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Design of a Quantization-based DNN Delta
Compression Framework for Model Snapshots

and Federated Learning
Haoyu Jin, Donglei Wu, Shuyu Zhang, Xiangyu Zou, Sian Jin, Dingwen Tao, Qing Liao and Wen Xia

Abstract—Deep neural networks (DNNs) have achieved remarkable success in many fields. However, large-scale DNNs also bring
storage costs when storing snapshots for preventing clusters’ frequent failures or incur significant communication overheads when
transmitting DNNs in the Federated Learning (FL). Recently, several approaches, such as Delta-DNN and LC-Checkpoint, aim to
reduce the size of DNNs’ snapshot storage by compressing the difference between two neighboring versions of the DNNs (a.k.a.,
delta). However, we observe that existing approaches, applying traditional global lossy quantization techniques in DNN’s delta
compression, can not fully exploit the data similarity since the parameters’ value ranges vary among layers. To fully explore the
similarity of the delta model and improve the compression ratio, we propose a quantization-based local-sensitive delta compression
approach, named QD-Compressor, by developing a layer-based local-sensitive quantization scheme and error feedback mechanism.
Specifically, the quantizers and number of quantization bits are adaptive among layers based on the value distribution and weighted
entropy of the delta’s parameters. To avoid quantization error degrading the performance of the restored model, an alternative error
feedback mechanism is designed to dynamically correct the quantization error during the training process. Experiments on multiple
popular DNNs and datasets show that QD-Compressor obtains a higher 7×-40× compression ratio in the model snapshot
compression scenario than the state-of-the-art approaches. Additionally, QD-Compressor achieves an 11×-15× compression ratio to
the residual model of the Federated Learning compression scenario.

Index Terms—neural networks, quantization, delta compression, snapshot, distribution learning.

✦

1 INTRODUCTION

O Ver the past decades, Deep Neural Networks (DNNs)
have achieved significant improvements in a wide

spectrum of application domains, such as image classi-
fication [1], [2], [3], object detection, recognition [4], [5],
semantic segmentation [6], face tracking and alignment [7],
[8], etc. As these tasks become more and more challenging,
the network becomes more and more complex by increasing
the depth and width, which results in a large number of
parameters and high computational complexity for better
performance. For example, AlexNet [1] has 61 million pa-
rameters that need 249 MB of memory and costs 1.5 billion
operations to classify one image, VGG-19 [9] even has 144
million parameters.

With the development of artificial intelligence research,
the intermediate models (e.g., the snapshots and the residual
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version, we further improve the compression ratio (about 40% higher on
average) by developing a Weighted Entropy-based strategy that assigns
different layers to various number of quantization bits. We also verify the
effectiveness of our method in the two realistic applications: snapshot recovery
from the training crash and residual model compression in federated learning.
Moreover, we get additional measurement results from our analysis and
experiments.

model) of the under-training neural networks are required
to store the local. For example, (1) more and more studies
employ model snapshots for scientific analysis [10], [11]
and ensemble learning [12], [13] to advance the model
training performance. (2) In the resource-constrained Feder-
ated Learning clients (e.g., IoT devices, mobile phones, and
wearable devices), the Top-K sparsification-based Federated
Learning compression is efficient in reducing communi-
cation costs [14], [15]. Generally, the dropped parameters
generated by the Top-K sparsification (i.e., residual model)
are required to be stashed locally to keep the model accu-
racy. With the size of DNNs is increasingly larger, however,
the storage challenge of these intermediate results becomes
more severe as there is the same size of the full neural
networks.

To facilitate the applications of DNNs, neural network
model compression have become a popular topic in the re-
search and industry communities. There are already several
techniques aim at reducing the size of a single neural net-
work, including pruning [16], knowledge distillation [17],
and quantization [18], [19], [20]. Recently, the similarity
in the neighboring epochs of the trained network has been
utilized to advance the Delta compression performance [21],
[22]. These methods first convert the global similarity to com-
pressibility by imposing the global differences quantization
techniques on the floating delta model and then achieve
a considerable compression ratio on this quantized delta.
However, we observe three limitations of these global
differences in quantization-based methods in this paper:
(1) The global mapping of the floating-point parameters to
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integers version with the same quantizer (i.e., the global
quantization) can not fully exploit the data similarity be-
tween them for delta compression. (2) Quantizing the entire
network with the same number of bits (a.k.a., bit width)
ignores the differences of parameter distributions among
layers. (3) Additionally, the post-processing operations (e.g.,
error-bound selection and re-training) are required to main-
tain the accuracy of the decompressed model, which means
additional computation and time cost.

To further prove the existence of the above problems,
we verify multiple popular DNNs and observe that (1)
parameters in a layer usually are near zero, but the value
range of parameters is not always similar. Therefore, the
naive quantization with a global quantizer to the Delta
model will limit the overall compression ratio since the
similarity cannot be fully exploited. (2) The quantization
errors produced in the lossy delta compression will degrade
the test accuracy of the restored model. To restore the target
accuracy for the restored model, additional pre or post-
processing is required, which incurs additional overhead.

Motivated by the above observations, we propose a
novel quantization-based delta compression framework
QD-Compressor involves two core schemes, Local-Sensitive
Quantization and Error Feedback Mechanism, which signifi-
cantly improves the communication ratio without degrad-
ing the model quality. Broadly speaking, instead of first
calculating the delta data (i.e., the difference) on the floating-
point parameters and then globally quantizing the floating-
point delta data of DNNs, QD-Compressor’s local-sensitive
quantization scheme significantly improves compressibility
of the delta data by first quantizes DNNs and then calculates
delta data upon the quantized integer networks. Addi-
tionally, local-sensitive quantization sets the (1) quantizers
and (2) bit width adaptive to each layer according to the
parameter’s value ranges and weighted entropy (not glob-
ally). In this way, the local-sensitive quantization scheme
achieves a higher compression ratio by the layer-based
adaptive compression mechanism, which will be detailed in
Section 3. Further, the error feedback mechanism can correct
the quantization errors in the training process, which helps
eliminate the accuracy loss of the restored model.

In summary, QD-Compressor significantly improves
the compression ratio for the delta model by employing
a weighted entropy-based local-sensitive quantization
scheme. Meanwhile, with the support of the error feedback
mechanism, the model accuracy of the restored model can
be well maintained in QD-compressor.

Generally, contributions of this paper are four-folds:

• We observe that: (1) The value ranges and the
weighted entropy of parameters vary among layers,
and parameters in the same layers are very close.
(2) The traditional global quantization schemes (e.g.,
Delta-DNN) quantize each layer using a unified
quantizer and bit number for each layer but cannot
fully exploit the similarity between neighboring ver-
sions of a neural network. (3) Existing quantization
approaches may lead to accuracy loss on DNNs,
thereby incurring additional costs to fine-tune the
restored model.

• We propose a novel delta compression framework

called QD-Compressor. It develops a novel weighted
entropy-based local-sensitive quantization to adap-
tively vary Quantizers and Bit Number for different
layers in DNNs. It also calculate the high compress-
ible delta after quantization to achieve a significant
compression ratio. Further, an Error Feedback mech-
anism is designed by introducing the quantization
error into the training process to reduce the accuracy
loss of the restored model.

