
Performance Optimization for
Relative-Error-Bounded Lossy
Compression on Scientific Data

Xiangyu Zou , Tao Lu, Wen Xia , Xuan Wang , Weizhe Zhang , Senior Member, IEEE, Haijun Zhang ,

Sheng Di , Senior Member, IEEE, Dingwen Tao, and Franck Cappello, Fellow, IEEE

Abstract—Scientific simulations in high-performance computing (HPC) environments generate vast volume of data, which may cause

a severe I/O bottleneck at runtime and a huge burden on storage space for postanalysis. Unlike traditional data reduction schemes

such as deduplication or lossless compression, not only can error-controlled lossy compression significantly reduce the data size but it

also holds the promise to satisfy user demand on error control. Pointwise relative error bounds (i.e., compression errors depends on the

data values) are widely used by many scientific applications with lossy compression since error control can adapt to the error bound in

the dataset automatically. Pointwise relative-error-bounded compression is complicated and time consuming. In this article, we develop

efficient precomputation-based mechanisms based on the SZ lossy compression framework. Our mechanisms can avoid costly

logarithmic transformation and identify quantization factor values via a fast table lookup, greatly accelerating the relative-error-bounded

compression with excellent compression ratios. In addition, we reduce traversing operations for Huffman decoding, significantly

accelerating the decompression process in SZ. Experiments with eight well-known real-world scientific simulation datasets show that

our solution can improve the compression and decompression rates (i.e., the speed) by about 40 and 80 p, respectively, in most of

cases, making our designed lossy compression strategy the best-in-class solution in most cases.

Index Terms—Lossy compression, high-performance computing, scientific data, compression rate

Ç

1 INTRODUCTION

CUTTING-EDGE computational research in various domains
relies on high-performance computing systems to accel-

erate the time to insights. Data generated during such simu-
lations enable domain scientists to validate theories and
investigate new microscopic phenomena in a scale that was
not possible in the past. Because of the fidelity requirements
in both spatial and temporal dimensions, terabytes or even
petabytes of analysis data would be produced easily by sci-
entific simulations per run [1], [2], [3], when trying to capture
the time evolution of physics phenomena in a fine spatio-
temporal scale. Climate scientists, for instance, need to run
large ensembles of high-fidelity 1 km � 1 km simulations.

Estimating even one ensemble member per simulated day
may generate 260 TB of data every 16 s across the ensemble
[4]. The data volume and data movement rate are imposing
unprecedented pressure on storage and interconnects [5],
[6], for both writing data to persistent storage and retrieving
them for postanalysis. As HPC storage infrastructure is
being pushed to the scalability limits in terms of both
throughput and capacity [7], the communities are striving to
find new approaches to lower the storage cost. Data reduc-
tion, among others, is deemed to be a promising candidate
by reducing the amount of datamoved to storage systems.

Data deduplication and lossless compression have been
widely used in general-purpose systems to reducedata redun-
dancy. In particular, deduplication [8] eliminates redundant
data at the file or chunk level, which can result in a high reduc-
tion ratio if there are a large number of identical chunks at the
granularity of tens of kilobytes. However, the deduplication
method rarely works for scientific data, since it typically
reduces the scientific dataset by only 20 to 30 percent, as
reported in recent studies [9], which is far from being useful in
production. On the other hand, lossless compression in HPC
is designed to reduce the storage footprint of applications
without anydata loss (e.g., using the checkpoint/restartmech-
anism to protect the applications in case of failures). Lossless
compression usually suffers from very limited reduction
ratios (less than two [10]) on scientific simulation data, since
the simulation data are often stored in the form of floating-
point numbers (also called floats for short in the following text)
each with rather random ending mantissa bits. With growing

� X. Zou, X. Wang, W. Zhang, and H. Zhang are with the Harbin Institute of
Technology, Shenzhen, Guangdong 518055, China, and also with Peng Cheng
Laboratory, Shenzhen, Guangdong 518055, China. E-mail: xiangyu.
zou@hotmail.com, {wangxuan, wzzhang, hjzhang}@hit.edu.cn.

� W. Xia is with the Harbin Institute of Technology, Shenzhen, China, Cyber-
space Security Research Center, Peng Cheng Laboratory, Shenzhen, Guang-
dong 518055, China, and also with the Wuhan National Laboratory for
Optoelectronics, Wuhan, Hubei 430074, China. E-mail: xiawen@hit.edu.cn.

� T. Lu is with Marvell Technology Group, Santa Clara, CA 95054.
E-mail: taovcu@gmail.com.

� S. Di and F. Cappello are with Argonne National Laboratory, Lemont, IL
60439. E-mail: sdi1@anl.gov, cappello@mcs.anl.gov.

� D. Tao is with University of Alabama, Tuscaloosa, AL 35487.
E-mail: tao@cs.ua.edu.

Manuscript received 18 Aug. 2019; revised 3 Jan. 2020; accepted 30 Jan. 2020.
Date of publication 10 Feb. 2020; date of current version 5 Mar. 2020.
(Corresponding author: Wen Xia.)
Recommended for acceptance by W. Yu.
Digital Object Identifier no. 10.1109/TPDS.2020.2972548

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 7, JULY 2020 1665

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on March 15,2020 at 16:18:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5104-8301
https://orcid.org/0000-0001-5104-8301
https://orcid.org/0000-0001-5104-8301
https://orcid.org/0000-0001-5104-8301
https://orcid.org/0000-0001-5104-8301
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0002-3512-0649
https://orcid.org/0000-0002-3512-0649
https://orcid.org/0000-0002-3512-0649
https://orcid.org/0000-0002-3512-0649
https://orcid.org/0000-0002-3512-0649
https://orcid.org/0000-0003-4783-876X
https://orcid.org/0000-0003-4783-876X
https://orcid.org/0000-0003-4783-876X
https://orcid.org/0000-0003-4783-876X
https://orcid.org/0000-0003-4783-876X
https://orcid.org/0000-0002-1648-0227
https://orcid.org/0000-0002-1648-0227
https://orcid.org/0000-0002-1648-0227
https://orcid.org/0000-0002-1648-0227
https://orcid.org/0000-0002-1648-0227
https://orcid.org/0000-0002-7339-5256
https://orcid.org/0000-0002-7339-5256
https://orcid.org/0000-0002-7339-5256
https://orcid.org/0000-0002-7339-5256
https://orcid.org/0000-0002-7339-5256
mailto:xiangyu.zou@hotmail.com
mailto:xiangyu.zou@hotmail.com
mailto:wangxuan@hit.edu.cn
mailto:wzzhang@hit.edu.cn
mailto:hjzhang@hit.edu.cn
mailto:xiawen@hit.edu.cn
mailto:taovcu@gmail.com
mailto:sdi1@anl.gov
mailto:cappello@mcs.anl.gov
mailto:tao@cs.ua.edu

disparity between compute and I/O, more aggressive data
reduction schemes are needed to further reduce data by an
order of magnitude or more [4], so the focus has shifted to
lossy compression recently.

In this paper, we focus mainly on pointwise relative-
error-bounded lossy compression because pointwise rela-
tive error bound (or relative error bound for short) is a criti-
cal error controlling method broadly adopted by many
scientific applications in the lossy compression community.
Unlike absolute error control adopting a fixed error bound
for each data point, the pointwise relative error bound indi-
cates that the compression error on each data point should
be restricted within a constant percentage of its data value.
In other words, the smaller the data value, the lower the
absolute error bound on the data point. Accordingly, more
details can be preserved in the regions with small values
under the pointwise relative error bound than with absolute
error bound. According to cosmologists, for example, the
lower a particle’s velocity is, the smaller the compression
error it can tolerate. Moreover, many other studies [11], [12]
also have focused on pointwise relative error bound in lossy
compression.

In particular, ZFP and SZ have been widely recognized
as the top two error-controlled lossy compressors with
respect to both compression ratio and rate [12], [13], [14],
[15]. They have been tested on thousands of computing
nodes. For example, the Adaptable IO System (ADIOS) [16]
deployed on the Titan (OLCF-3) supercomputer at Oak
Ridge National Laboratory has integrated both ZFP and SZ
for data compression. Although being the two best-in-class
compressors, however, ZFP and SZ still have their own
pros and cons because of distinct design principles. With
the same error bound setting, SZ usually has higher com-
pression ratios than ZFP does (about 2X or more), while SZ
is often 20–30 percent slower than ZFP [12], bringing up a
dilemma for users to choose an appropriate compressor. In
fact, the compression/decompression rate is as important
as the compression ratio, in that many applications require
fast compression at runtime because of an extremely fast
data production rate such as the X-ray analysis data gener-
ated by the Advanced Photon Source and Linac Coherent
Light Source [17], [18]. A straightforward question is, can
we significantly improve the compression and decompres-
sion rates (i.e., the processing speed) based on the SZ lossy
compression framework, leading to an optimal lossy com-
pressor for users?

Therefore, the aim of this paper is to significantly improve
the performance for both compression and decompression
in SZ, while still keeping a high compression ratio and
strictly respecting the user-required error bounds. This
research is nontrivial because of two reasons:�1 Logarithmic
transformation, which plays an important role in pointwise
relative-error-bounded lossy compression, is a complicated
and time-consuming process. How to speed up logarithmic
transformation and improve the overall compression rate is
challenging. �2 To this end, we develop a precomputation-
based mechanism and prove its effectiveness in theory.
However, our initial model may lead to non-error-bounded
cases. How to guarantee the user-required error bound has
to be considered carefully.

The key contributions of our work are fourfold:

� We identify the performance bottleneck in SZ. Spe-
cifically, our in-depth performance analysis shows
that the online logarithmic transformation leads to a
low compression and decompression performance
for SZ. In absolute terms, it takes about 33 percent of
the aggregate compression time and 40 percent of
the aggregate decompression time, significantly lim-
iting the compression rate of SZ.

� We propose an efficient precomputation-based mech-
anism that can significantly increase the compression
rate of the pointwise relative-error-bounded compres-
sion in SZ. Our solution eliminates the time cost of log-
arithmic transformation, replacing it with a fast table-
lookupmethod in the point-by-point processing stage.
At the same time, we develop an adaptive method to
configure parameters in table building, for a better
compression rate.Withdetailed analysis of the compli-
cated mathematical relations among quotient values,
quantization factor values, and error bounds, our opti-
mized precomputation-based mechanism can strictly
respect specified error bounds to achieve accurate
error control.

