COMET: A Novel Memory-Efficient Deep Learning Training Framework by Using Error-Bounded Lossy Compression

Sian Jin
Indiana University
Bloomington, IN, USA
sianjin@iu.edu

Chengming Zhang
Indiana University
Bloomington, IN, USA
czh5@iu.edu

Hui Guan
University of Massachusetts
Amherst, MA, USA
huiguan@cs.umass.edu

Guanpeng Li
University of Iowa
Iowa City, IA, USA
guanpeng-li@uiowa.edu

Xintong Jiang
McGill University
Montréal, QC, Canada
xintong.jiang@mail.mcgill.ca

Shuaiwen Leon Song
University of Sydney
Sydney, NSW, Australia
shuaiwen.song@sydney.edu.au

Yunhe Feng
University of Washington
Seattle, WA, USA
yunhe@uw.edu

Dingwen Tao
Indiana University
Bloomington, IN, USA
dita@iu.edu
Introduction

- **Challenges In Training DNN**
 - **High memory consumption**
 - Large batch size needed
 - Highly limited GPU memory space

- **Activation Data Storage For Training**
 - Must stored until used in back propagation
 - Long waiting period between generating and using the data

- **Previous Solutions**
 - Migration between CPU and GPU
 - Limited I/O throughput
 - Recomputation
 - High overhead for Conv Layer
 - Image-based compression
 - Low compression ratio

Memory consumption and top-1 accuracy of different state-of-the-art neural networks

Data flow in a sample iteration of training CNNs
Lossy Compression

- **Lossy Compression**
 - Compress data with little information loss in the reconstructed data
 - High compression ratio (Over 10x), compared to lossless compression (< 2x)
 - Controllable compression error

- **Lossy Compressors**
 - Transform-based lossy compression e.g., ZFP
 - Prediction-based lossy compressor e.g., SZ

- **Use Cases**
 - Reduce storage overhead
 - Improve I/O performance
 - First work to reduce memory consumption for DNN training

- **Challenges**
 - Continuous zero handling with prediction based lossy compression
 - Understand how the introduced error would propagate through the whole training process
 - Balance between compression ratio and accuracy
Overall Design

Overview of our proposed memory-efficient DNN training framework, COMET

- **Parameter Collection**: collect parameters for analysis and updating compression configurations
- **Gradient Assessment**: estimate acceptable variance in the gradient
- **Activation Assessment**: estimate acceptable error introduced for compressing activation data
- **Adaptive Compression**: deploy lossy compression
Parameter Collection
- **Offline parameters**: batch size, activation data size, corresponding output layer size
- **Simi-online parameters**: activation data sparsity, average loss, average momentum value

Gradient Assessment
- Compute σ based on parameters and empirical experience:
 \[\sigma = 0.01M_{Average} \]

Activation Assessment
- Error distribution estimation (uniform distribution)
- Gradient error distribution estimation (normal distribution)
- Compute error bound based on parameters and theoretical analysis:
 \[eb = \frac{\sigma}{aL\sqrt{NR}} \]

Check out our theoretical analysis in the paper!

An example of gradient error distribution after compression
Parameter Collection

- **Offline parameters**: batch size, activation data size, corresponding output layer size
- **Simi-online parameters**: activation data sparsity, average loss, average momentum value

Gradient Assessment

- Compute σ based on parameters and empirical experience:
 \[\sigma = 0.01M_{Average} \]

Activation Assessment

- Compute error bound based on parameters and theoretical analysis:
 \[eb = \frac{\sigma}{aL\sqrt{NR}} \]

Adaptive Compression

- Compression configuration update every 1000 iterations
- Modified **cusZ** for compressing sparse data
 - Zero remains zero after lossy (de)compression