• We implement our proposed QD-Compressor in two
realistic scenarios: (1) Top-k sparsification Federated
Learning compression and (2) model snapshots re-
covery for the model training crash. Evaluations
on six popular DNNs suggest that QD-Compressor
achieves a 7×-40× higher compression ratio while
well maintaining the model accuracy, compared with
the state-of-the-art compressors (i.e., SZ, Zstd, LC-
Checkpoint, and Delta-DNN).

The rest of the paper is organized as follows. Sec-
tion 2 presents the background and related works of this
paper. Section 3 introduces the observations and motiva-
tions. Section 4 describes the design methodologies of QD-
Compressor framework in detail. Section 6 discusses the
evaluation results of QD-Compressor on six well-known
DNNs, compared with state-of-the-art compressors and
shows the evaluation results of QD-Compressor in the sce-
narios of distribution learning compression and snapshot
recovery. In Section 7, we conclude this paper.

2 BACKGROUND AND RELATED WORKS

In this section, we present the necessary background of
traditional data compression techniques and model com-
pression research. Then, we introduce typical application
scenarios for lossy delta compression in neural networks.

2.1 Data Compression Techniques
Data compression, aiming at reducing data scale, has been a
traditional technology for decades. Generally, data compres-
sion techniques can be categorized into three classes: general
compression, delta compression, and data deduplication.

General compression techniques [23], [24], [25] focus
on file-level workload and compresses data at byte level by
entropy coding [26], dictionary coding [27], and other tech-
niques. When facing large-scale storage, general compres-
sion is not feasible because its speed is relatively slow, and it
only can eliminate redundancies in limited windows [28]. To
address this challenge, data deduplication [29] is proposed,
which splits data into chunks, and deduplicates identical
ones. Data deduplication achieves a much higher speed and
can detect redundancies in a large system, but it is a coarse-
grained approach and can not fully exploit compressibility
within workloads. Therefore, delta compression [30], [31]
is designed to bridge the gap between fine-grained general
compression and course-grained data compression, which
picks up not identical but similar chunks and eliminates
redundancies between them. In summary, traditional com-
pression, delta compression, and data deduplication are all
lossless approaches.

Besides, in HPC (high-performance computing) fields,
there is usually an amount of floating-point data produced,
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which brings challenges to the storage system. For floating-
point data produced by HPC, the storage way of floating-
point numbers makes it difficult to find two storage blocks
with exactly the same storage format. Floating-point data
usually have a large information entropy and are hard to be
compressed by lossless approaches. Thus, lossy compres-
sion [32], [33], [34], [35] techniques are proposed, which
compresses floating-point data with a user-specific error
bound. Recently, an algorithm for HPC data compression
called SZ [33], [34] proposed to improve the compression
ratio of floating-point numbers. SZ takes the logarithm of
the data to convert the control range of the relative error
into the control range of the absolute error, and then com-
presses the data by using a designed predictor to represent
subsequent values. The compression ratio of SZ is not only
dependent on the distribution characteristics of the data but
also related to the performance of the predictor. There will
be errors in decompressed data in these lossy compression
approaches, but they also promise the errors will always be
smaller than the predefined error bound.

2.2 Neural Network Compression Techniques

Nowadays, there are more and more complicated tasks
that can be well solved by neural networks which caused
the super development of the neural network. But, neural
networks become deeper and wider with the more difficult
task which needs not only high computational abilities but
also large storage space. As a result, model compression
techniques are necessary to make better use of those massive
networks. Scaling up the size of Deep Neural Networks
(DNNs) (e.g., width, depth, etc.) is known to effectively
improve model accuracy. But large model size impedes
training on resource-constrained devices, thus typical DNNs
compression methods, pruning and quantization gain in-
creased attention in recent years.

Pruning is to remove the ’unimportant’ parameters
of DNNs with specific rules, which effectively decreases
the complexity of the network and avoids the over-
fitting issue. Pruning-based methods consist of two cate-
gories: Non-structured pruning and structured pruning. non-
structured means the arbitrary weight in the network can
be pruned [16]. Structured pruning considers the matrix
format of parameters with indices and prune the whole
filter or channel [36]. However, the problem they all face
is how to determine the importance of parameters or filters
to prune. Additionally, pruning will change the structure of
the network. Liu et al. [37] point out that the structure of the
network after pruning is more important than the weight,
which means that pruning is helpful for network structure
to search to design a new model.

Quantization technique is to map the parameters of the
network from the floating-point numbers into lower bit-
depth representations. Compared with the pruning method,
the quantization technique assumes that it does not need so
many bits to store the parameter of a network and design
a new representation with low bit-depth to save the storage
space of a parameter.

Considering the trade-off between compression ratio
and accuracy, typical quantization methods are 8-bit quanti-
zation and binarized. Generally, 8-bit quantization converts

32-bit floating-point number to 8-bit integer. Meanwhile, the
float-arithmetic calculation is replaced with the 8-bit integer-
arithmetic calculation. Jacob et al. [18] use linear mapping
to convert the floating-point number to 8-bit integer and
training with simulated quantization to minus the accuracy
loss of quantization. Compared to the 8-bit quantization,
Binarized [19], [20], [38] can be regarded as a special extreme
quantization method that only uses 1 bit to represent the
weight or activation. The key point of binary quantization is
to use bit operations to replace multiply and add operations.

Recently, Delta-DNN [21] notices the similarity between
neighboring versions of a neural network, compresses
two neural networks by calculating their differences, and
achieves a 2×-10× higher compression ratio than the tra-
ditional model compression approaches. Specifically, Delta-
DNN first calculates the differences (i.e., the delta data) of
corresponding parameters and then applies a global quan-
tization scheme on the delta data to expose more compress-
ibility. Finally, the quantized delta data will be compressed
by lossless compression techniques.

3 OBSERVATION AND MOTIVATION

As introduced earlier, the similarity between versions of a
neural network has been observed and utilized for saving
resources in storage space and internet traffic [21]. Besides,
since floating-point parameters are hard to be compressed,
quantization is a widely used lossy compression tech-
nique [33], [34], [35], which converts the floating-point data
with little compressibility to the integer data with higher
compressibility. Recently, approaches [21], [22] have applied
the global quantization technique to the floating-point dif-
ferences of two neighboring epochs of neural networks (i.e.,
delta data), effectively improving the compression ratio than
the traditional floating-point data compression techniques.

Problems of the quantization strategy in existing meth-
ods: Generally, determining the quantizer under a large
value leads to a high compression ratio but brings seri-
ous quantization errors for small data, while fine-grained
quantization achieves opposite results. Due to the value
ranges of corresponding parameters usually being large and
distributed randomly, the widely used global quantization
(i.e., using the same quantizer and bit width for the entire
model) cannot fully exploit the similarity for compression. It
is hard to select one suitable global quantization granularity
and quantization level (i.e., quantizer and bit width).

Besides, few existing approaches consider repairing the
quantization errors during the training process, which leads
to a degraded model accuracy in the restored model [21],
[39]. Additional time and computational overhead are in-
curred to recover the target accuracy for the restored model.