� We also develop a precomputation-based mecha-
nism for Huffman decoding in SZ by constructing
three precomputed tables. We replace the costly
repeated tree traversing operations during Huffman
decoding with efficient table lookup operations, sig-
nificantly accelerating the decompression process.
We also propose an adaptive method to configure
parameters in Huffman decoding automatically.

� We perform a comprehensive evaluation using eight
well-known real-world simulation datasets across
different scientific domains. Experiments show that
our solution does not degrade any compression
quality metric tested, compared with original SZ
approach, including maximum relative error (MAX
E) and mean relative error (MRE). Our precomputa-
tion-based mechanism improves the compression
rate by about 40 percent and decompression rate by
about 80 percent in most of cases. Our codes are
available at https://github.com/Borelset/SZ, which
has been merged into the SZ package in version 2.1 .

The remainder of this paper is organized as follows. In
Section 2, we discuss relatedwork. In Section 3, we present the
time cost of logarithmic transformation and quantization fac-
tor calculation, which motivates us to conduct this research. In
Section 4, we present the design and implementation of our
precomputation schemes. In Section 5, we evaluate our new
schemes with multiple real-world scientific HPC application
datasets across different domains, comparing our schemewith
the latest SZ andZFP. In Section 6, we summarize ourwork.

2 RELATED WORK

Lossless compression fully maintains data fidelity, but it
depends on the repetition of symbols in the data sources.
Even for slightly variant floating-point values, their binary
representations may hardly contain identical symbols (or
exactly duplicated chunks). As such, lossless compression
suffers from a very low compression ratio [2], [9], [12], [19],
[20] on scientific data.

1666 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 7, JULY 2020

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on March 15,2020 at 16:18:42 UTC from IEEE Xplore. Restrictions apply.

https://github.com/Borelset/SZ

General acceptance of certain data loss provides an
opportunity to dramatically improve the data compression
ratio; ZFP [19], ISABELA [21], and SZ [2], [22] are three
well-known lossy compressors supporting pointwise rela-
tive error bounds.

ZFP [19] is an error-controlled lossy compressor designed
for image data. ZFP transforms the floating-point data points
to a fixed-point data values block by block. Then, a reversible
orthogonal block transformation is applied in each block to
mitigate the spatial correlation, and embedded coding [23] is
used to encode the coefficients.

Motivated by the reduction potential of spline functions
[24], [25], ISABELA [21] uses B-spline-based curve fitting to
compress scientific data. Intuitively fitting a monotonic
curve can provide amodel that is more compressible than fit-
ting random data. Based on this, ISABELA first sorts data to
convert highly irregular data to a monotonic curve. Its big-
gest weakness is slow compression/decompression because
of its expensive sorting operation.

The SZ compressor has experienced multiple enhance-
ments since the first version 0.1 [22] was released in 2016.
SZ 0.1 employed multiple curve-fitting models to compress
data streams, with the goal of accurately approximating the
original data, which encodes the best-fit curve-fitting type for
each data point or marks the data point as unpredictable data
if its value is too far away from any curve-fitted value. SZ 1.4
[2] significantly enhanced the compression ratios by improv-
ing the prediction accuracy with a multidimensional predic-
tionmethod plus a linear-scaling quantization method. SZ 2.0
[26] further improved the compression quality for the high-
compression cases by leveraging an adaptive method facili-
tated with twomain candidate predictors (Lorenzo and linear
regression). The former predictor uses neighboring processed
data to predict the next data; the latter processes data as blocks
and predicts data according to the characteristics of the block.
We [20] proposed an efficient logarithmic transformation to
convert a pointwise relative-error-bounded compression
problem to an absolute-error-bounded compression problem.
It improves the compression quality compared with the prior
work [27] that separates all data into several segments, and
process each segment of data as the way of absolute error
bound compression. However, as we have confirmed in our
performance profiling, this will significantly slow the com-
pression and decompression because of its costly logarithmic
transformation operations.

Some existing studies are working on combining differ-
ent lossy compressors to obtain better compression quality.
Lu et al. [12] conducted a comprehensive evaluation based
on SZ and ZFP and proposed a simple sampling method to

select the best compressor with higher compression ratio in
between. Tao et al. [14] proposed an efficient online, low-
cost selection algorithm that can predict the compression
quality accurately for SZ and ZFP in early processing stages
and selects the best-fit compression based on the quality
metric Peak Signal-to-Noise Ratio (PSNR) for each data
field. Their work, however, relies on the compression per-
formance of SZ and ZFP, so their compression result can
never go beyond the best choice from between SZ and ZFP.

3 MOTIVATION

SZ usually leads to higher compression ratios [12] than
other compressors with the same error bound setting espe-
cially for 1D and 2D datasets, making it one of the best com-
pressors for HPC scientific data. Generally, SZ performs the
compression based on the following four steps:

� Applying prediction to the given dataset based on
user-set error bound: all the floating-point data val-
ues are mapped to an array of quantization factors
(integer values), with an accuracy loss restricted
within the error bound.

� Constructing a Huffman tree of the quantization fac-
tors, and encoding the quantization factors.

� Compressing the unpredictable data points (i.e., the
data points whose values cannot be approximated
by the first step) by binary-representation analysis.

� Further compressing of the data generated by the
above three steps by using lossless compressors such
as GZip [28] or Zstandard [29] (usually called Zstd).

This SZ compression framework is particularly effective
on absolute-error-bounded compression.

To address the demand of point-wise relative error bound,
the SZ team developed a logarithmic transformation [20]
which can convert the pointwise relative-error-bounded com-
pression problem to an absolute-error-bounded compression
problem, as shown in Fig. 1.

A serious drawback of the logarithmic transformation-
based strategy is its high transformation cost, which may
significantly lower the compression/decompression rate.
As Fig. 2 demonstrates, the logarithmic transformation con-
sumes about 30 percent of the overall compression and
decompression time. To avoid such high transformation
cost, we propose an efficient precomputation-based mecha-
nism with a fast table-lookup method, dramatically acceler-
ating SZ compression and decompression.

Fig. 1. General workflow of SZ compression with logarithmic
transformation. Fig. 2. Breakdown of the compression and decompression time for SZ

with logarithmic transformation (using 1E-2 as pointwise relative error
bound on NYX dataset).

ZOU ET AL.: PERFORMANCE OPTIMIZATION FOR RELATIVE-ERROR-BOUNDED LOSSY COMPRESSION ON SCIENTIFIC DATA 1667

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on March 15,2020 at 16:18:42 UTC from IEEE Xplore. Restrictions apply.

4 A PRECOMPUTATION-BASED TRANSFORMATION

SCHEME FOR LOSSY DATA COMPRESSION

In this section, we present the theories and practices of pre-
computation-based transformation scheme. First, we prove
the feasibility of replacing logarithmic transformation and
floating-point quantization procedures in previous SZ design
[20] (denoted asSZ_T)with an efficient precomputation-based
table lookupprocedure (denoted asSZ_P). Second, we discuss
how to construct the tables for the precomputation-based
transformation and the adaptive methods for some parame-
ters. We also provide a detailed algorithm description of our
approach SZ_P. Table 1 lists and describes some key notations
to help understand the design of SZ_P in this section.

4.1 Theoretical Derivation of Precomputation-
Based Transformation Scheme for SZ

When SZ compresses floats with an absolute error bound, each
data point will be predicted to calculate the quantization code,
converting afloating-point number lossy compressionproblem
to an integer number lossless compression problem as follows.

$
Xi �X

0
i

2"
þ 0:5

%
¼ M: (1)

In the above equation, " is a user-predefined relative
error bound; M is a derived integer called the quantiza-
tion code or factor, which can be further encoded by
using Huffman coding to reduce storage space; and X

0
i is

the multidimension-based predicted value of Xi [2].
For relative-error-bounded compression, as introduced in

the preceding section and shown in Fig. 1, the latest SZ ver-
sion (SZ_T) converts the relative-error-bounded compression

to an absolute-error-bounded compression by a logarithmic
transformation as follows.

Xi � ð1� �Þ < Xi < Xi � ð1þ �Þ (2)

¼) logðXiÞ þ logð1� �Þ < logðXiÞ < logðXiÞ þ logð1þ �Þ:

Before logarithmic transformations, Xi are all converted
to their absolute value because logarithmic transformation
can not process negative values. Their signs are saved in an
array, and we will use Xi to represent the converted data
points in the remaining of the paper.

Due to logðXiÞ þ logð1� �Þ < logðXiÞ � logð1þ �Þ, we
can infer that if Inequality (3) holds, then the Inequality (2)
will also hold. Therefore, a relative-error-bounded compres-
sion problem as Equation (2) could be converted into an
absolute-error-bounded compression problem as below.

logðXiÞ � logð1þ �Þ < logðXiÞ < logðXiÞ þ logð1þ �Þ:
(3)

Thus, we can use an equation to show how data are proc-
essed in SZ with a relative error bound as follows.$

logXi � logX
0
i

2log ð1þ "Þ þ 0:5

%
¼ M: (4)

Then, we can deduce Equation (5) and subsequently
Equation (6) as follows.

logXi � logX
0
i þ log ð1þ "Þ

2log ð1þ "Þ ¼ M þ d; 0 � d < 1 (5)

¼) f ¼ Xi

X
0
i

¼ ð1þ "Þ2M�1þ2d; 0 � d < 1: (6)

Our approach is inspired from Equation (6). Fig. 3 demon-
strates how the precomputation-based table lookup in SZ_P
can avoid the time-consuming logarithmic transformation and

TABLE 1
Key Notations

Term Explanations

f float f ¼ Xi=X
0
i ;Xi is an original value;X

0
i is its predicted

value
M The quantization code, an integer, which is located in a fixed

range L;M½� refers to a set of quantization codes.
L The range of quantization codeM specified by users
V The range covered by all of PIðM) or PI 0ðM)
" The error bound specified by users

PI(M) An interval where any float x located in, and x could be

presented by ð1þ "Þ2M with a relative error smaller than ".
This is used for Model A in SZ_P0

u A parameter used in Model B to control the intersection size
p A parameter specified by users, to define u as 2�p

PI0ðM) An interval where any float x located in, and x could be

presented by ð1þ "Þ2ðM�uÞ with a relative error smaller than ".
This is used for Model B in SZ_P

T1 Store themapping relation of f !M for compression, consisting
of several subtables

T2 Store the mapping relation ofM ! f for decompression

sub-table Divide V into several segments by the exponent part of
floating-point values in V , each segment corresponds to
a sub-table.

grid Divide each segment into several equal-sized girds, each grid
maps to a sub-table entry

D The intersection of two neighboring PI(M). We ensure D >
size of the grid, for error control

Fig. 3. Our approach using two precomputed tables to directly transform
the error-controlled quantization codes f[] to integersM[].

