
1

Intel 80x86 Instruction Set Summary

This document contains a description of all 80x86 instructions not including math
coprocessor instructions. Each instruction is described briefly. All operand forms
valid with each instruction are shown and some syntax examples are given. The
flags affected by each instruction are shown in the upper right corner for the
description for the instruction. The effect of instructions on the flags are indicated
as follows:

- No change
? Unpredictable change
* Predictable change
1 Set to 1
0 Set to 0

O D I T S Z A P C AAA ASCII adjust AX after addition ? - - - ? ? * ? *
Description:
This instruction is used to adjust the value in AL into the correct range after an unpacked BCD
addition has occurred. After executing an ADD or ADC instruction that leaves a single BCD or
ASCII digit in AL, execute AAA to produce a valid BCD result.
If the value in AL indicates that a decimal overflow occurred, the BCD digit is forced into the legal
range, and AH is incremented.
Example Function
AAA Corrects the result of an ASCII addition

O D I T S Z A P C AAD ASCII adjust AX before division ? - - - * * ? * ?
Description:
This instruction is used before BCD division. Before execution, the AL register should contain a
single unpacked BCD digit. The AH register should hold the next higher order BCD digit. After
executing the AAD instruction, AX contains the binary equivalent of the two BCD digits.
Example Function
AAD Corrects AX before an ASCII division

O D I T S Z A P C AAM ASCII adjust AX after multiplication ? - - - * * ? * ?
Description:
The AAM instruction converts the result of a single digit BCD multiplication in the AX register into
two unpacked BCD digits. The high order digit will be in AH and the low order digit in AL.
Example Function
AAM Corrects AX after an ASCII multiplication

Intel 80x86 Instruction Set Summary

2

O D I T S Z A P C AAS ASCII adjust AX after subtraction ? - - - ? ? * ? *
Description:
This instruction ensures that a BCD subtraction results in a valid BCD digit. After executing a
SUB or SBB instruction that leaves a single BCD digit in AL, execute AAS to produce a valid
BCD result.
If the value in AL produces a decimal borrow, the BCD is forced into the legal range and 1 is
subtracted from AH.
Example Function
AAD Corrects AX after an ASCII subtraction

O D I T S Z A P C ADC Add with carry * - - - * * * * *
Description:
This instruction adds the contents of the source and destination together, increments the result if
the carry flag is set and stores the result in the destination. The operands must be the same size.
If the operands are signed integers, OF flag will indicate an invalid result. If the operands are
unsigned, the CF will be set if a carry occurred out of the high bit of the result.
General Forms Function
ADC reg,idata Add idata with carry to reg
ADC mem,idata Add idata with carry to memory location mem
ADC regd,regs Add regs with carry to regd
ADC reg,mem Add contents of memory location mem with carry to reg
ADC mem,reg Add contents of reg with carry to memory location mem
Examples
ADC AL,BL Adds BL with carry to AL
ADC DATA1,AX Adds AX with carry to memory location DS:DATA1
ADC BL,[DI] Adds memory location DS:DI with carry to BL
ADC EAX,1 Adds 1 with carry to EAX
ADC BYTE PTR [BX],2

O D I T S Z A P C ADD Add * - - - * * * * *
Description:
This instruction adds the contents of the source and destination and stores the result in the
destination. The operands must be the same size. If the operands are signed integers, the OF
flag indicates an invalid result. If the operands are unsigned, the CF flag indicates a carry out of
the high bit of the result. If the operands are BCD digits, the AF flag indicates a decimal carry.
General Forms Function
ADD reg,idata Add idata to reg
ADD mem,idata Add idata to memory location mem
ADD regd,regs Add regs to regd
ADD reg,mem Add contents of memory location mem to reg
ADD mem,reg Add contents of reg to memory location mem
Examples Function
ADD CL,BL Adds BL to CL
ADD DATA2,DL Adds DL to memory location DS:DATA2
ADD CL,[SI] Adds contents of memory location DS:SI to CL
ADD ECX,1 Adds 1 to ECX
ADD WORD PTR [BX],2 Adds 2 to word in memory location DS:BX

Intel 80x86 Instruction Set Summary

3

O D I T S Z A P C AND Logical AND 0 - - - * * ? * 0
Description:
This instruction performs a bit by bit logical AND operation on the contents of the source and
destination, and stores the result in the destination.
General Forms Function
AND reg,idata Logical AND reg with idata
AND mem,idata Logical AND contents of memory location mem with idata
AND regd,regs Logical AND regd with regs
AND reg,mem Logical AND reg with contents of memory location mem
AND mem,reg Logical AND contents of memory location mem with reg
Examples

AND AL,07FH Clears the high order bit of AL
AND DATA3,DX Logical AND of word at memory location DS:DATA3 with DX
AND CL,ES:[DI+2] Logical AND of byte at memory location ES:DI+2 with CL
AND BX,CX Logical AND of BX with CX
AND AX,MASK[SI] Logical AND of word at memory location DS:MASK+SI with AX