To address these challenges, we study the parameter
characteristics of DNNs and learn some observations:

1) Figure 1 (a) shows that the parameter distribution is
basically symmetrical about zero, and the variance of
parameters is small. That is to say, the overall value
range (i.e., magnitude) of the parameters in the neu-
ral network is relatively small. However, since the
value range of whole parameters is relatively large
(i.e., long-tailed), the use of floating-point values to
express the value range of parameters is very large.
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(a) Parameter distribution of con-
volution layers in VGG-16

(b) Parameter range of VGG-16 (c) Parameter range of MobileNet (d) Parameter range of GoogleNet

Fig. 1. Distribution and range of parameters among convolution layers in neural networks.

Using a representation with a big value range to
represent a narrow value range will produce infor-
mation redundancy.

2) As the examples shown in Figure 1 (b) (c) (d), the
value ranges of parameters in different layers vary
greatly. The whole value range of DNN’s parameters
is very large compared with the small value range
in some layers (near 20×). Directly calculating the
difference (i.e., delta data) on the original floating-
point version of neighboring networks (as Delta-
DNN does) not only make it hard to determine an
appropriate quantizer for all parameters but also
limits the compressibility of the delta data.

3) The quantization errors produced in the compression
of each version of the network will degrade the infer-
ence accuracy of the restored model. Existing works
compensate for the quantization error by designing
the pre- or post-processing operation (e.g., Error-
bound Selection, fine-tuning) [21], [39]. However,
additional operations for accuracy compensation al-
ways lead to more time and computation overhead.

According to above observations, we get two important
motivations for this work:

Motivation 1: Observation 1 and Observation 2 allow
us to explore a better quantization strategy for a high
compression ratio. More specifically, the parameters’ value
range is very different among layers, while the value range
of delta data is also very large. Globally quantizing the
floating-point difference (i.e., delta data) will obtain a lim-
ited compression ratio since it needs to maintain the model
inference accuracy meanwhile. To solve the above dilemma
and achieve better compression performance, we are moti-
vated to develop a more efficient layer-based local-sensitive
quantization scheme by allocating different bit width and
quantizer for each layer.

Motivation 2: Observation 3 suggests that additional
operations are always required to reduce the impact of
model quantization errors and maintain model accuracy.
Delta-DNN uses an additional post-processing operation
called error-bound selection to keep decompressed model’s
inference accuracy, which necessitates additional calculation
and time. LC-Checkpoint recovers the model accuracy by
incurring fine-tuning process, which also means more time
and computation overhead. To this end, we combine the
compression process and training process by introducing an
error feedback scheme to dynamically correct the accuracy
loss in each training round. To do so, the restored model
has less accuracy loss as the quantization errors will be fed
back into the training process.

Based on the above observations and motivations,
we propose a novel quantization-based delta compression
framework, QD-Compressor, to improve the compression
ratio for DNNs while well maintaining the model accuracy.
QD-Compressor uses the weighted entropy based local-
sensitive quantization to improve the compression ratio and
uses the error feedback mechanism to keep the accuracy of
the restored model.

4 DESIGN METHODOLOGIES

In this section, we describe QD-Compressor design in detail,
including quantizing the neural network to better exploit
the similarity of the neighboring neural networks, and then
calculating the lossless delta data based on the quantized
version of network, finally encoding the delta data with
lossless encoding schemes.

4.1 Overview of QD-Compressor Framework

The general workflow of QD-Compressor framework is
shown in Figure 2. To compress a neural network (called
target network), we need a reference neural network, which
is usually the former version of the target network in train-
ing. QD-Compressor will calculate and compress the delta
data of two networks for efficient space savings by using
the weighted entropy-based local sensitive quantization
algorithm. More specifically, QD-Compressor consists of
four key steps: selection of quantization bit width, network
quantizing, delta quantizing, and delta compressing.

1) Bit width selecting is to allocate different quantization
bit width among layers according to the weighted
entropy for achieving greater and more flexible com-
pression. Most network layers might be quantized
with low bit width, with just a few critical layers
having more bit width.

2) Network quantizing is to quantize the floating-point
parameters of the neural network for each layer by
dynamically feeding the quantization error into the
training process by an error feedback mechanism.

3) Delta calculating is to calculate the delta data of the
quantized parameter between the neighboring neu-
ral networks (e.g., target and reference networks). It
converts the similarity in values into compressibility
in the storage of delta data which will be much more
compressible than directly compressing the floating-
point parameters in the neural networks.

4) Delta compressing is to further reduce the delta data
size by using lossless compressors.
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the number of weights in the tth interval of ith layer. WE denotes the
weighted entropy. Ei is the value of the weighted entropy of the ith layer.
bi is the number of bits quantized at the ith layer. Suppose E0 and E1

are the minimum and maximum weighted entropy and assigned with
the minimum and maximum quantization bits, i.e., b0 is the minimum bit
width and b1 is the maximum bit width, respectively.

In the remainder of this section, we will discuss these
four steps in detail to show how QD-Compressor effi-
ciently compresses the floating-point parameters in neu-
ral networks. Simultaneously, we will discuss how QD-
Compressor might help decrease storage overhead during
the Federated Learning training process.

4.2 Selection of Quantization Bit Width
As introduced in Section 3, due to the parameters dis-
tribution differs among layers, we are driven to quantize
various layers using different bit width (i.e., the number of
bits used for mapping the floating-points to the integers)
for achieving a greater and more flexible compression per-
formance. Referred to the state of the arts [40], [41], [42],
Weighted Entropy is derived from the physics notion of
entropy and is designed to take the importance of data into
account [41]. In this paper, We employ the weighted entropy

as the quantitative criterion to measure the significance of
the layer’s weight and decide the quantization bit width for
different layers.

As shown in the Figure 3, assuming that the ith layer has
weight matrix Wi with ni elements wi

j , j ∈1, 2, ..., ni. The
components of Wi can be considered as independent and
identically distributed independently distributed random
variables pi [42]. The weighted entropy of each layer can
be approximately calculated as: (1) we uniformly divide
the range of weights [fmin, fmax] into k bins and count
the number of weights falling in each interval, where k
is a predefined hyper parameter, fmin and fmax are the
minimum and maximum values of weights in this layer,
respectively. (2) The frequency is regarded as the approxi-
mated probability pi of t th bin center, t ∈1, 2, ..., k. (3) The
entropy Ei of i-th layer’s weights could be calculated as:

Ei = −
k∑

t=1

pitlog(p
i
t) with pit =

mi
t

ni
(1)

where mi
t is the number of weights in the t th bin. After

getting the significance values for all layers, they are sorted
in order of increasing magnitude. Due to more bit width
carry more information, we set long bit width for layers with
higher entropy to preserve the representational capability of
original model and set less bit width to those with lower
entropy (The detailed descriptions about how to select bmax

and bmin are provided in the Subsection 6.2.1). Theoretically,
the bit width bi of the i-th layer can be determined to
maintain the same amount of entropy loss to the maximum
entropy layer as:

bi = bmin + round((bmax − bmin)× (
Ei − Emin

Emax − Emin
)) (2)