1668 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 7, JULY 2020

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on March 15,2020 at 16:18:42 UTC from IEEE Xplore. Restrictions apply.

quantization factor calculation in SZ_T. Themain idea is to con-
struct these two mappings to bypass the logarithmic transfor-
mation.However, how to build these twomappings and prove
the effectiveness of this method is challenging. We provide a
detailed theoretical analysis of our SZ_Pmethod as follows.

Equation (6) indicates that for any floating-point f , we
can get an integerM.M should belong to a fixed and prede-
fined range, namely, the interval capacity L. If he value of f
gets M out of L, f would be considered unpredictable, and
it would be handled by SZ’s separate compression (by trun-
cating insignificant bits in binary representation). Based on
0 < d < 1, we can get 2M � 1 < 2M � 1þ 2d < 2M þ 1.
From Equation (6), we can deduce

ð1þ "Þ2M�1 < f < ð1þ "Þ2Mþ1: (7)

Equation (7) gives us a hint that we can probably sepa-
rate the range of f into some intervals and acquire the quan-
tization factor M for a floating-point number k by finding
out which interval that the k belongs to.

Naive model (Model A) of SZ_P

Inspired by the hint, we propose a naive model (we call it
Model A) to realize the above idea, and the general descrip-
tion of our first model is shown in Fig. 4, in which we use a
series of intervals to cover the range of f . Now, we have
three issues to resolve. The 1st issue is what the format of
the interval should be. The 2nd issue is whether any num-
ber in an interval can be compressed into one value with an
error smaller than the user-specified error bound. The 3rd
issue is whether any number can be included within the
above mentioned neighbouring intervals. We will solve the
three issues as below.

Considering the decompression, we want to get a decom-
pressed value f’ from M, and f’ should satisfy the error
bound requirement. So, we have

1� " � ð1þ "Þ2M
f

� 1þ "; (8)

where ð1þ "Þ2M is f 0 and f 0/f should be within ð1� "Þ �
ð1þ "Þ. From Equation (8) we can further deduce that

ð1þ "Þ2M�1 � f � ð1þ "Þ2M
1� "

: (9)

We call this interval ½ð1þ "Þð2M�1Þ; ð1þ"Þ2M
1�" � as M’s present

interval, denoted by PI(M). So, the 1st issue and 2nd issue are
solved. PI(M) is a reasonable format of the intervals, and any
float in PI(M) can be compressed into ð1þ "Þ2M with an
error smaller than the user-specified error bound.

For any pair PI(M) and PI(M+1), we can get their top and
bottom boundaries (see the example shown in Fig. 4) as
follows:

PIðMÞtop ¼
ð1þ "Þ2M
1� "

PIðM þ 1Þbottom ¼ ð1þ "Þ2Mþ1:

(10)

Also, we can get

PIðMÞtop
PIðM þ 1Þbottom

¼
ð1þ"Þ2M

1�"

ð1þ "Þ2Mþ1
¼ 1

1� "2
> 1: (11)

Further, we can get the following relations.

PIðMÞbottom < PIðM þ 1Þbottom < PIðMÞtop < PIðM þ 1Þtop

These indicate that two neighboring PIs are intersecting
(see the example in Fig. 4), although the intersections are
extremely narrow. Therefore, the 3rd issue is also solved,
there is no any floating-point number existing between two
neighboring PIs while all the PIs cover a bounded continu-
ous interval, called V.

We can then rasterizeV to build TableT1, where each grid
corresponds to a table entry. Thus, we can build a mapping
relation between f (i.e., PI(n)) and M (i.e., n). During com-
pression, for each input floating-point f based on Equa-
tion (4), we can calculate in which grid it is located, then
getting the valueM from TableT1. As a result, f can be repre-
sented by ð1þ "Þ2M , which can restore the value of f during
decompression respecting the predefined error bound ".

Obviously, if we can acquire that a floating-point number f
belongs to which PI, we can directly knowwhichM f maps to.
However, there is another problem to resolve: how can we
know which PI the floating-point number f belongs to. Since
brute-force search by traversing thePIs is very time-consuming,
wemust explore othermore efficient solutions.

We decide to build a precomputed table to avoid the tra-
versal cost. Fig. 4 summarizes this method, and we call this
the basic method Model A in the paper. In this model, we
separate the range V into several grids with equal size. For
each grid, we find a PI to maps to. In this way, for any float
f, we first find out which grid the f belongs to and second
find out which PI the grid maps to, and finally using
ð1þ "Þ2M as the compressed value of f. Only the integer M
needs to be saved for decompression.

To summarize, the challenge of adopting Model A is that
there exist some grids divided by two PIs (as shown in
Fig. 4). Thus, no matter how we decide these grids belong to
which PIs, we always arrive at a situation in which a grid B
maps to PI(K) but a number d in grid B does not belong to
PI(K). This results in higher relative errors than the error
bound ", which makes our compressor non-error-bounded.
Model A therefore should be further improved to strictly
respect the error bound.

Fig. 4. A general description about model A of SZ_P.

ZOU ET AL.: PERFORMANCE OPTIMIZATION FOR RELATIVE-ERROR-BOUNDED LOSSY COMPRESSION ON SCIENTIFIC DATA 1669

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on March 15,2020 at 16:18:42 UTC from IEEE Xplore. Restrictions apply.

Improved model (Model B) of SZ_P

To address the issue thatModelA does not strictly respect
error bounds, we propose a new design of PI0, namely,
Model B, that has more intersecting parts to ensure data are
strictly error bounded after decompression. In Model B, we
shift PIs from Equation (9) and enlarge their intersections.
More specifically, we define the new f0 and PI0 as

ð1þ "ÞMð2�uÞ�1 � f 0 � ð1þ "ÞMð2�uÞ

1� "
; 0 < u � 1; (12)

where u is introduced for enlarging the intersection ratio.
Because PI0(M)top > PI0(M)bottom, PI

0s are intersecting, so
they can also cover a bounded continuous interval V (as
shown in Fig. 5). Concerning the relation between a grid
and a PI0, we present the following lemma.

Lemma 1. If a grid sizeG is smaller than the size of any intersect-
ing part of PI0, aPI0 completely including the grid always exists.

Proof. Consider the intersecting size of two neighboring PI0s.

PI0ðMÞtop ¼
ð1þ "ÞMð2�uÞ

1� "

PI0ðM þ 1Þbottom ¼ ð1þ "ÞðMþ1Þð2�uÞ

1þ "

(13)

D ¼ PI 0ðMÞtop � PI 0ðM þ 1Þbottom
	 ð1þ "ÞMð2�uÞþ1ð1� ð1þ "Þ�uÞ:

(14)

As the condition provided by Lemma 1 (shown in
Fig. 5), we assume that all the grid sizes are smaller than
any of the D. We can further prove the lemma with all
three possible cases of the grids as follows.

1) A grid in which there is no PI0’s boundary, is
completely included in a PI0. Since PI0s cover a
bounded continuously interval, this kind of grid
is included in a PI0.

2) A grid in which there is only one of the PI0’s
boundaries, is completely included in a PI0. With-
out loss of generality, we assume that it is PI0(n+1)’
s bottom boundary and it is a float number K, and
the grid is G. So PI0(n)’s top boundary is K+D.

Because the size of grid G is smaller than D, G is
completely included in PI0(n). Thus, this kind of
grid is also completely included in a PI0. The same
conclusion can be made assuming that the bound-
ary is PI0(n-1)’s top boundary.

3) A grid in which there are two or more PI0’s bound-
aries does not exist. The reason is that the size of PI0

is bigger thanD andD is bigger than the grid size. tu
Therefore, Lemma 1 demonstrates that the mapping rela-

tion between f (i.e., the grid) and M (i.e., n) in Model B is
N ! 1 and that every grid could be completely included by
a PI0, which Model A cannot do. Model B can avoid the
problem appearing in Model A, that is, relative errors
higher than the predefined bound.

Compared with PI, the tight arrangement of PI0 can lead
to a better error control but also result in a smaller size of
the covered range V. It depends on the parameter u: a
smaller u can lead to a compression ratio similar to that of
Model A but also a larger total grid count, which means
higher memory cost. Empirically, u should be set to 1, 12,

1
4,

1
8,

and so on, which makes it easier to decide grid size in
Model B. We adopt Model B in SZ_P, which brings us better
error control but a slight decrease in the compression ratio.
We note that in both Model A and Model B, once the table
is generated, it can be saved for repeated future use, because
the table is related only to the user-set error bound ", instead
of the values of the input datasets.

4.2 Table Construction Using Model B

The next problem is how to build Table T1 with Model B,
namely, building the mapping relation between f (i.e., Xi

X
0
i

)

and M (i.e., the error-controlled quantization code). We
mainly discuss the construction of Table T1 here since Table
T2 can be easily calculated and constructed, as shown in
Algorithm 2 (see Section 4.5).

According to Lemma 1, we can know the condition that
the size of grids should meet. There are also some chal-
lenges in building Table T1. The first is that the exponential
model such as ð1þ "ÞMð2�uÞ in Equations (13) and (14) has a
huge growth rate, and a fixed grid size will lead to a huge
amount of grids that can make Table T1 have a huge size.
Thus, controlling the size of the table is important. Next we
introduce how we overcome this.

In Table T1, for a given error bound " and an interval
capacity L, we divide the range V into many equal-sized
grids. InModelBwedivide the rangeV into several segments
with PI0’s exponent, process them separately, and set different
sizes for grids in different segments. In each segment, as dis-
cussed in Lemma 1, since the grid size must be smaller than
the intersecting size of two smallest neighboring PI0s, we
define the size of smallest PI0 in a segment is Sseg, because the
size ofPI0 and intersection in a segment is the same.

