

COMET: A Novel Memory-Efficient Deep Learning Training Framework by Using Error-Bounded Lossy Compression

Sian Jin Indiana University Bloomington, IN, USA sianjin@iu.edu

Hui Guan University of Massachusetts Amherst, MA, USA huiguan@cs.umass.edu Chengming Zhang Indiana University Bloomington, IN, USA czh5@iu.edu

Guanpeng Li University of Iowa Iowa City, IA, USA guanpeng-li@uiowa.edu Xintong Jiang McGill University Montréal, QC, Canada xintong.jiang@mail.mcgill.ca

Shuaiwen Leon Song University of Sydney Sydney, NSW, Australia shuaiwen.song@sydney.edu.au Yunhe Feng University of Washington Seattle, WA, USA yunhe@uw.edu

Díngwen Tao Indiana University Bloomington, IN, USA ditao@iu.edu

Introduction

> Challenges In Training DNN

- High memory consumption
- Large batch size needed
- Highly limited GPU memory space

> Activation Data Storage For Training

- Must stored until used in back propagation
- Long waiting period between generating and using the data

Previous Solutions

- Migration between CPU and GPU
 - Limited I/O throughput
- Recomputation
 - High overhead for Conv Layer
- Image-based compression
 - Low compression ratio

Memory consumption and top-1 accuracy of different state-of-the-art neural networks

Data flow in a sample iteration of training CNNs

Lossy Compression

- Compress data with little information loss in the reconstructed data
- High compression ratio (Over 10x), compared to lossless compression (< 2x)
- Controllable compression error

Lossy Compressors

- Transform-based lossy compression e.g., ZFP
- Prediction-based lossy compressor e.g., SZ

➤ Use Cases

- Reduce storage overhead
- Improve I/O performance
- First work to reduce memory consumption for DNN training

> Challenges

- Continuous zero handling with prediction based lossy compression
- Understand how the introduced error would propagate through the whole training process
- Balance between compression ratio and accuracy

Overall Design

Overview of our proposed memory-efficient DNN training framework, COMET

- **Parameter Collection**: collect parameters for analysis and updating compression configurations
- **Gradient Assessment**: estimate acceptable variance in the gradient
- Activation Assessment: estimate acceptable error introduced for compressing activation data
- Adaptive Compression: deploy lossy compression

Parameter Collection

- **Offline parameters**: batch size, activation data size, corresponding output layer size
- Simi-online parameters: activation data sparsity, average loss, average momentum value
- Gradient Assessment
 - Compute σ based on parameters and empirical experience:
 - $\sigma = 0.01 M_{Average}$

Check out our theoretical analysis in the paper!

Activation Assessment

- Error distribution estimation (uniform distribution)
- Gradient error distribution estimation (normal distribution)
- Compute error bound based on parameters and theoretical analysis:

$$eb = \frac{\sigma}{a\bar{L}\sqrt{NR}}$$

An example of gradient error distribution after compression

Breakdown Details

Parameter Collection

- **Offline parameters**: batch size, activation data size, corresponding output layer size
- **Simi-online parameters**: activation data sparsity, average loss, average momentum value
- Gradient Assessment
 - Compute σ based on parameters and empirical experience:
 - $\sigma = 0.01 M_{Average}$

Check out our theoretical analysis in the paper!

Activation Assessment

• Compute error bound based on parameters and theoretical analysis:

$$eb = \frac{b}{a\bar{L}\sqrt{NR}}$$

- Adaptive Compression
 - Compression configuration update every 1000 iterations
 - Modified **cuSZ** for compressing sparse data
 - Zero remains zero after lossy (de)compression

Training failed without modification to the compressor

Evaluation

Evaluation Setup

- Models: AlexNet; VGG-16; ResNet-18; ResNet-50; EfficientNet
- Datasets: ImageNet-2012; Stanford Dogs
- Frameworks: TensorFlow; Caffe
- Platform: Longhorn at TACC; Bridge-2 at PSC (V100 GPUs)

Fror Impact Evaluation

• The accuracy loss caused by the errors added to a given convolutional layer is not noticeably amplified by its following layers

Determine the acceptable error introduced to the gradient

Accurate theoretical prediction to the gradient error distribution

Evaluation

Memory Reduction Evaluation

- High compression ratio, up to 13.5x
- Little/no testing accuracy loss

Models: AlexNet; VGG-16; ResNet-18; ResNet-50; EfficientNet
Datasets: ImageNet-2012; Stanford Dogs

Training accuracy curve comparison between the baseline and our proposed framework.

Comparison of accuracy and activation size between baseline training and our proposed framework

Evaluation

Performance Evaluation and Analysis

- Low compression overhead, significantly lower than data migration solution
- Raw performance improvement (sample/sec) with better GPU resource utilization
- End-end performance improvement
- High Scalability

Training performance on ResNet-50 with different Batch size

Overhead comparison between migration, recomputation

Conclusion

- A novel memory-efficient CNN training framework via dynamically compressing the intermediate activation data through error-bounded lossy compression
- A thorough analysis of the impact of compression error propagation during DNN training from both theoretical and empirical perspectives
- An adaptive scheme to adaptively configure the error-bounded lossy compression based on a series of current training status data
- Improved SZ error-bounded lossy compression to handle compressing continuous zeros
- Reduce the memory consumption by up to 13.5× and 1.8× compared to the original training framework and the state-of- the-art method, respectively. Improve the end-to-end training performance by up to 2×

Future Work

- Integrate data migration and recomputation methods to COMET
- Explore the applicability of COMET to other types of layers and models
- Reduce the (de)compression overhead

Thank you!

Any questions are welcome!

Contact Dingwen Tao: <u>ditao@iu.edu</u> Sian Jin: <u>sianjin@iu.edu</u>