4.3 Network Quantizing
According to subsection 4.2, the bit width Bi of each layer i
has been determined, we describe the detailed quantization
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scheme in this subsection.
To better utilize the similarity of floating-point parame-

ters whose values are close and avoid mantissa uncertainty,
we conduct the linear quantization to map the original
floating-point parameter f in floating-point set F to quan-
tized integer value q in integer set Q. More specifically, the
quantization operation for a set is mapping the value range
[fmin, fmax] of the floating-point set F to quantized value
range [Qmin, Qmax] of integer set Q. Qmax and Qmin are
the maximum and minimum values that can be represented
after quantization (e.g., Qmin = 0, Qmax = 255 for Uint8
quantization). To this end, we use S to scale the size of the
value range and then use Z to offset:

q = round(
f

S
+ Z) (3)

where the constant S is positive real number for scaling
the value range, the constant Z is the offset for translating
the value range [ fmin

S , fmax

S ] to [Qmin, Qmax], which can be
calculated as below:

S =
fmax − fmin

Qmax −Qmin
(4)

Z = Qmin − fmin

S
(5)

The key process of quantization is to find the quantiza-
tion constants of the floating-point set F and the quantized
value range [Qmin, Qmax] of integer set Q. Considering stor-
age efficiency, the quantization level we set in quantization
is 2B (B is the bit width introduced in subsection 4.2). It
corresponds to a quantization value range [0, 2B ].

As discussed in Section 3, the value range differs among
layers (as shown in Figure 1). If we regard all parame-
ters in the DNN as a floating-point set to determine the
global quantization constants, the quantization error will
be large and degrade the accuracy of the network. Thus,
we calculate the quantization constants S and Z for each
layer, respectively. More importantly, different quantization
constants of each layer facilitate generating more redundant
data in the next delta calculating step since the floating-
point difference of neighboring versions of the network with
different scales may be quantized to the same integer delta
data. To prove above conjectured explanation, we further
compare the entropy of the quantized data for these two
quantization schemes, and the result is shown in Figure 4,
which illustrates that the local-sensitive quantization can
generate low entropy data and thus higher compressibility
can be achieved by local-sensitive quantization.

Further more, we also study the order of quantization
and delta calculation to explore a higher compressibility.
Specifically, we evaluate the compression ratios with dif-
ferent order of quantization and delta calculating in mul-
tiple DNNs. Table 1 suggests that ”Quantization before
Calculating Delta” always achieves a higher compression
ratio than ”Quantization after Calculating Delta”. That is
because similar floating-point between two neighboring
model might be quantized to the same integers, leading
to more zeros generated. Thus QD-Compressor perform
performs quantization ahead of calculating delta.

Algorithm 1: Network Quantizing with Error Feed-
back Mechanism

Input: Current network: M ; quantized network: Q;
restored network M∗; layer in network M : L;
layer in network Q which corresponding to L: LQ;
quantize constant: S, Z; quantization bit width: B;
quantization bit width for the Lth layer: bL;
loss of inference: loss; gradient: g;
learning rate: lr;

Output: next epoch network: Mnext

for L in M do
bL ← select(B); //Assign bit width for each layer

for L in M do
calculate SL and ZL in F ; //according to bL
LQ ← quantize (L,SL,ZL)

M∗ ← restore(Q)
use network M∗ to calculate loss and gradient g;
Mnext = M − lr ∗ g; //update on the original network M
return Mnext;

4.4 Network Updating

After above quantization algorithm, the network will con-
tinue to be trained on the datasets. However, there is in-
evitable information loss incurred by the lossy quantization,
which degrades the model quality. Thus an error feedback
mechanism is proposed to solve this problem. More specif-
ically, instead of directly training on the full precise model
M , the error feedback mechanism (1) restores the lossy ver-
sion M∗ from quantized delta; (2) trains on the lossy version
M∗ and obtains the gradient g; (3) updates the parameters
on M (note that rather than M∗) using the gradient g; In
doing so, the quantization error in M∗ could be introduced
into the normal training process in M . The advantage is
that the training process will be dynamically corrected in
each training round, thus the accuracy of restored model is
well maintained.

In summary, we (1) determine the quantization bit width
according to the weighted entropy for different layer, (2)
separately select the constants S and Z according to the
range of the parameters for each different layer and perform
the linear quantization. (3) The quantization error is fed
back into the training process during the training. The whole
process is described in Algorithm 1.

4.5 Delta Calculating

We have obtained the quantized version of two neighboring
networks in the 4.4. Here we can take full advantage of
the similarity between these two quantized networks to
achieve a high compression ratio. Before calculating the
delta data, we quantitatively analyze the similarity between
two quantized versions of neighboring networks.

More specifically, given two numerical sequences with
the same length L1 and L2, we employ two metric to
measure the similarity of L1 and L2: Manhattan distance
mean(MDM) and correlation coefficient(CorrCoef), which
are calculated according to Equation (6) and Equation (7).

MDM(L1, L2) =
1

n

n∑
i=1

|L1[i]− L2[i]| (6)
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(a) VGG-16 (b) ResNet-18 (c) GoogleNet (d) MobileNet (e) ShuffleNet(Size=1) (f) ShuffleNet(Size=2)

Fig. 4. Entropy of delta data comparison between global quantization and local-sensitive quantization.

TABLE 1
Compression ratio comparison between global and local-sensitive quantization before and after calculating delta

Compressor VGG-16 ResNet-18 GoogleNet MobileNet ShuffleNet(Size=1) ShuffleNet(Size=2)
Global Quantization 1260MB ( 8.92) 800MB (10.41) 451MB (10.21) 172MB (10.05) 99MB ( 9.61) 349MB (11.45)

Local-Sensitive Quantization
after Calculating Delta 541MB (20.77) 552MB (15.46) 259MB (18.21) 156MB (11.41) 91MB (10.73) 306MB (13.34)

Local-Sensitive Quantization
before Calculating Delta 465MB (24.17) 443MB (19.26) 211MB (22.35) 119MB (14.96) 69MB (14.15) 230MB (17.82)

(a) GoogleNet (b) MobileNet
Fig. 5. MDM and CorrCoef of GoogleNet and MobileNet.

CorrCoef(L1, L2) =
cov(L1, L2)

σL1 ∗ σL2

=

∑n
i=1(L1[i]− L1)(L2[i]− L2)√∑n

i=1(L1[i]− L1)2 ∗
√∑n

i=1(L2[i]− L2)2

(7)

MDM is calculated to measure the sum of the absolute
wheelbase of two points in the standard coordinate systems.
Therefore, we regard the parameters sequence in the net-
work as a vector to calculate the Manhattan distance and
divide it by the length to obtain the average value’s dif-
ferential of each parameter (i.e., Manhattan distance mean
(MDM)). The smaller the MDM value is, the more similar
the sequences are.

CorrCoef [43] is calculated to measure the coefficient of
correlation between two variables which is widely used in
statistics. The closer the correlation coefficient vale is to 1,
the greater the similarity degree of two sequences will be.