Therefore, if u is 1, the grid size should be half of Sseg,
which is the size of smallest intersection. Meanwhile, u

determines the size of intersecting parts of PI0s.
If u is 1, anyPI0(n) should be covered by two neighbors (i.e.,

PI0(n+1) and PI0(n-1)), so the grid size should be set smaller
than

Sseg
2 . If u is 1

2, the grid size should be set smaller than
Sseg
4 ,

and so on. Each segment will be separated into several grids

Fig. 5. General description of Model B of SZ_P.

1670 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 7, JULY 2020

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on March 15,2020 at 16:18:42 UTC from IEEE Xplore. Restrictions apply.

depending on its grid size. Furthermore, the index number of f
in a segment of TableT1 can be calculated as f�Segmin

gridsize .

Consider the cost of division operations. In order to save
time getting the index number of f as calculated above, the
grid size should be simple in the binary system. Hence, we
keep just one valid number for the grid size in IEEE 754 format
[30]. For example, we can transform the f�Segmin

1:101
2�5 to f�Segmin
1:000
2�5

(in order tomake the grid size smaller and also satisfy Lemma
1), which is equal to ðf � SegminÞ
 25, in which the multiply
operation does not change the mantissa of f � Segmin. There-
fore, we can get the index from the mantissa of f � Segmin

directly and no longer need a division operation.
Now that we have determined the way to solve the prob-

lem of controlling the size of Table T1, we discuss how to
separate the range V into segments and decide the size of
grids for each segment.

Since floating-point data in cmputer systems are saved in
IEEE 754 format [30], we divide range V into several seg-
ments according to f’s exponent, and we build subtables for
each segment separately. For the segment where f’s expo-

nent is k and the smallest ð1þ "ÞMð2�uÞ in Segk is S, we define
the grid size GG ¼ 1:0� 2k � "� u.

Since the exponent part of any ð1þ "ÞMð2�uÞ in Segk is k,
any S is larger than 1:0� 2k. For Segk, we can get the value
of D, which we have mentioned in Lemma 1, as

D ¼ ð1þ "ÞðMð2�uÞþ1Þð1� ð1þ "Þð�uÞÞ
¼ Sð1þ "Þð1� ð1þ "Þð�uÞÞ:

Since S > 1:0 � 2k and ð1þ "Þð1� ð1þ "Þð�uÞÞ 	 "� u, we
know D > G, so G is a reasonable grid size that satisfies the
requirement discussed in Lemma 1. Accordingly, if the grid
size isG, any grid inSegk can always find aPI0 that completely
includes grid. So, G can be used as the grid size for each seg-
ment. However, if we use G as the grid size, which always
has many mantissas, we usually need a divide operation to
know which grid a floating-point number should belong to,
and it is also time-consuming. As such, we need a grid size,
which has only one mantissa, and in this way we can know
which grid a floating-point number should belong to accord-
ing to its binary format. Therefore, we use a valueG’, which is
smaller thanG and also satisfies Lemma 1, as the grid size for
each segment. As a result, we defineG’ as below:

G0 ¼ 1:0� 2k � "0 � u:

Here "0 is the result of " keeping one valid number in binary,
and if we choose a u which has only one mantissa in binary

format, we can know that G’ also has only one mantissa in
binary format.

We can determine that the size of the subtable of Segk is
the size of Segk

G0G0 . To better illustrate this, we calculate it sepa-
rately as follows:

1) The size of Segk is 1:111:::� 2k � 1:0� 2k ¼ 1:0� 2k.
2) Convert the " to binary representation, and keep

one valid number (e.g., if " ¼ 0:01 in decimal,
"0 ¼ 0:0000001 in binary and could be present by 2�7).

3) Choose a power of 2 that less than 1.0 as u, such as 1/
2, 1/4, 1/8 etc., denoted as 2�p.

Thus, GG0 ¼ 1:0� 2k � "0 � 2�p, and the size of the subt-
able for Table T1 is 2p="0. Obviously the size is determined
by u and ". For example, if u ¼ 0:25 and " ¼ 0:01, the size of
the subtable is 22 � 27 = 29 = 512. Therefore, the scale of the
subtable will be in control. On the other hand, the count of
the subtable in Table T1 is determined by L (i.e., the range
of quantization codeM), which is about 10 in general.

Overall, by setting the different grid sizes for different
segments (i.e., the subtables), we can control the total size of
Table T1 at an acceptable level. Generally, in our final imple-
mentation and evaluation in Section 5, the sizes of Table T1
are only about 131 KB, 884 KB, 2,848 KB, and 4,608 KB when
" = 0.1, 0.01, 0.001, and 0.0001, respectively. These memory
footprints are ignorable for HPC servers.

4.3 The Adaptive Parameter Selection in Model B

As mentioned in Section 4.2, the value of u determines the
size of the table, in which we denote u as 2�p and p is called
‘plus_bits’ here. Now we discuss the value selection of
plus_bits, which determines the range covered by all the PI0s
and the table size (affecting the compression ratio and rate,
respectively).

As shown in Fig. 6, we compare the results of different
plus_bits on the NYX dataset to study its influence on the per-
formance of SZ_P usingModel B. From Fig. 6c, we see that the
compression ratios are often in direct proportion to the plus_
bits. As described above, plus_bits decides the intersection
size of neighboring PI0s: a smaller ’plus_bits’ leads to a smaller
intersection. Therefore, if we use a bigger plus_bits, PI0s can
cover a larger range with smaller intersections, resulting in
fewer unpredictable values and thus higher compression
ratios. Tuning of plus_bits is more critical to the compression
use-case with large error bound than with small error bound.
On the other hand, a bigger plus_bits also will lead to a bigger
precomputed table. The table size doubles every time the
value of plus_bits increases by one. A bigger table size will

Fig. 6. Performance comparison of SZ_P with different plus_bits (p) on the NYX dataset.

ZOU ET AL.: PERFORMANCE OPTIMIZATION FOR RELATIVE-ERROR-BOUNDED LOSSY COMPRESSION ON SCIENTIFIC DATA 1671

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on March 15,2020 at 16:18:42 UTC from IEEE Xplore. Restrictions apply.

probably result in more cache misses, which would cause
worse performance in table lookup. Fig. 6a shows that the
compression rate differs with different values of plus_bits.
The compression rate is a decreasing function of the plus_bits
value, which is reasonable. The difference is insignificant in
lower accuracy requirements, such as 1e-1, 1e-2, and 1e-3. In
use cases demanding small error bound, such as 1e-4, 1e-5,
and 1e-6, a bigger plus_bits results in a clearly different time
cost. Hence, if the user accepts compression with a relatively
large error bound, we do not need to choose a large plus_bits.
If a small error bound is required, we should choose a small
plus_bits, in order to get a high compression rate. From
Fig. 6b, we also observe negligible difference on decompres-
sion rate brought by the value of plus_bits.

Based on this analysis, we can decide the best-fit plus_bits
according to the range of L and the user-specified error
bound, which determines the size of the table. If the table
size is fairly large, the lookup performance can easily be
degraded significantly, leading to a low compression rate. In
this situation, using a small plus_bits can effectively mitigate
this issue, obtaining a better compression rate with an insig-
nificant loss of the compression ratio. If the table size is small,
it is better to use a bigger plus_bits to get a higher compres-
sion ratio with an insignificant loss of the compression rate.

Algorithm 1. Adaptive selection of the plus_bits p.

Input: pointwise relative error bound ", interval capacity L
Output: the parameter p to define u;
1: p = 0
2: coefficient_L = 1
3: for i=1 to 1024 do
4: if L� i == 0 then
5: coefficient_L = 2i�15

6: end if
7: end for
8: expo_" = exponent of "
9: coefficient_" = 2�expo "

10: coefficient_total = coefficient_L * coefficient_"
11: if coefficient_total < 27 then
12: p = 3
13: else if coefficient_total � 210 then
14: p = 2
15: else if coefficient_total < 216 then
16: p = 1
17: else
18: p = 0
19: end if

In addition, not only is the table size relative to plus_bits and
", but it also involves the user-specified parameter L. Therefore,
we also need to take L into consideration carefully. To this end,
we propose an adaptive method, as shown in Algorithm 1, to
make use of these features for best performance by choosing a
reasonable plus_bits under different provided conditions. We
set the table sizewith " = 1e-1 and L = 32768 as the base size.�1 ,
Whenweget a series of user-specifiedparameters as configura-
tion, we estimate the table size in this situation, in which we
compare the differences of " and L, predict how many times
each parameter will enlarge the table size, and give a total
result.�2 , we calculate the coefficient totalwith these two sizes
to predict howmany times the table size is larger than the base

size. �3 , According to the results of a series of experiments, as
shown in Fig. 6a, we note that the performance will be signifi-
cantly slowed down in error bound 1e-4 using different plus_
bits. The reason is the overlarge table size. According to Fig. 6c,
whenplus_bits is larger than 3, the compression ratios differ lit-
tle with different plus_bits. Combining these results, we define
three boundaries for coefficient total to set a suitable plus bits
for achieving a good trade-off between the compression ratio
and compression rate.

4.4 Implementation Details about Model B

In this subsection, we provide the implementation details of
SZ_P in Algorithms 2 and 3 with pseudocode descriptions.

First, we build an Table T2, saving all the ð1þ "ÞMð2�uÞ,
and an inverse table T1 which is used to find a M for a float
f , as described in the preceding subsection. To save subt-
ables from different segments for Table T1, we design the
following data structures:

1 struct TopTable{

2 uint16_t topIdx; /*the biggest exponent in V*/

3 uint16_t btmIdx; /*the smallest exponentin V*/

4 intbits;/*definetherelativesizeofgridsize*/

5 struct SubTable * subTablePtr;

/*sub-table array*/

6 }

7 struct SubTable{

8 uint32_t * grids; /*array of grid to M*/

9 }

For the TopTable in Table T1, it should save the biggest

and smallest exponent of ð1þ "ÞMð2�uÞ as topIdx and
btmIdx, as well as the pointer subTablePtr to its subtables.
Here bits is the result of �ðexponent of "0Þ þ p, where p is
the plus_bits parameter mentioned in the preceding subsec-
tion regarding how to choose the value of u adaptively.

