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COMET: A Novel Memory-Efficient Deep Learning Training
Framework by Using Error-Bounded Lossy Compression
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Introduction

Data flow in a sample iteration of training CNNs

Ø Activation Data Storage For Training

• Must stored until used in back propagation
• Long waiting period between generating
and using the data

Ø Challenges In Training DNN

• High memory consumption
• Large batch size needed
• Highly limited GPU memory space

Memory consumption and top-1 accuracy of
different state-of-the-art neural networks

Ø Previous Solutions

• Migration between CPU and GPU
• Limited I/O throughput

• Recomputation
• High overhead for Conv Layer

• Image-based compression
• Low compression ratio
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Lossy Compression

Ø Lossy Compression
• Compress data with little information loss in the reconstructed data
• High compression ratio (Over 10x), compared to lossless compression (< 2x)
• Controllable compression error

Ø Lossy Compressors
• Transform-based lossy compression e.g., ZFP
• Prediction-based lossy compressor e.g., SZ

Ø Challenges
• Continuous zero handling with prediction
based lossy compression

• Understand how the introduced error
would propagate through the whole
training process

• Balance between compression ratio and
accuracy

Ø Use Cases
• Reduce storage overhead
• Improve I/O performance
• First work to reduce memory consumption
for DNN training
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• Parameter Collection: collect parameters for analysis and updating compression configurations
• Gradient Assessment: estimate acceptable variance in the gradient
• Activation Assessment: estimate acceptable error introduced for compressing activation data
• Adaptive Compression: deploy lossy compression

Overview of our proposed memory-efficient DNN training framework, COMET

Overall Design
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Ø Parameter Collection

• Offline parameters: batch size, activation data size, corresponding output layer size
• Simi-online parameters: activation data sparsity, average loss, average momentum value

Ø Gradient Assessment

• Compute 𝜎 based on parameters and empirical experience:

Ø Activation Assessment

• Error distribution estimation (uniform distribution)
• Gradient error distribution estimation (normal distribution)
• Compute error bound based on parameters and theoretical
analysis:

Breakdown Details

Check out our theoretical
analysis in the paper!

An example of gradient error distribution after compression
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Ø Parameter Collection

• Offline parameters: batch size, activation data size, corresponding output layer size
• Simi-online parameters: activation data sparsity, average loss, average momentum value

Ø Gradient Assessment

• Compute 𝜎 based on parameters and empirical experience:

Ø Activation Assessment

• Compute error bound based on parameters and theoretical analysis:

Ø Adaptive Compression

• Compression configuration update every 1000 iterations
• Modified cuSZ for compressing sparse data

• Zero remains zero after lossy (de)compression

Breakdown Details

Check out our theoretical
analysis in the paper!

Training failed without modification to the compressor
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Ø Evaluation Setup

Accurate theoretical prediction to the gradient error distribution

Evaluation

• Models: AlexNet; VGG-16; ResNet-18; ResNet-50; EfficientNet
• Datasets: ImageNet-2012; Stanford Dogs
• Frameworks: TensorFlow; Caffe
• Platform: Longhorn at TACC; Bridge-2 at PSC (V100 GPUs)

Ø Error Impact Evaluation

Determine the acceptable error introduced to the gradient

• The accuracy loss caused by the errors added to a given
convolutional layer is not noticeably amplified by its following layers
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Ø Memory Reduction Evaluation

• High compression ratio, up to 13.5x
• Little/no testing accuracy loss

Training accuracy curve comparison between the
baseline and our proposed framework.

Comparison of accuracy and activation size between baseline
training and our proposed framework

Evaluation

• Models: AlexNet; VGG-16; ResNet-18; ResNet-50; EfficientNet
• Datasets: ImageNet-2012; Stanford Dogs
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Training performance on ResNet-50 with different Batch size

Ø Performance Evaluation and Analysis

• Low compression overhead, significantly lower
than data migration solution

• Raw performance improvement (sample/sec)
with better GPU resource utilization

• End-end performance improvement
• High Scalability

Validation accuracy curve of COMET under different GPU
memory constraint on AlexNet

Overhead comparison between migration, recomputation

Evaluation
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Ø Conclusion

Conclusion and Future Work

• A novel memory-efficient CNN training framework via dynamically compressing the
intermediate activation data through error-bounded lossy compression

• A thorough analysis of the impact of compression error propagation during DNN training
from both theoretical and empirical perspectives

• An adaptive scheme to adaptively configure the error-bounded lossy compression based on a
series of current training status data

• Improved SZ error-bounded lossy compression to handle compressing continuous zeros
• Reduce the memory consumption by up to 13.5× and 1.8× compared to the original training
framework and the state-of- the-art method, respectively. Improve the end-to-end training
performance by up to 2×

Ø Future Work
• Integrate data migration and recomputation methods to COMET
• Explore the applicability of COMET to other types of layers and models
• Reduce the (de)compression overhead
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Thank you!
Any questions are welcome!

Contact Dingwen Tao: ditao@iu.edu
Sian Jin: sianjin@iu.edu
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