Figure 5 shows MDM and CorrCoef of quantized param-
eters’ sequences in GoogleNet and MobileNet. And there
are total 199 pairs of neighboring versions in 200 training
epochs. MDM (red curve) is the average value of the dif-
ference between the quantized values of each parameter in
the neighboring versions. The value ranges of the red curve
from 0 to 3 means the difference between the corresponding
parameter in neighboring versions is very small. CorrCoef
(blue curve) represents the coefficient between two quan-
tized parameters sequence of the neighboring versions. The
value range of the blue curve is all above 0.99 and gradually
approaching 1, which proves that the quantized parameters

43 153 66 33 76111 189 57 14 39 247 109 38… …43 153 66 33 76111 189 57 14 39 247 109 38… …

-168-103 -55 21 160… …-168-103 -55 21 160… …
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1

2

i
M1

i
-M2
i

M1
i

-M2

Fig. 6. Diagram of calculating the delta of quantized parameters in QD-
Compressor.

in neighboring versions are very similar. These observations
are the important supports for the next compression (see
Subsection 4.6).

We denote the quantized model parameters of the latest
version as M1, and the corresponding quantized model
parameters of the previous version as M2, the quantized
delta data Di can be calculated as M i

1-M i
2. However, in

B bits quantization, the value range of M i
1 and M i

2 is
[Qmin, Qmax], so the value range of delta data Di will be
[Qmin −Qmax, Qmax −Qmin] which means the delta value
needs one additional bit storage space than the quantized
parameters. Thus we regard the quantized value range as a
directional loop range.

Figure 6 illustrates an example of calculating delta data
in QD-Compressor. When M i

1 > M i
2, the delta data Di =

M i
1−M i

2. Otherwise Di = (Qmax−M i
2)+1+(M i

1−Qmin),
where Qmax−Qmin+1 = 2B . Therefore, Di = M i

1−M i
2+2B

when M i
1 < M i

2. As a whole, the value range of delta data
Di is from zero to Qmax−Qmin, can be calculated as below:

Di = (M i
1 −M i

2) mod 2B (8)

Because there exists a high similarity of quantized pa-
rameters, the delta data will have great redundancy for
further compression.
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Fig. 7. Compression ratio of using Zstd, Lzma, and Gzip compressing
the delta data of six networks after quantization.

Algorithm 2: Efficient Distributed/Federated
Learning with the Residual Accumulation via
QD-Compressor.

Input: initial model parameters W ; epochs: T ; number of
the clients set C; compressed residual accumulation
QR (initial to zero);

Output: model parameters W after training
for t in T do

for i in C parallel do
Ri

t ← QD-Decompress(QRi
t);//Decompress Ri

t
∆Wi

t = SGD(W i
t )-W i

t ; //Train
∆Wi

t ← ∆Wi
t + Ri

t; //Accumulate with Ri
t

msgit ← Topk(∆Wi
t); //Filter parameters

Ri
t+1 ← ∆Wi

t - msgit; //Update Ri
t

QRi
t+1 ← QD-Compress(Ri

t+1); //Compress Ri
t

uploads msgit to Server;
Server S does:

gather msgs from clients;
Wt+1 ← FedAverage(msgs); //Average model
sends Wt+1 to the chosen clients;

4.6 Delta Compressing
When the quantized delta data is obtained, QD-Compressor
will compress these delta data using lossless compressors
to achieve a high compression ratio. Here we study three
typical lossless compressors Zstd, LZMA, and GZip, to
evaluate the final compression ratio on the delta data.

Figure 7 shows the compression ratio of Zstd, LZMA,
and GZip in our framework. Through comparing the com-
pression performance of these mainstream lossless compres-
sors, we can observe that LZMA achieves the highest com-
pression ratio (as shown in Figure 7). Thus LZMA is selected
as the lossless compressor to compress the quantized delta
data into a compressed binary file.

4.7 Model Decompressing
When we need to decompress the neural network of the
current version: (1) We decompress the compressed binary
file to the delta data with LZMA. (2) The decompressed
delta data is added to the quantized network of the previous
version. (3) We use the quantized constants S and Z of
each layer stored in local before, to restore the floating-point
version R∗ of the network according to Equation 9.

R∗ = S × (Qmin − Z) (9)

In order to decompress the network of a specific version
(e.g., snapshots restore), we can execute the above 3 steps
recursively until we obtain the target network version.

However, the remaining parameters have the same size
as the full model [14], [15], [44]. As a result, additional stor-
age space is required to accommodate the residual model.

Old global model

Local Training

New local model

Top-K

Client

Data

compressed 

residual file

...
... ...

...

3

4 Decompress

2

1

Server

...
... ...

...

...
... ...

...

 delta 

...
... ...

...

...
... ...

...

Uploaded model

Residual model

QD-Compressor

 Delta calculating 

5

6

Fig. 8. Distributed/Federated Learning with the residual accumulation
via QD-Compressor.

TABLE 2
Parameter number and FLOPs of popular DNNs

Network Para(M) FLOPs(G) Network Paras(M) FLOPs(G)
densnet121 7.98 2.90 VGG11 132.86 7.74
densnet169 14.15 3.44 VGG16 138.36 15.61

mobilenet v2 3.50 0.33 resnet18 11.69 1.82
inception v3 27.16 5.75 resnet34 21.80 3.68

For the resource-constrained edge devices, this additional
storage can not be ignored.

4.8 Complexity Analysis

As discussed before, our proposed QD-Compressor consists
of four parts: selection of quantization bits, quantizing the
network, calculating the delta data, and using a lossless
compressor to compress the delta data.

In the stage of selection of quantization bits, we need
to calculate the entropy of weights of each layers. The time
complexity of determining the quantized constants is O(N),
where N is the total number of parameters in the whole
neural network. In the stage of network quantizing, We
need to traverse parameters for each layer to determine
the quantized scaling constants S and offset Z . The time
complexity is the same as the previous stage. After obtaining
the quantization constants S and Z , the network can be
quantized and the delta data can be calculated at the same
time. The operation of this process is to quantize each pa-
rameter by using the linear transformation in Equation (3)
and calculating the subtraction of the difference by Equation
(8). The time complexity of quantizing the network and
calculate the delta data is also O(N). So, the time complexity
of these two stages is O(N). Table 2 shows the number of
parameters and operations in different network. From this
table, the number of operations is much bigger than param-
eters which means O(N) << O(F ) (F is the FLOPs of the
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Fig. 9. The general workflow of Federated Learning. The server is
responsible for sending and aggregating the clients’ models, and the
client trains the model based on its own local data.

network). At the same time, in each training epoch, the total
time complexity is O(d ∗ F ) (d is the amount of data in the
data set). Thus, we can get: O(N) << O(F ) << O(d ∗ F ),
which means the complexity of our quantizing method is
much smaller than the training process.

The last stage of lossless compression can be parallel to
the training of the neural network after calculating the delta
data. At the same time, Delta-DNN [21] also points out that
the cost of lossless compression is very small compared to
the time spent on training and testing the network. In sum-
mary, the computation overhead of additional operations
in QD-Compressor is lightweight compared to the normal
training process.

5 REALISTIC APPLICATION SCENARIOS

In this section, two main applications of our proposed QD-
Compressor are described.