Based on these data structures (also as shown inAlgorithm
1), we first build Table T2 and then build Table T1 according
to T2. The size of T1 is determined by the amount of different
exponents in the Table T2. The size of the subtables of T1 is
determined as 2bits. We scan the grids inT1 and calculate each
grid’s bottom and top boundaries to determine that which PI0

the processed grid should belong to. The building of Table T1
is completed as all the grids are processed.

Algorithm 2 describes the point-by-point processing stage
in SZ_P using Model B. We get the error-controlled quanti-
zation code M by looking up Table T1, if the data Ds½i� is a
predictable value. Thus, SZ_P avoids many logarithmic
transformation operations in SZ_T while achieving nearly
the same compression efficiency on scientific data. Fig. 7
shows how the tables are used. When we get a floating-point
number f , we acquire its exponent part with bit operations
to find out which SubTable we should use. Next, we acquire
its several bits from its mantissa to lookup in the SubTable,
and get the M which f should map to. The number of bits
acquired frommantissa is decided by the user-specified pre-
cision and value of u.

Table T2 can also be used in decompression since decom-
pression is an inverse process of compression. After using
Zstd as well as Huffman decoding to get the quantization
factor array M[], the decompression process also requires a

1672 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 7, JULY 2020

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on March 15,2020 at 16:18:42 UTC from IEEE Xplore. Restrictions apply.

point-by-point processing stage, in which Table T2 can be
used to restore data. SZ_P uses quantization factors as indi-
ces to look up Table T2 to get the floating-point values,
which have been precomputed according to Equation (7).
These floating-point values are not the values of original
data but the quotients of neighboring points, which can be
further used to restore the original data by using several
simple multiply operations.

Algorithm 2. Building Tables T1 and T2 using Model B.

Input: pointwise relative error bound ", interval capacity L,
and the parameter p to define u;

Output: table T2 (M ! f) and table T1 (f ! M);
1: T2={0};
2: u ¼ 2�p;
3: for i=0 to L-1 do
4: T2[i] = ð1þ "Þði�L=2Þ�ð2�uÞ;
5: end for
6: TopTable T1;
7: T1.btmIdx = T2[0]’s exponent; T1.topIdx = T2[L-1]’s exponent;
8: T1.bits = -("’s exponent) + p;
9: index = 0; state = false;
10: subBoundary = (1
 T1.bits) - 1; /*to define the last index

of sub-table*/
11: for i=0 to T1.topIdx - T1.btmIdx do
12: for j=0 to subBoundary do
13: PI0top = T2[index] / (1-");
14: PI0btm = T2[index] / (1+");
15: gridBtm =((i+T1.btmIdx)
 23) + (j
 (23-T1.bits));
16: gridTop = ((i+T1.btmIdx)
 23) + ((j+1)
 (23-T1.bits));
17: /*In IEEE 754 format, 32bit float has 23 bits mantissa, i +

T1.btmIndex is gridTop’s exponent and j is itsmantissa.*/
18: if gridTop < PI0top && gridBtm > PI0btm then
19: T1.subTablePtr[i].grids[j] = index;
20: state = true;
21: else if index < L-1 and state == true then
22: index ++;
23: T1.subTablePtr[i].grids[j] = index;
24: else
25: T1.subTablePtr[i].grids[j] = 0;
26: end if
27: end for
28: end for

In addition, we can find that the tables are used to build a
map between a floating-point numbers f and integers M,
and the map is determined by the required error bound "

and the value of u; it has nothing to do with specific dataset.
Therefore, the tables are deterministic, thus they can be pre-
computed and saved into files by serialiazation and reused
for different datasets.

Algorithm 3. Point-by-point processing stage in SZ_P.

Input: the dataset Ds{}, a user-specified point-wise relative
error bound " and interval capacity L;

Output: compressed data streamM and the unpredicted bytes;
1: Build Tables T1 and T2;
2: M = {0};
3: pred = 0;
4: ProcessDs[0] as anunpredicted float in SZ, pred=Ds[0]0; /*Ds

[0]0 is truncated fromDs[0] according to " as SZ does [22].*/
5: length = size of Ds;
6: for i=1 to length-1 do
7: ratio = Ds[i]/pred;
8: index = 0;
9: expoIdx = ratio’s exponent;
10: if expoIdx > T1.btmIdx&&expoIndex < T1.topIdx then;
11: mantiIdx = ratio’s mantissa� (23-T1.bits);
12: subtable = T1.subTablePtr[expoIdx-T1.btmIdx]
13: index = subtable.grids[mantiIdx];
14: end if
15: if index != 0 then
16: M[i] = index;
17: pred = pred * T2[index];
18: else
19: M[i] = 0;
20: process Ds[i] as unpredicted in SZ, pred =Ds[i]0; /*Ds[0]0

is truncated fromDs[0] according to " as SZ does [22].*/
21: end if
22: end for

4.5 Optimizing Huffman Decoding

As discussed in Section 3, Huffman encoding/decoding is a
critical step in SZ. In SZ_P, we optimize the Huffman decod-
ing performance in particular. Generally, Huffman decoding
parses the bit stream according to a Huffman tree, which
means the decoding process acts as a state machine (bit by bit
processing). With small error bound, quantization factor val-
ues will no longer converge, but scatter, leading to a longer
average Huffman code length, thus longer decoding time (see
results in Fig. 2b). Based on our observation, there are many
repeated calculations in Huffman decoding. Traversing
always begins from the root of theHuffman tree, and different
Huffman codes with the same prefix will have the same or
partially overlapped traverse path. Many repeated traversing
operations can be avoided if we can also design such a pre-
computation-basedmechanism forHuffman decoding.

Inspired by our precomputed tables for logarithmic trans-
formation, we process multiple bits as a prefix at one time,
instead of processing bit by bit. As a result, we also design the
precomputation-based tables for Huffman decoding in SZ_P
as shown in Fig. 8.We describe the tables in details as below.

� Node Table: It records prefix bits ! Huffman node
address (or called subtree). Here we configure the
length of prefix bits as a fixed number Y , and we
construct the Node Table for all Y prefix bits in the
Huffman tree. Fig. 8 provides an example of this

Fig. 7. An general example for looking up tables to getMwith a specified f.

ZOU ET AL.: PERFORMANCE OPTIMIZATION FOR RELATIVE-ERROR-BOUNDED LOSSY COMPRESSION ON SCIENTIFIC DATA 1673

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on March 15,2020 at 16:18:42 UTC from IEEE Xplore. Restrictions apply.

Node Table (Y =3 in this example), which records all
possibilities of nodes mapping to 3 prefix bits in the
Huffman tree. Thus, by looking up this table, we can
directly read 3 bits each time and access the corre-
sponding node, avoiding the traversal cost from
level 0 to level 3 in the Huffman tree.

� Value Table: It records prefix bits ! a possible Huffman
code. To build this table, we traverse all the Y prefix
bits in Huffman tree; and if we find a leaf node in the
traversal, we record the value of the leaf node in the
entry mapping to the corresponding prefix, and oth-
erwise record -1.

� Length Table: It records prefix bits ! the length of a
Huffman code. The reason we construct this table is
that Huffman codes are variable lengths such that
some Huffman codes can be shorter than Y .

In the example in Fig. 8, we process 3 bits each time (Y =3).
For the first 3 bits ‘011’, we first look up the Value Table to
obtain ‘011’ ! ‘8’, knowing that it may be a Huffman code
and its corresponding value is 8. We further get its length=3
by looking up the Length Table. As a result, we output the
value ‘8’ for the prefix ‘011’, and move the bit stream pointer
3 bits forward accordingly. For the next 3 bits ‘101’, we look
up theValue Table to obtain ‘101’! ‘12’, andwe then look up
the Length Table to obtain length=2. Thus, we output the value
‘12’ for the prefix ‘10’. Because length=2, we move the bit
stream pointer 2 bits forward. The last 1 (of ‘101’) and its next
2 bits ‘10’ are treated as the next 3 bits ‘110’. We find ‘110’ is
not a Huffman code in theValue Table (‘110’! ‘-1’), so we get
the address of Huffman tree’s node ‘110’ from theNode Table
and traverse the Huffman tree according to the following
(input) bits to get a longerHuffman code.

With these precomputed tables, we can significantly
accelerate the decompression process of SZ_P by reducing
tree traversing operations during Huffman decoding. Note
that the size of the precomputed table is determined by a
key parameter Y , which will affect the final performance.
Specifically, the total size of the three precomputed tables
can be calculated according to the length of the prefix bits
(i.e., the value Y) as: 2Y � ð4þ 2þ 8Þ. If the table size is too
large, it will also cause lots of cache misses during Huffman
decoding, thus decreasing the overall decompression speed.
We discuss this issue in detail as follows.

As shown in Fig. 9a, the best choice of Y is also different
for different user-specified error bound. With error bounds
1e-1 and 1e-2, the average length of Huffman codes is short,

and we do not need a large table. In the smaller error
bounds cases such as 1e-5 and 1e-6, the average length of
Huffman codes is long, such that a small table cannot make
full use of this kind of schema. We can observe that the
value of Y is deeply involved in the decompression rate. It
is closely related to the average lengths of Huffman codes,
which is decided by the user-specified error bound and the
distribution of data and is hard to predict only in decom-
pression processing.

Therefore, we also propose an adaptive method to select
a suitable parameter Y for our Huffman decoding. We
record 95 percent of the lengths of Huffman codes, which
reflect the lengths of most Huffman codes, in the compres-
sion output file. During the decompression processing, we
will use this record as the value of Y to adapt different situa-
tions on different datasets.

The table size should not be too large because the size of
cache in computer is limited and the bigger table will lead
to many cache misses. Thus, the value of Y also needs an
upper limit Yupper. As shown in Fig. 9b, we run a series of
experiments on NYX dataset with plus_bits = 3 to show the
difference in the decompression rate with different Yupper. If
Yupper is too small, the precomputed table cannot fully real-
ize their potential. On the other hand, if Yupper is too large,
cache misses will also make the compressor slower. With
error bounds of 1e-1, 1e-2, and 1e-3, different Yuppers may
lead to similar results. However, we observe that in error
bounds of 1e-4, 1e-5, and 1e-6, the decompression rate
increases as Yupper increases from 8 to 16. However, for the
situation of Yupper = 20, its decompression rate is much
slower with error bounds of 1e-4 and 1e-5. With an error
bound of 1e-6 that may lead to a long average huffman code
length, Yupper = 20 seems able to make full use of this

Fig. 8. Example of building precomputation-based tables to accelerate Huffman decoding in SZ_P.

