP [8]. We note that the
compression/decompression rates have a linear speedup
with the number of processors (as illustrated in Fig. 10 in
[8]) and more processes will lead to higher unexpected 1/0
contention and data management cost by GPFS when
writing/reading data simultaneously. Hence, we expect
that the performance gains of our solution compared with
SZ and ZFP will further increase with scale because of the
inevitable bottleneck of the I/O bandwidth.

7 CONCLUSION

In this paper, we propose a novel online, low-overhead selec-
tion method that can select the best-fit lossy compressor
between two leading compressors, SZ and ZFP, optimizing
the rate-distortion for HPC data sets, This is the first attempt
to derive such an approach to the best of our knowledge. We
develop a generic open-source toolkit/library under a BSD
license. We evaluate our solution on real-world production
HPC scientific data sets across multiple domains in parallel
with up to 1,024 cores. The key findings are as follows.

e The average error of our estimation with default
sampling rate on bit-rate (i.e., compression ratio) can
be limited to within 8.5 and 5.7 percent for SZ and
ZFP, respectively.

e The average error of our estimation with default
sampling rate on PSNR (i.e., data distortion) can be
limited to within 1.1 and 3.5 percent for SZ and ZFP,
respectively.

e The accuracy of selecting the best-fit compressor
with default sampling rate is 88.3 ~ 98.7 percent,
with little analysis/estimation time overhead (within
5.4 and 7.3 percent for SZ and ZFP, respectively).

e Our solution improves the compression ratio by
12 ~ 70 percent compared with that of SZ and ZFP,
with the same distortion (PSNR) of the data.

e The overall performance in loading and storing data
can be improved by 79 and 68 percent on 1,024 cores
with our solution, respectively, compared with the
second-best solution.

We plan to extend our optimization solution (such as
estimation model) to more error-controlled lossy compres-
sion techniques, including more quantization approaches
and block-based transformations, to further improve the
compression qualities for more HPC scientific data sets.
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