5.1 Top-K Sparsification-Based Federated Learning
As mentioned in Section 1, in the resource-constrained
federated context, the main bottlenecks are the limited
bandwidth and storage in the edge nodes (clients) (e.g.,
smartphones, IoT devices). To reduce the communication
cost between client and server, the Top-K Sparsification
technique is always used compress the transmitted model
parameters. Broadly speaking, when one client participates
in the learning at round t, it selects and sends top-k elements
of the update with largest magnitude to the server. To
maintain the model quality, the remainder of unselected el-
ements (a.k.a., residual model) will be “stashed” in the local
disk [45]. In general, the technique of storing the residual
model locally, known as Residual Accumulation, provides
the important advantage of minimizing update information
loss in FL. (it may only become outdated or ”stale”) [14],
[15], [45]. When this client participates in FL at round t+τ ,
the remaining parameters will be added back to the relevant
trained local updates (as illustrated in Algorithm 2).

Due to residual model can be regarded as a delta of
two neighboring local models, which is appropriate to be
compressed by our proposed QD-Compressor as follows:
(1)the client trains the local model and obtains the updates
in the round t. (2) A small part of the elements of the update
will be selected by the Top-K sparsification and uploaded
to the server. (3) The residual model is compressed by QD-
Compressor (note that this step can run simultaneously with

Fig. 10. Process for saving model snapshots. QDelta is the compressed
delta data of each version.

the communication process, thus doesn’t incur additional
time cost to Federated Learning). (4) When the same client
participates in the round t + 1, we decompress the com-
pressed binary file of the residual model. (5) After the local
training, the decompressed residual model is added back to
the new updates, and conduct the sparsification again.

Our evaluation results suggest that our proposed QD-
Compressor can achieve 11×-15× compression ratio for
the residual model without degrading the model training
performance, which will be illustrated in Subsection 6.3.

5.2 Snapshots Recovery for The Training Crash
During the DNNs training, the infrastructure and process
failures are widespread in large data clusters, with an MTBF
of 4-22 hourss [46], [47], [48], [49], [50], [51], [52]. In a
Microsoft cluster, the facility failures, node breakdowns,
and software faults take an average of 45 minutes to occur
throughout the neural network training. Thus the snapshots
of historical versions are important intermediate results. On
another hand, the snapshots also give detailed information
about intermediate states, which can be used to improve the
scientific analysis and ensemble learning [10].

However, because the size of the snapshot is the same
as the full model, the storage costs of multiple snapshots
becomes a storage bottleneck for resource-constrained de-
vices. Fortunately, due to the magnitude of the parameter
change is relatively small between the neighboring version
of the two snapshots, the difference between two neighbor-
ing models (i.e., delta) is small. As a result, we can use
QD-Compressor to achieve a high compression ratio on
this delta data. In doing so, the storage costs of multiple
snapshots are significantly reduced by only storing one full
model of 1st round, and the compressed delta models of all
subsequent rounds.

In the snapshot recovery stage, we can recover the model
of i−th round by iteratively decompressing the compressed
delta and adding back to the full model of 1st round. Due
to QD-Compressor being a lossy compression approach, we
need to take a few rounds of fine-tuning for the recovered
model to reach the target accuracy (i.e., the original accuracy
of i− th model before the training crash).
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TABLE 3
Inference accuracy of full-precision with 4-bit and 8-bit

VGG-16 ResNet18 GoogleNet MobileNet ShuffleNet(size=1) ShuffleNet(size=2)
full-precision accuracy 92.00% 93.65% 93.68% 92.38% 90.44% 91.34%

4-bit accuracy 87.76% (–4.24%) 92.35% (–1.30%) 80.92% (–12.76%) 91.67% (–0.71%) 89.76% (–0.68%) N/A
8-bit accuracy 91.92% (–0.08%) 93.89% (+0.24%) 93.72% (+ 0.04%) 92.36% (–0.02%) 90.34% (–0.10%) 91.53% (+0.19%)

In the permanent storing of neural work, snapshots must
be saved. However, because to the vast size of the neural
network, the storage overhead of preserving the historical
version takes a significant amount of space. The goal of
decreasing storage overhead may be accomplished in this
scenario by just preserving the delta data of each version (as
shown in Figure 10).

6 PERFORMANCE EVALUATION

In this section, we (1) study the metrics of test accuracy
and compression ratio on different configuration of QD-
Compressor’s hyper-parameter (i.e., quantization bits); (2)
compare QD-Compressor, and Zstd, SZ, Delta-DNN, LC-
Checkpoint compression approaches on the metric of com-
pression ratio on multiple typical DNNs; (3) evaluate the
performance of QD-Compressor in the two mainstream ap-
plication: (i) snapshot recovery from the training crash and
(ii) local accumulation compression in Federated Learning.

6.1 Experimental Setup

We conduct our experiments on an Ubuntu server with an
Intel Xeon 6154 (with 32GB of memory) and two RTX3090.
Our experiments involve two parts: Basic performance
evaluation and realistic application evaluation. The basic
performance evaluations include ablation experiments and
compression ratio comparisons. The realistic application
evaluations include snapshot recovery from training crash
from and Federated Learning residual compression.

(i) For the Basic performance evaluation and snapshot
recovery from training crash experiments, the model train-
ing is performed on the PyTorch deep learning frame-
work [53] with six typical DNNs: VGG-16 [9], ResNet-
18 [54], GoogleNet [2], MobileNet [55], ShuffleNet [56]. We
train each DNNs on CIFAR-10 dataset [57] with 200 epochs.
The optimizer used in model training are SGD with learning
rate=0.01, momentum=0.9, and weight decay=5e-4.

(ii) For the Federated Learning residual compression
experiments, the model training and communication are
performed by the PyTorch deep learning framework and the
python socket communication framework. The Federated
Learning is performed on ten clients and one server at
the cloud environment with 1Gbps bandwidth. Each each
client first trains the local model on VGG-16 and Cifar10
for 1 epoch, and then compresses the updates using Top-
K sparsification. The selected elements will be uploaded to
the server, and the remaining unselected residuals will be
compressed by different compressor. The optimizer used in
model training are Adam with learning rate=0.001.

TABLE 4
Compression ratio comparison between 8-bit and 16-bit

quantization-based delta compression in MobileNet and VGG-16

Network Origin 8-bit 16-bit

MobileNet Total size 1.738G 106M 510M
Compression ratio N/A 16.79 3.49

VGG-16 Total size 10.974G 387M 2777.54M
Compression ratio N/A 29.04 4.05

Fig. 11. VGG-16 inference accuracy with full-precision, updating on M
and updating on M* quantization.

6.2 Basic Performance Evaluation

6.2.1 Selection of Quantization Bits

In our proposed QD-Compressor framework, the hyper-
parameters are the maximum bit width bmax and the min-
imum bit width bmin for each layer of the floating-point
network. Considering the storage efficiency, the bit width
are set to multiple or a fraction of a byte which corresponds
to three options: 4-bit, 8-bit, and 16-bit.

In our algorithm, a necessary premise is that the restored
model inference accuracy can not be significantly degraded
after quantization. Under this premise, we select the hyper-
parameters by achieving a high compression ratio while
well maintaining the model’s inference accuracy. Therefore,
we training the network by QD-Compressor on different
configurations of fixed B bit (e.g., 4-bit, 8-bit), and observe
the inference accuracy.