Training failed without modification to the compressor

Check out our theoretical analysis in the paper!
Evaluation

➤ Evaluation Setup

• Models: AlexNet; VGG-16; ResNet-18; ResNet-50; EfficientNet
• Datasets: ImageNet-2012; Stanford Dogs
• Frameworks: TensorFlow; Caffe
• Platform: Longhorn at TACC; Bridge-2 at PSC (V100 GPUs)

➤ Error Impact Evaluation

• The accuracy loss caused by the errors added to a given convolutional layer is not noticeably amplified by its following layers

Determine the acceptable error introduced to the gradient

Accurate theoretical prediction to the gradient error distribution
Evaluation

Memory Reduction Evaluation
- High compression ratio, up to 13.5x
- Little/no testing accuracy loss

<table>
<thead>
<tr>
<th>Neural Nets</th>
<th>Top-1 Accuracy</th>
<th>Peak Mem.</th>
<th>Max Batch</th>
<th>Conv. Act. Size</th>
<th>COMET</th>
<th>JPEG-ACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. AlexNet</td>
<td>57.41%</td>
<td>2.17 GB</td>
<td>512</td>
<td>407 MB</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>c. AlexNet</td>
<td>57.42%</td>
<td>0.85 GB</td>
<td>2048</td>
<td>30 MB</td>
<td>13.5×</td>
<td>-</td>
</tr>
<tr>
<td>b. VGG-16</td>
<td>68.05%</td>
<td>17.29 GB</td>
<td>64</td>
<td>6.91 GB</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>c. VGG-16</td>
<td>68.02%</td>
<td>5.04 GB</td>
<td>256</td>
<td>0.62 GB</td>
<td>11.1×</td>
<td>-</td>
</tr>
<tr>
<td>b. ResNet-18</td>
<td>67.57%</td>
<td>5.16 GB</td>
<td>256</td>
<td>1.71 GB</td>
<td>10.7×</td>
<td>7.3×</td>
</tr>
<tr>
<td>c. ResNet-18</td>
<td>67.43%</td>
<td>1.37 GB</td>
<td>1024</td>
<td>0.16 GB</td>
<td>11.0×</td>
<td>6.0×</td>
</tr>
<tr>
<td>b. ResNet-50</td>
<td>75.55%</td>
<td>15.57 GB</td>
<td>128</td>
<td>5.14 GB</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>c. ResNet-50</td>
<td>75.51%</td>
<td>4.40 GB</td>
<td>512</td>
<td>0.46 GB</td>
<td>11.0×</td>
<td>-</td>
</tr>
</tbody>
</table>

Training accuracy curve comparison between the baseline and our proposed framework.

Comparison of accuracy and activation size between baseline training and our proposed framework.
Evaluation

➢ Performance Evaluation and Analysis

• Low compression overhead, significantly lower than data migration solution
• Raw performance improvement (sample/sec) with better GPU resource utilization
• End-end performance improvement
• High Scalability

![Validation accuracy curve of COMET under different GPU memory constraint on AlexNet](image)

![Overhead comparison between migration, recomputation](image)

Training performance on ResNet-50 with different Batch size
Conclusion and Future Work

➢ Conclusion
 • A novel memory-efficient CNN training framework via dynamically compressing the intermediate activation data through error-bounded lossy compression
 • A thorough analysis of the impact of compression error propagation during DNN training from both theoretical and empirical perspectives
 • An adaptive scheme to adaptively configure the error-bounded lossy compression based on a series of current training status data
 • Improved SZ error-bounded lossy compression to handle compressing continuous zeros
 • Reduce the memory consumption by up to $13.5 \times$ and $1.8 \times$ compared to the original training framework and the state-of-the-art method, respectively. Improve the end-to-end training performance by up to $2 \times$

➢ Future Work
 • Integrate data migration and recomputation methods to COMET
 • Explore the applicability of COMET to other types of layers and models
 • Reduce the (de)compression overhead
Thank you!

Any questions are welcome!

Contact Dingwen Tao: ditao@iu.edu
 Sian Jin: sianjin@iu.edu