Fig. 9. Performance comparisons of SZ_P on NYX dataset using differ-
ent Y (with adaptive selection of ‘plus bits’).

1674 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 7, JULY 2020

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on March 15,2020 at 16:18:42 UTC from IEEE Xplore. Restrictions apply.

precomputed mechanism and achieves better performance
than with Yupper = 16, but the result is contrary to what we
expected. The reason is that the tables constructed by this
mechanism are too large, leading to many cache misses in
Huffman decoding.

Based on this observation, Yupper = 16 is always a reason-
able setting, which means that each table has 216 entries at
most. If the lengths of 95 percent of Huffman codes during
the compression processing are larger than Yupper, we set Y
= Yupper as the prefix length; otherwise, we follow the results
of the statistics summary. The size of the three tables is only
�851 KB (using Yupper=16) at most in our design for Huff-
man decoding, which is also ignorable for HPC servers.

4.6 Discussions

In summary, the key points of our idea in designing SZ_P
are as follows.

� Since the predicted values (X0
i) are always expected

to be close to the real values (XiÞði:e:; Xi

X
0
i

is always

distributed in a zone close to 1.0), we can get a new
method with a precomputed table, which is mathe-
matically equivalent to the logarithmic transforma-
tion used in SZ_T; and the size of the precomputed
table can be well controlled.

� By our careful design of Model B, we make the error
caused by the table look-up always smaller than the
error bound ", which means that the accuracy of
compressing data by SZ_P could be well controlled.

Therefore, our optimization includes two parts: the log
transformation and the calculation of the quantization factors
(i.e., the relationships of the neighboring floats). We avoid the
logarithmic transformation in SZ_T and optimized the quanti-
zation process with table lookup operations. That is the key
reason we speed up the pointwise relative error bounded
lossy compression significantly. Because ZFP [31] does not
have the quantization factor calculation procedure, our cur-
rent design cannot be directly applied to ZFP. More specifi-
cally, ZFP saves the transformation results of the original
values instead of the derived values of the neighboring points.

5 EVALUATION

In this section, we compare our approach (denoted by SZ_P)
with two state-of-the-art methods, SZ_T and ZFP_T, which
were proposed in the literature [20]. We chose ZFP_T
because it is an improved version in terms of the original
ZFP by leveraging logarithm transformation for point-wise
relative error bound. Our prior work [20] shows that ZFP_T
exhibits much better results than the original ZFP. Com-
pression and decompression rate, ratio, and data fidelity are
all used to assess lossy compressors quantitatively.

5.1 Experimental Setup

We conduct our tests on a server with two Intel Xeon Gold
6130 processors running at 2.1 GHz and a total of 128 GB of
memory.We perform the evaluationwith asmany datasets as
possible downloaded from the scientific data reduction
benchmark (sdrbench) [32], including HACC cosmology sim-
ulation (1D),NYX cosmology simulation (3D), Hurricane ISA-
BEL simulation (3D), CESM-ATM climate simulation (2D),

EXAALT moledular dynamic simulation (1D), Miranda tur-
bulence simulation (3D), S3D combustion simulation (3D),
and SCALE-LETKF climate simulation(3D). The sizes of
these eight datasets are 6.3 GB, 3.1 GB, 1.9 GB, 2.0 GB, 33 MB,
1.0 GB, 26 GB, and 6.4 GB per snapshot for each application,
respectively. Other datasets on the sdrbench either are
unstructured grid datasets (unable to be represented by regu-
lar mesh grid, such as XGC and Brown samples) or require
absolute error bound instead of pointwise relative error
bound focused by our paper (such as EXAFEL).

The data fidelity of lossy compression approaches is
measured with multiple metrics, including the max point-
wise relative error (MAX E), which shows whether a
method is respecting the error bound; MRE (mean relative
error; the smaller the better), which shows the mean relative
difference between original values and the decompressed
values; and RMSRE (root mean squared relative error; the
smaller the better), which measures the degree of dispersion
of relative error.

Compression rate and decompression rate indicate the
throughput of compression and decompression. For com-
pression and decompression rate, we run each experiment
five times to calculate the average. Since each application
involves many fields, each in a data file, we use the aggre-
gated file size divided by the total compression or decom-
pression time to calculate the rate. The compression ratio is
the ratio of the original data size to the compressed size.

5.2 Compression Rate and Decompression Rate

In this section, we compare compression and decompression
rates for different approaches. For SZ_P, the time cost of build-
ing tables is not counted in the total time cost. The reason is
that the tables are determined by the user-specified error
bounds and u value, so they are actually computed priori and
can reused by different datasets in practice, as discussed in
Section 4.4. Figs. 10 and 11 present the compression rate and
decompression rate of SZ_P, SZ_T and ZFP_T on the eight
datasets, respectively. Generally, SZ_T has the lowest com-
pression rate among the three approaches, because of its loga-
rithmic transformation and floating-point quantization time
cost. The compression rate is a particular advantage of ZFP_T,
since the implementation of ZFP itself has been optimized for
the speed purpose. As observed in the figure, ZFP_T exhibits
a 20 �30 percent higher compression rate than SZ_T. In most
cases, SZ_P’s speed is about 1.2� 1:5� as fast as that of SZ_T
on compression, which is attributed to the performance gain
of our new table lookupmethod. As Fig. 11 demonstrates, the
decompression rate of SZ_P is also about 1.3� 3:0� as high as
that of SZ_T.

From Fig. 11, we can also observe that the decompression
performance gain of SZ_P over other lossy compressors dif-
fers with error bound, also depending on the datasets. Spe-
cifically, SZ_P’s decompression rate is equivalent to or even
higher than ZFP_T’s decompression rate in most of cases.
The key reason is that the exponential transformation and
Huffman decoding takes the major portion (more than 2

3) of
the total decompression time for SZ, as can be confirmed in
Fig. 2b, and SZ_P greatly reduces the time cost of these two
steps in decompression. Note that SZ_P has the highest
decompressing rate on the HACC dataset. This is because

ZOU ET AL.: PERFORMANCE OPTIMIZATION FOR RELATIVE-ERROR-BOUNDED LOSSY COMPRESSION ON SCIENTIFIC DATA 1675

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on March 15,2020 at 16:18:42 UTC from IEEE Xplore. Restrictions apply.

HACC has the lowest compression ratio and thus needs lon-
ger time for Huffman decoding, whereas SZ_P greatly accel-
erates Huffman decoding as discussed earlier.

We present breakdown of SZ_P time consumption in
Fig. 12. From the figure we can see that SZ_P eliminates the
time cost on logarithmic transformation in comparison with
SZ_T (see Fig. 2 in Section 3). This explains why SZ_P achieves
much higher compression and decompression rates than does

SZ_T. Fig. 12a also suggests that the time cost in building tables
of our precomputation-based mechanism occupies less than 5
percent of the total time. In addition, the constructed tables in
SZ_P are independent of the dataset size, which means this
overhead can be amortized and hence is negligible when com-
pressing large datasets. From Fig. 12b, we can see that SZ_P
also greatly reduces the time cost of Huffman decoding,
achieving amuch higher decompression rate (see Fig. 11).

5.3 Compression Ratio

Fig. 13 shows the compression ratio of ZFP_T, SZ_T, and
SZ_P with the six commonly-used pointwise error bounds
(0.1, 0.01, 0.001, ..., 0.000001) on the eight datasets. From this
figure, we can see that SZ_P has compression ratios similar
to those of SZ_T, which are often much higher (even up to
one order of magnitude in some cases) than those of ZFP_T.
We explain the key reasons as follows.

Unlike SZ_T whose interval size covered by a quantiza-
tion code is twice as large as the error bound (i.e., exactly 2"),
SZ_P has a smaller interval size of quantization code, which
is (2-uÞ", which thus slightly decreases the compression ratio.

Fig. 11. Decompression rate on given pointwise relative error bound.

Fig. 10. Compression rate on given point relative error bound.

Fig. 12. Breakdown of the compression time for SZ_P using 1E-2 point-
wise relative error bound on NYX dataset.

1676 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 7, JULY 2020

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on March 15,2020 at 16:18:42 UTC from IEEE Xplore. Restrictions apply.

The degree of decrease depends on the u value: using a
smaller uwould achieve a smaller decrease, but the table size
would be increased (because u determines the grid size). As
discussed in Section 4.3, we use an adaptive method in
choosing u for SZ_P to achieve a tradeoff between compres-
sion rate and compression ratio. SZ_P achieves a similar
compression ratio as SZ_T.

On the other hand, we note that SZ_P achieves a higher
compression ratio (about 1.20�) on small error bounds,
such as 1e-5 and 1e-6. As our prior work [20] indicated, in
order to avoid the round-off error caused by logarithmic
transformation for compression and its inverse transforma-
tion for decompression, a correction (i.e., a subtraction)
must be introduced for the error bound requirement. When
the error bound is relatively large, such as 0.1, the subtra-
hend is usually much smaller than the tolerable accuracy
loss; the correction on user-specified error bound would be
not obvious, and it does not affect the compression ratio.
However, in the case of setting extremely small error
bounds, the derived error bound value can also be very
small, so the round-off value could be at the same order of
magnitude as the error bound.

As a result, subtracting the round-off value from the
user-specified error bound can dramatically reduce the
error bound, causing an impact similar to the situation
with tight error bounds, leading to a lower compression
ratio. Our approach, SZ_P, does not have the preproccess-
ing stage (i.e., Xi are transformed to log(Xi)), and thus it
does not need to do the error bound correction. Therefore,
SZ_P can avoid the compression ratio decrease caused by
error bound correction, having it achieve better compres-
sion ratios than does SZ_T in low-error-bound cases. In
addition, we note that the compression and decompres-
sion rates of SZ_P and SZ_T with low error bounds are
nearly the same. The reason is that compared with SZ_P,
the tighter error bounds of SZ_T would lead to a lower
prediction accuracy (or a higher amount of unpredictable
data) in the point-to-point processing stage of SZ, such
that many zero bits (M[i]=0) would be generated, as
shown in Algorithm 2, resulting in less time spent for
Huffman coding.