As shown in Table 3, the convergence of the model
is significantly affected when using 4-bit as the quantized
bits of the whole network. ’N/A’ of ShuffleNet (size=2) in
Table 3 means network can not converge. Although the
accuracy of VGG-16 and GoogleNet decreases a lot and the
training process is unstable, the smaller network model like
MobileNet and ShuffleNet (size=1) has less accuracy loss.
As a result, 4-bit satisfies with our premise and we don’t
choose a lower number of bits than 4-bit as the minimum
bit width bmin.

Meanwhile, when we increase the bit size to 8-bit and
16-bit, respectively, there is a nearly overlapped accuracy
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TABLE 5
Compression ratio of Zstd, SZ, Delta-DNN, LC-Checkpoint, QD-Compressor (fixed 8 bit) and QD-Compressor (varied bit width from 4 to 8)

Network Model Size Total Size
Compress Size (Compression Ratio)

Zstd SZ Delta-DNN LC QD (8bits) QD (4-8bits)
VGG-16 56.19MB 10.974GB 10.17GB(1.079) 2.264GB(4.643) 1.231GB(8.92) 1.35GB(8.10) 387MB(29.04) 281MB(39.99)

Resent-18 42.66MB 8.333GB 7.69GB(1.084) 1.750GB(4.763) 800.9MB(10.41) 1.01GB(8.24) 398MB(21.51) 305MB(27.98)
GoogleNet 23.58MB 4.606GB 4.26GB(1.082) 973.5MB(4.731) 451.2MB(10.21) 550.97MB(8.56) 187MB(25.22) 142MB(33.22)
MobileNet 8.9MB 1.738GB 1.61GB(1.080) 375.2MB(4.631) 172.9MB(10.05) 223.07MB(7.98) 106MB(16.79) 82MB(21.70)

ShuffleNet(Size=1) 4.88MB 0.977GB 0.908GB(1.076) 213.4MB(4.469) 99.2MB(9.61) 128.28MB(7.61) 63MB(15.50) 48MB(20.30)
ShuffleNet(Size=2) 20.49MB 4.002GB 3.70GB(1.083) 871.9MB(4.590) 349.5MB(11.45) 529.1MB(7.75) 208MB(19.70) 162MB(25.29)
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(d) MobileNet
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(e) ShuffleNet (Size=1)
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Fig. 12. Compression ratio in different epochs of training process using SZ, Delta-DNN, LC-Checkpoint and QD-Compressor.

curve with full-precision baseline as shown in Table 3.
Thus we can conclude that there is no significant accuracy
degradation when the quantization bits number is greater
than or equal to 8-bit. However, the experimental result in
Table 4 shows that the compression ratio of 16-bit is far
lower than that of 8-bit. Thus, 8-bit is set to the maximum
bit width bmax for QD-Compressor to maximize the com-
pression ratio.

6.2.2 Evaluation of Error Feedback Mechanism

In this Subsection, we evaluate the impact of implementing
an error feedback mechanism on the model accuracy, the
non-compression full-precision model training is employed
as the baseline.

As described in Subsection 4.4, the essence of error
feedback is to introduce the quantization error into the
training process by updating the raw model M using the
gradients calculated on the lossy model M∗ (as described
in Algorithm 1). To prove the advantage of error feedback
mechanism, we compare the error feedback mechanism
with the other updating method: updating the lossy model
M∗ using the gradients calculated on the M∗, and using the
M∗ as the new model to train. As shown in Figure 11, the
accuracy of baseline and the method of updating on M are
nearly overlapped, which suggests that they have almost

the same convergence performance. However, the highest
accuracy curve of the method of updating on M∗ is reduced
by nearly 0.5%, which is lower than the method of updating
on the raw model M . This proves that our error feedback
mechanism (i.e., updating on the inverse quantized model
M ) can effectively feed the quantization error to the normal
DNNs training process.

To further prove the efficiency and universality of our
error feedback mechanism. We quantize six popular DNNs
with 8 bits and compare the test accuracy under above two
updating methods (i.e., updating on M or M∗). Table 6
shows that QD-Compressor’s error feedback can achieve
the comparable test accuracy with full-precision baseline
in different popular networks and better than updating on
M∗. For each network, the difference between the final
test accuracy (i.e., convergence accuracy) is even smaller
than the fluctuation in the normal training process of the
network, which proves the efficiency and universality of our
proposed error feedback mechanism.

6.2.3 Evaluation of Compression Ratio

In this subsection, we evaluate the total storage overheads
on six popular DNNs for different compression methods.
Note that the total storage overheads are calculated by the
sum of compressed network sizes of all rounds. Table 5
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TABLE 6
The test accuracy (%) with full-precision, updating on M and updating

on M* QD-Compressor (QD) for different DNNs

Network Full Precision QD (on M*) QD (on M)
VGG-16 92.00 91.49(-0.51) 91.92(-0.08)

ResNet-18 93.65 93.39(-0.26) 93.72(+0.07)
GoogleNet 93.68 93.51(-0.17) 93.72(+0.04)
MobileNet 92.38 92.05(-0.33) 92.36(-0.02)

ShuffleNet(Size=1) 90.44 89.93(-0.51) 90.37(-0.07)
ShuffleNet(Size=2) 91.34 91.21(-0.13) 91.53(+0.19)

TABLE 7
Model size and compression ratio of LC-Checkpoint and

QD-Compressor in Federated Learning

Network Model Size Compressd Size (Compression Ratio)
LC-Checkpoint QD-Compressor

VGG-16 59MB 5.83MB( 9.64) 5.54MB(10.65)
ResNet-18 44MB 3.06MB(14.38) 2.71MB(16.22)
ResNet-34 84MB 6.72MB(12.49) 5.61MB(14.96)

shows that QD-Compressor achieves the highest compres-
sion ratio among all compared methods.

In order to further study the compression efficiency
of QD-Compressor in the process of DNNs training in
detail, we further studies the compression ratio of the six
networks under four compression methods at different
training epochs in Figure 12. This is because they target the
network itself but not the connection between the versions
during the training process. The compression ratio of Zstd
is just near 1.1 because floating-point numbers are hard
to be compressed directly due to their mantissa uncer-
tainty. In the Delta-DNN method, the compression ratio
will gradually increase with the network training process as
the network parameters change smaller and smaller in the
end. In our method, the compression ratio at the beginning
of training exceeds that of other methods. Additionally,
the compression ratio is increasing during the training as
the similarity between the neighboring versions increases.
Furthermore, the weight entropy-based quantization strat-
egy achieves higher compression ratio than the fixed 8-bit
quantization without degrading the test accuracy. In the
next experiments, the default configuration of bit-width of
QD-Compressor is set to QD (4-8).

6.3 Realistic Application Evaluations
In this subsection, we compare the performances (e.g., com-
pression ratio, model quality, and compression costs) with
the state-of-the-art snapshot compressor LC-Checkpoint on
two realistic application scenarios: Residual compression
for Federated Learning and Snapshot recovery from the
training crash.

6.3.1 Residual compression for federated learning
As introduced in 6.1, we jointly train the typical VGG-16

and ResNet on CIFAR-10 by the Federated Learning context
(ten clients and one server are communicated with 1Gbps
bandwidth). To reduce the communication costs, the client
only uploads a small part of updates to the server (e.g., Top-
0.01 sparsification means upload 1% of parameters) for each
Federated Learning round. To keep the model quality, the
remaining of updates will be stored locally and added back

TABLE 8
Compression time (CT) and decompression time (DT) of

LC-Checkpoint and QD-Compressor in Federated Learning

Network Training Time LC-Checkpoint QD-Compressor
CT DT CT DT

VGG-16 24.37s 8.60s 14.43s 0.21s 0.22s
ResNet-18 24.67s 6.11s 8.01s 0.21s 0.21s
ResNet-34 32.46s 13.55s 17.14s 0.23s 0.25s

TABLE 9
Recovery epochs in different periods

Network Recovery epochs
1-50 51-100 101-150 151-200 1-100 101-200

VGG-16 1/3 2/2 5/2 3/2 1/17 1/6
ResNet-18 1/2 1/3 3/3 1/2 2/32 1/14
GoogleNet 2/3 4/7 1/6 2/3 1/27 1/15
MobileNet 3/8 1/5 1/4 1/1 2/16 1/12
ShuffleNet

(Size=1) 2/5 2/4 2/5 2/2 3/16 1/10

ShuffleNet
(Size=2) 2/3 2/12 2/4 2/6 4/9 2/7

to in the next round (i.e., residual accumulation). In this
subsection, we use QD-Compressor to reduce the storage
cost for the residual model.

More specifically, we deploy QD-Compressor on three
recent Top-K sparsification-based Federated Learning com-
pression algorithms (i.e., SBC [44], SKC [58], and DeepRe-
duce [59]). We evaluate the test accuracy or residual com-
pression ratio on three settings: (1) without residual accu-
mulation, (2) with residual accumulation, (3) with residual
accumulation compressed by QD-Compressor. Figure 13
shows that when we don’t use the residual accumulation
(i.e., dropping the elements not uploaded to the server) in
the Federated Learning, the training performance (i.e., test
accuracy of the resulting model) will be degraded signifi-
cantly, which proves that the residual accumulation is essen-
tial to keep the Federated Learning model quality. In order
to reduce the storage cost of the residual model, we employ
QD-Compressor to compress the local accumulation, the
model accuracy curve is almost identical to that without
quantization, and even better. It is because that moderate
noise doesn’t harm the convergence and even improves
the generalization. Furthermore, Table 7 shows the average
model size (MB) after compression and the corresponding
compression ratio of the local residual parameters during
the target communication rounds. The experimental results
show that our proposed QD-Compressor efficiently reduces
the size of residual accumulation by the factor of 11×-
15×. Additionally, since the only cost of QD-Compressor
introduced in the Federated Learning process is the decom-
pressing time, we also evaluate the decompressing time and
the local training time (in seconds) in Table 8. We learn
that the cost of QD-Compressor only takes a very small
proportion of the whole Federated Learning process.

Summarily, our proposed QD-Compressor efficiently re-
duces the storage cost of Federated Learning client without
degrading the model quality.

6.3.2 Snapshot recovery from the training crash
In this subsection, we compare QD-Compressor to a con-
current snapshot compressor LC-Checkpoint in the training
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(a) VGG-16+SKC (b) VGG-16+SBC (c) VGG-16+DR

(d) ResNet-18+SKC (e) ResNet-18+SBC (f) ResNet-18+DR

(g) ResNet-34+SKC (h) ResNet-34+SBC (i) ResNet-34+DR

Fig. 13. Test accuracy on different DNNs with different methods in Federated Learning.

crash two aspects: (1) the fine-tuning rounds from the spe-
cific crash nodes to compare the accuracy of the compressed
snapshot. (2) the size of all compressed snapshots to com-
pare the compression ratio.

Table 9 suggests that our proposed QD-Compressor
spends less fine-tuning rounds to recover restored model to
the target accuracy before the training crash, this superiority
is more obvious when the large period. Essentially, since the
quantization error will be feedback to the training process
in QD-Compressor, the gap between a compressed snapshot
and the original model is narrow, and fewer quantization
errors are accumulated. Additionally, Table 5 shows that the
storage costs of QD-Compressor for the snapshot are less
than LC-Checkpoint. That is because the delta data in QD-
Compressor has higher compressibility, leading to a high
compression ratio.

Finally, the time costs (in seconds) breakdown of QD-
Compressor are provided. Table 10 suggests that the quanti-
zation operation of the error feedback process and snapshot
decompression operations only take a small share of time
cost during the whole training, which means our proposed
QD-Compressor possesses the lightweight property in the
application of snapshot recovery from training crash.

In summary, compared with the state of the arts, QD-
Compressor achieves a higher compression ratio and faster
snapshot recovery from the training crash with small costs.

TABLE 10
The time costs breakdown of QD-Compressor in the snapshot recovery

from training crash scenario

Networks Training Store Quan LZMA
Comp.

LZMA
Decomp. Restore

VGG-16 9.15s 0.14s 0.02s 10.66s 0.17s 0.03s
ResNet-18 15.56s 0.15s 0.03s 5.37s 0.43s 0.03s
GoogleNet 62.01s 0.13s 0.06s 2.35s 0.23s 0.08s
MobileNet 18.51s 0.06s 0.05s 0.70s 0.09s 0.06s
ShuffleNet

(Size=1) 12.2s 0.06s 0.05s 0.33s 0.07s 0.05s

ShuffleNet
(Size=2) 18.92s 0.07s 0.04s 1.82s 0.19s 0.05s

7 CONCLUSION

In this paper, aiming at the phenomenon that a lot of redun-
dancy information exists in neighboring versions of DNNs
during the training, we propose a novel quantization-based
delta compressor called QD-Compressor. The weighted
entropy-based local-sensitive quantization technique with
error feedback mechanism of QD-Compressor significantly
reduce the storage cost for DNNs without degrading the
model quality. Experimental results on two realistic appli-
cations and multiple popular DNNs suggest that compared
with the state of the arts, QD-Compressor not only achieves
7×-40× higher compression ratio in the model snapshots
compression, but also obtains the 11×-15× storage costs for
the Top-K sparsification-based Federated Learning clients.
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[40] S. Guiaşu, “Weighted entropy,” Reports on Mathematical Physics,
vol. 2, no. 3, pp. 165–179, 1971.

[41] E. Park, J. Ahn, and S. Yoo, “Weighted-entropy-based quantization
for deep neural networks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 5456–5464.

[42] X. Zhu, W. Zhou, and H. Li, “Adaptive layerwise quantization
for deep neural network compression,” in 2018 IEEE International
Conference on Multimedia and Expo (ICME). IEEE, 2018, pp. 1–6.

[43] J. L. Rodgers and W. A. Nicewander, “Thirteen ways to look at the
correlation coefficient,” The American Statistician, vol. 42, no. 1, pp.
59–66, 1988.

[44] F. Sattler, S. Wiedemann, K. Müller et al., “Sparse binary compres-
sion: Towards distributed deep learning with minimal communi-
cation,” in Proc. IJCNN, 2019, pp. 1–8.

[45] S. U. Stich, J. Cordonnier, and M. Jaggi, “Sparsified SGD with
memory,” in Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, 2018, pp. 4452–
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