5.4 Quality of Data From Decompression

In this subsection, we evaluate the data distortion of
SZ_P and compare it with that of other compressors.
Since they are evaluated in previous work SZ_T [20], we
also select dark_matter_density, velocity_x fields in
NYX, as well as a temperature field, to evaluate data
fidelity of each approach. Dark_matter_density is a typi-
cal use case for pointwise relative error in which a large
majority of values are distributed in [0, 1] and the rest
are in [1, 1.378E+4]. The velocity_x includes large values
with positive/negative signs indicating directions. Maxi-
mum pointwise relative error, RMSRE, MRE, and com-
pression ratio are evaluated. Model A (denoted by
SZ_P0) is also evaluated to demonstrate that it cannot
strictly respect the error bound.

Table 2 shows the data quality results of SZ_P, SZ_T,
SZ_P0, and ZFP_T with four most widely used pointwise
error bounds (0.1, 0.01, 0.001, 0.0001). SZ_P0 does not strictly
respect the error bound, achieving about 2 times the error
bound in some cases. It also does not perform well on MRE
and RMSRE. Overall, the data distortion of SZ_P0 is higher
than that of either SZ_T0 or SZ_P due to its design limitation
in error control.

On the other hand, SZ_P (using Model B), an advanced
version of SZ_P0 (using Model A), strictly respects the error
bound as SZ_T does and thus works better than SZ_P0 and
achieves data accuracy similar to that of SZ_T. Benefiting
from its smaller interval size of quantization code ((2� uÞu
in SZ_P and 2u in SZ_T), SZ_P achieves slightly better accu-
racy than does SZ_T, but it also suffers from a little reduc-
tion in the compression ratio for the same reason, causing
few more unpredictable data points. However, with these
slight differences, as Fig. 14 shows, in practice SZ_P and
SZ_T achieve almost the same decompressed data quality.
The data loss of SZ_P0 is about 2 times higher than that of
SZ_P, but for accuracy tolerant applications such as visuali-
zation, the SZ_P0 performs as well as SZ_P and SZ_T. In
comparison, the visualization effect of ZFP_T decompressed
data is obviously different from the original data; thus, the
fidelity loss caused by ZFP_T has an obvious impact at the
application level.

Fig. 13. Compression ratio on given pointwise relative error bound.

ZOU ET AL.: PERFORMANCE OPTIMIZATION FOR RELATIVE-ERROR-BOUNDED LOSSY COMPRESSION ON SCIENTIFIC DATA 1677

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on March 15,2020 at 16:18:42 UTC from IEEE Xplore. Restrictions apply.

Table 2 shows that with the same relative error bound,
ZFP_T achieves relatively high data qualities but low com-
pression ratios. The reason is that ZFP is difficult to control
the data quality accurately compared with the target user-
set error bound because of the overpreserved error estima-
tion design [20].

6 CONCLUSION

In this paper, we propose an effective approach to accelerate
the pointwise relative-error-bounded lossy compression of
SZ, leading to an optimal lossy compressor for users with
respect to both compression ratio and compression rate in
most cases. Our optimization strategy originates from an
important observation that the logarithmic transformation
and Huffman decoding are the performance bottlenecks in
SZ. We develop a precomputation-based mechanism, called
SZ_P, with the fast table-lookup methods for logarithmic
transformation and most of traversing operations in Huff-
man decoding. This solution can improve the compression
rate significantly in most cases. The key findings of our per-
formance evaluation with eight well-known application
datasets are as follows:

� Compression/decompression rate: SZ_P improves
the compression rate by about 40 percent and the
decompression rate by about 80 percent compared
with SZ_T. It has performance comparable to or
even higher than that of ZFP_T in most cases.

� Compression ratio: SZ_P and SZ_T have similar
compression ratios, which are significantly higher
(even up to one order of magnitude in some cases)
than that of ZFP_T on the tested datasets.

� Respecting user-required error control: Similar to
SZ_T, SZ_P can always respect user requirements on
pointwise relative error bounds. SZ_P also has the
same level of data distortion in RMSRE or MRE with
SZ_T.

We have integrated our codes into the official SZ package
(version 2.1) [33].

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their insightful comments and feedback on this work.
This research was partly supported by National Key R&D
Program of China under Grant No. 2018YFB1003800 and No.
2018YFB1003805, NSFC No. 61972441, No. 61832004, No.
61972112, No. 61672186, and No. 61872110, the Open Project
Program of Wuhan National Laboratory for Optoelectronics
No. 2018WNLOKF008, Key R&D Program for Guangdong
Province under Grant No.2019B010136001, the Shenzhen
Science and Technology Program under Grant No.
JCYJ20170413105929681 and No. JCYJ20170811161545863. The
material was supported by the U.S. Department of Energy,
Office of Science, under contract DE-AC02-06CH11357, and
also byNational Science Foundation under Grant No. 1619253.
Any opinions, findings, and conclusions or recommendations

TABLE 2
Pointwise Relative Error Bound on 3 Representative Fields in NYX

pwr Type
dark_matter_density Temperature Velocity_x

MAX E RMSRE MRE CR MAX E RMSRE MRE CR MAX E RMSRE MRE CR

1E-01 SZ_P0 1.52E-01 4.71E-02 2.65E-02 6.25 1.50E-01 8.26E-02 5.72E-02 23.48 1.52E-01 8.26E-02 5.54E-02 18.83
SZ_T 1.00E-01 3.14E-02 2.20E-02 6.19 1.00E-01 5.51E-02 4.76E-02 24.97 1.00E-01 5.50E-02 4.62E-02 19.85
SZ_P 9.99E-02 2.98E-02 2.08E-02 6.13 9.97E-02 5.32E-02 4.51E-02 25.97 9.97E-02 5.22E-02 4.50E-02 21.90
ZFP_T 5.07E-02 3.73E-03 2.84E-03 3.32 4.80E-02 3.49E-03 2.72E-03 18.40 5.17E-02 2.83E-03 2.13E-03 14.00

1E-02 SZ_P0 1.75E-02 5.56E-03 2.99E-03 3.85 1.70E-02 9.76E-03 6.44E-03 13.46 1.70E-02 9.74E-03 6.02E-03 14.37
SZ_T 1.00E-02 3.27E-03 2.30E-03 3.85 1.00E-02 5.73E-03 4.96E-03 14.06 1.00E-02 5.72E-03 4.75E-03 13.55
SZ_P 1.00E-02 3.07E-03 2.16E-03 3.80 9.96E-03 5.39E-03 4.66E-03 13.21 9.96E-03 5.37E-03 4.64E-03 13.09
ZFP_T 3.02E-03 2.33E-04 1.78E-04 2.35 3.33E-03 2.37E-04 1.83E-04 6.59 3.16E-03 2.34E-04 1.81E-04 5.21

1E-03 SZ_P0 1.96E-03 5.90E-04 3.25E-04 2.75 1.95E-03 9.89E-04 6.72E-04 6.75 1.95E-03 9.81E-04 6.68E-04 8.02
SZ_T 9.97E-04 3.27E-04 2.30E-04 2.74 9.98E-04 5.75E-04 4.97E-04 6.61 9.98E-04 5.74E-04 4.74E-04 7.63
SZ_P 1.00E-03 2.90E-04 2.03E-04 2.69 9.99E-04 5.09E-04 4.39E-04 6.30 9.99E-04 5.08E-04 4.38E-04 7.35
ZFP_T 3.90E-04 2.92E-05 2.22E-05 1.92 3.95E-04 2.96E-05 2.28E-05 4.08 3.97E-04 2.96E-05 2.28E-05 3.50

1E-04 SZ_P0 1.60E-04 4.89E-05 2.97E-05 2.12 1.60E-04 7.73E-05 6.57E-05 3.93 1.60E-04 7.72E-05 5.86E-05 4.39
SZ_T 9.80E-05 3.15E-05 2.81E-05 2.09 9.90E-05 5.65E-05 4.89E-05 3.92 9.90E-05 5.63E-05 4.86E-05 4.38
SZ_P 1.00E-04 2.58E-05 1.76E-05 2.05 1.00E-04 4.59E-05 3.90E-05 3.74 1.00E-04 4.60E-05 3.90E-05 4.15
ZFP_T 5.08E-05 3.65E-06 2.77E-06 1.63 4.99E-05 3.71E-06 2.86E-06 2.95 5.33E-05 3.73E-06 2.89E-06 2.63

Fig. 14. Visualization of decompressed dark_matter_density dataset (slice 200) at the compression ratio of 2.75.

1678 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 7, JULY 2020

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on March 15,2020 at 16:18:42 UTC from IEEE Xplore. Restrictions apply.

expressed in this article are those of the author(s) and do not
necessarily reflect the views of the funding agencies. The
preliminary version of this article appeared in the proceedings
of IEEE MSST 2019. X. Zou and T. Lu equally contributed to
thiswork.

REFERENCES

[1] T. Lu et al., “Canopus: A paradigm shift towards elastic extreme-
scale data analytics on HPC storage,” in Proc. IEEE Int. Conf.
Cluster Comput., 2017, pp. 58–69.

[2] D. Tao et al., “Significantly improving lossy compression for scien-
tific data sets based on multidimensional prediction and error-
controlled quantization,” in Proc. IEEE Int. Parallel Distrib. Process.
Symp., 2017, pp. 1129–1139.

[3] W. Austin, G. Ballard, and T. G. Kolda, “Parallel tensor compres-
sion for large-scale scientific data,” in Proc. IEEE Int. Parallel
Distrib. Process. Symp., 2016, pp. 912–922.

[4] I. Foster, “Computing just what you need: Online data analysis
and reduction at extreme scales,” in Proc. Eur. Conf. Parallel
Process., 2017, pp 3–19.

[5] D. Ghoshal and L. Ramakrishnan, “MaDaTS: Managing data on
tiered storage for scientific workflows,” in Proc. HPDC, 2017,
pp. 41–52.

[6] B. Dong et al., “ArrayUDF: User-defined scientific data analysis on
arrays,” in Proc. 26th Int. Symp. High-Perform. Parallel Distrib.
Comput., 2017, pp. 53–64.

[7] ASCAC Subcommittee, “Top ten exascale research challenges,”
2014. [Online]. Available: https://science.energy.gov/�/media/
ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf

[8] W. Xia et al., “A comprehensive study of the past, present, and
future of data deduplication,” Proc. IEEE, vol. 104, no. 9,
pp.1681–1710, Sep. 2016.

[9] D. Meister et al., “A study on data deduplication in HPC storage
systems,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2012, pp. 1–11.

[10] M. Burtscher and P. Ratanaworabhan, “FPC: A high-speed com-
pressor for double-precision floating-point data,” IEEE Trans.
Comput., vol. 58, no. 1, pp. 18–31, Jan. 2009.

[11] N. Sasaki et al., “Exploration of lossy compression for application-
level checkpoint/restart,” in Proc. IEEE Int. Parallel Distrib. Process.
Symp., 2015, pp. 914–922.

[12] T. Lu et al., “Understanding and modeling lossy compression
schemes on HPC scientific data,” in Proc. IEEE Int. Parallel Distrib.
Process. Symp., 2018, pp. 348–357.

[13] J. Kunkel et al., “Toward decoupling the selection of compression
algorithms from quality constraints,” in Proc. Int. Conf. High
Perform. Comput., 2017, pp. 3–14.

[14] D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Optimizing
lossy compression rate-distortion from automatic online selection
between SZ and ZFP,” IEEE Trans. Parallel Distrib. Syst., vol. 30,
no. 8, pp. 1857–1871, Aug. 2019.

[15] A. Poppick et al., “A statistical analysis of compressed climate
model data,” in Proc. DRBSD, 2018, pp. 1–6.

[16] Q. Liu, “Hello ADIOS: The challenges and lessons of developing
leadership class I/O frameworks,” Concurrency Comput.: Practice
Experience, vol. 26, no. 7, pp. 1453–1473, 2014.

[17] T. E. Fornek, “Advanced photon source upgrade project prelimi-
nary design report,” 2017. [Online]. Available: https://www.aps.
anl.gov/files/download/Aps-Upgrade/PDR.pdf

[18] G. Marcus et al., “High fidelity start-to-end numerical particle sim-
ulations and performance studies for LCLS-II,” in Proc. 37th Int.
Free Electron Laser Conf., 2015, pp. 342–346.

[19] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Trans. Vis. Comput. Graph., vol. 20, no. 12, pp. 2674–2683, Dec 2014.

[20] X. Liang et al., “An efficient transformation scheme for lossy data
compression with point-wise relative error bound,” in Proc. IEEE
Int. Conf. Cluster Comput., 2018, pp. 179–189.

[21] S. Lakshminarasimhan et al., “Compressing the incompressible
with ISABELA: In-situ reduction of spatio-temporal data,” in
Proc. Eur. Conf. Parallel Process., 2011, pp 366–379.

[22] S. Di and F. Cappello, “Fast error-bounded lossy HPC data com-
pression with SZ,” in Proc. IEEE Int. Parallel Distrib. Process. Symp.,
2016, pp. 730–739.

[23] J. M. Shapiro, “Embedded image coding using zerotrees of wave-
let coefficients,” IEEE Trans. Signal Process., vol. 41, no. 12,
pp. 3445–3462, Dec. 1993.

[24] S. Wold, “Spline functions in data analysis,” Technometrics, vol. 16,
no. 1, pp. 1–11, 1974.

[25] X. He and P. Shi, “Monotone B-spline smoothing,” J. Amer. Statist.
Assoc., vol. 93, no. 442, pp. 643–650, 1998.

[26] X. Liang et al., “Error-controlled lossy compression optimized for
high compression ratios of scientific datasets,” in Proc. IEEE Int.
Conf. Big Data, 2018, pp. 438–447.

[27] S. Di, D. Tao, X. Liang, and F. Cappello, “Efficient lossy compression
for scientific data based on pointwise relative error bound,” IEEE
Trans. Parallel Distrib. Syst., vol. 30, no. 2, pp. 331–345, Feb. 2019.

[28] J.-l. Gailly, “gzip: The data compression program,” 2016. [Online].
Available: https://www.gnu.org/software/gzip/manual/gzip.pdf

[29] “Zstandard - fast real-time compression algorithm,” 2016.
[Online]. Available: https://github.com/facebook/zstd

[30] D. Goldberg, “What every computer scientist should know about
floating-point arithmetic,” ACM Comput. Surveys, vol. 23, no. 1,
pp. 5–48, 1991.

[31] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Trans. Vis. Comput. Graph., vol. 20, no. 12, pp. 2674–2683, Dec. 2014.

[32] “Sdrbench,” [Online]. Available: https://sdrbench.github.io/,
[Online].

[33] “SZ,” [Online]. Available: https://github.com/disheng222/SZ,
[Online].

Xiangyu Zou is currently working toward the PhD
degree majoring in computer science with the
Harbin Institute of Technology, Shenzhen, China.
His research interests include data deduplication,
lossy compression and storage systems. He has
published several papers in major journals and
conferences including Future Generation Com-
puter Systems, MSST, and HPCC.

Tao Lu received the BS and MS degrees in com-
puter science from the HuazhongUniversity of Sci-
ence and Technology, China, in 2009 and 2012,
respectively, and the PhD degree in electrical
and computer engineering from Virginia Common-
wealth University, in 2016. He is currently a senior
software engineer with Marvell Semiconductor
Inc. His research interests include computer
systems, virtualization and cloud computing, high-
performance computing, and computer system
security. He has published several papers in major
international conferences including INFOCOM,
IPDPS, andMASCOTS.

Wen Xia received the PhD degree in computer
science from the Huazhong University of Science
and Technology (HUST), Wuhan, China, in 2014.
He is currently an associate professor with the
School of Computer Science and Technology at
Harbin Institute of Technology, Shenzhen. His
research interests include data reduction, storage
systems, and cloud storage. He has published
more than 40 papers in major journals and con-
ferences including the IEEE Transactions on Par-
allel and Distributed Systems, IEEE Transactions

on Computers, Proceedings of the IEEE, USENIX ATC, FAST, HotStor-
age, MSST, DCC, IPDPS, INFOCOM, ICDCS, etc.

ZOU ET AL.: PERFORMANCE OPTIMIZATION FOR RELATIVE-ERROR-BOUNDED LOSSY COMPRESSION ON SCIENTIFIC DATA 1679

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on March 15,2020 at 16:18:42 UTC from IEEE Xplore. Restrictions apply.

https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
https://www.aps.anl.gov/files/download/Aps-Upgrade/PDR.pdf
https://www.aps.anl.gov/files/download/Aps-Upgrade/PDR.pdf
https://www.gnu.org/software/gzip/manual/gzip.pdf
https://github.com/facebook/zstd
https://sdrbench.github.io/, [Online].
https://sdrbench.github.io/, [Online].
https://github.com/disheng222/SZ, [Online].
https://github.com/disheng222/SZ, [Online].

XuanWang received the PhD degree in computer
sciences from the Harbin Institute of Technology,
Harbin, China, in 1997. He is currently a professor
and dean of the School of Computer Science and
Technologywith theHarbin Institute of Technology,
Shenzhen, China. His research interests include
artificial intelligence, computer network security,
computational linguistics, and computer vision. He
has published more than 120 academic papers in
major journals and conferences.

Weizhe Zhang (Senior Member, IEEE) is currently
a professor with the School of Computer Science
and Technology at Harbin Institute of Technology,
China. His research interests include parallel com-
puting, distributed computing, cloud and grid com-
puting, and computer networks. He has published
more than 100 papers inmajor journals and confer-
ences including IEEE Trans. onComputers, Future
Generation Comp. Syst., Journal of Supercomput-
ing, IPDPS, Cluster, and CIKM.

Haijun Zhang received the PhD degree from the
Department of Electronic Engineering, City Univer-
sity of Hong Kong, in 2010. He is currently a profes-
sor of computer science with the Harbin Institute of
Technology, Shenzhen,China.His current research
interests include multimedia data mining, machine
learning, and computational advertising. He is
currently an associate editor of Neurocomputing,
Neural Computing and Applications, and Pattern
Analysis and Applications. He has published more
than 50 academic papers inmajor journals and con-
ference proceedings.

Sheng Di (Senior Member, IEEE) received the
PhD degree from the University of Hong Kong, in
2011. He is currently an assistant computer scien-
tist with Argonne National Laboratory. His research
interests include resilience on high-performance
computing (such as silent data corruption, optimiza-
tion checkpoint model, and in situ data com-
pression) and broad research topics on cloud
computing (including optimization of resource allo-
cation, cloud network topology, and prediction of
cloud workload/hostload). He is currently working

on multiple HPC projects, such as detection of silent data corruption, char-
acterization of failures and faults for HPC systems, and optimization of mul-
tilevel checkpoint models.

Dingwen Tao received the bachelor’s degree in
mathematics from the University of Science and
Technology of China, in 2013, and the PhD
degree in computer science from the University of
California, Riverside, in 2018. He is currently an
assistant professor with the Department of Com-
puter Science at the University of Alabama.
Before joining the university as faculty, he interned
at PacificNorthwest National Laboratory, Argonne
National Laboratory, and Brookhaven National
Laboratory. His research interests include high-

performance computing, parallel and distributed systems, and big data
analytics. Specifically, His research interests include scientific data
reduction and management, resilience and fault tolerance, and large-
scale machine learning and deep learning. He has published more than
30 peer-reviewed high-quality papers in prestigious HPC and Big Data
conferences and journals, such as ACM ICS, HPDC, PPoPP, SC, IEEE
BigData, CLUSTER, IPDPS, MSST, TPDS, IJHPCA, including two best
paper awards.

Franck Cappello (Fellow, IEEE) is currently a
program manager and a senior computer scien-
tist with Argonne National Laboratory. From
2009, he held a joint position at INRIA and the
University of Illinois at Urbana-Champaign, where
he initiated and codirected the INRIAIllinois Joint
Laboratory on Petascale Computing. Until 2008,
he led a team at INRIA, where he initiated the
XtremWeb (Desktop Grid) and MPICH-V (fault-
tolerant MPI) projects. From 2003 to 2008, he ini-
tiated and directed the Grid5000 project, a nation-

wide computer science platform for research in large-scale distributed
systems. He has authored more than 200 papers in the domains of fault
tolerance, high-performance computing, desktop Grids, and Grids and
contributed to more than 70 program committees. He is an editorial
board member of the International Journal on Grid Computing, Journal
of Grid and Utility Computing, and Journal of Cluster Computing. He is
the recipient of the 2018 IEEE TCPP Outstanding Service Award.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1680 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 7, JULY 2020

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on March 15,2020 at 16:18:42 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