O D I T S Z A P C
ARPL Adjust requested privilege level

(80286 or later) - - - - - * - - -

Description:
This instruction is used to modify a selector’s requested privilege level. Both the source and
destination operands must be valid selectors.
If the RPL of the destination operand is numerically less (higher privilege level) than that of the
source operand, the destination selector’s RPL is changed to match that of the source operand,
and ZF is set to 1. If the destination operand is numerically higher (less privileged), then it is not
modified and ZF is set to 0.
General Forms Function
ARPL regd,regs Adjust RPL of regd down to agree with regs
ARPL mem,reg Adjust RPL of selector in location mem down to agree with reg
Examples

ARPL AX,BX Privilege level of selector in AX adjusted to agree with BX
ARPL MEM,CX Privilege level of selector in DS:MEM adjusted to agree with CX

O D I T S Z A P C
BOUND Check array bounds

(80186 or later) - - - - - - - - -

Description:
The source operand specifies the location of a memory table giving the array bounds (lower
bound, followed by upper bound). The destination operand is an array index. If the source
operand is not within the bounds specified by the destination operand, then an INT 5 is executed.
General Forms Function
BOUND reg,mem Check that array index in reg is within limits specified at mem
Example

BOUND AX, BETS If AX is not in bounds of DS:BETS issue INT 5 exception

Intel 80x86 Instruction Set Summary

4

O D I T S Z A P C
BSF Bit scan forward

(80386 or later) - - - - - * - - -

Description:
This instruction scans the source operand starting at bit position 0. It writes the bit position of the
first 1 bit found to the destination operand. If the source operand is 0, the zero flag is set and the
contents of the destination operand are undefined.
General Forms Function
BSF regd,regs Scan regd for 1 bit. Regs gets index of first 1 bit
BSF reg,mem Scan memory location mem for 1 bit. Reg gets index of first 1 bit
Examples
BSF AX,BX Scans BX from bit 0, AX gets the position of the first 1 bit in BX, the

Z flag set if no bits in BX are set
BSF EAX,DAN Scans DWORD at DS:DAN from bit 0, EAX gets the position of the

first 1 bit, Z flag set if no bits in DS:DAN are set.

O D I T S Z A P C
BSR Bit scan reverse

(80386 or later) - - - - - * - - -

Description:
This instruction scans the source operand starting at the highest bit position. It writes the bit
position of the first 1 bit found to the destination operand. If the source operand is 0, the zero flag
is set and the contents of the destination operand are undefined.
General Forms Function
BSR regd,regs Scan regd for 1 bit. Regs gets index of first 1 bit.
BSR reg,mem Scan memory location mem for 1 bit. Reg gets index of first 1 bit
Examples
BSR AX,BX Scans BX from bit 15, AX gets the position of the first 1 bit in BX, the

Z flag set if no bits in BX are set.
BSR EAX,MEM Scans DWORD at DS:MEM from bit 31, EAX gets the position of the

first 1 bit, the Z flag is set if no bits in DS:MEM are set.

O D I T S Z A P C
BSWAP Byte swap

(80486 or later) - - - - - - - - -

Description:
This instruction converts the value in the specified 32 bit register from little endian format to big
endian format. Byte 0 and byte 3 are exchanged, and byte 1 and byte 2 are exchanged.
General Forms Function
BSWAP reg32 Swap the byte order of the specified register
Example
BSWAP EAX Converts EAX from little-endian to big-endian format

Intel 80x86 Instruction Set Summary

5

O D I T S Z A P C
BT Bit test

(80386 or later) - - - - - - - - *

Description:
This instruction tests the bit specified by the operands and places its value into the carry flag. The
source operand contains an index into the bit array specified by the destination. The state of the
specified bit is copied into the carry flag.
This instruction does not accept BYTE operands. It works only on 16 or 32 bit values. Do not use
this instruction with BYTE oriented memory mapped i/o registers.
General Forms Function
BT reg,idata Copy the bit specified by idata from reg to the carry flag
BT mem,idata Copy the bit specified by idata from memory location mem to CF
BT regd,regs Copy the bit specified by regs from regd to the carry flag
BT mem,reg Copy the bit specified by reg from memory location mem to CF
Examples

BT EBX,4 Test bit 4 of EBX, C <= bit 4
BT MEM,1 Test bit 1 of memory location DS:MEM, C <= bit 1
BT EBX,ECX Test bit ECX of EBX, C <= bit ECX
BT MEM,AX Test bit AX of memory location DS:MEM, C <= bit AX

O D I T S Z A P C
BTC Bit test and complement

(80386 or later) - - - - - - - - *

Description:
This instruction tests the bit specified by the operands and places its value into the carry flag. The
specified bit is then complemented. The source operand contains an index into the bit array
specified by the destination operand. The state of the selected bit is copied to the carry flag, and
the bit is complemented. The carry flag will contain the state of the bit before it is complemented.
This instruction does not work on byte operands. It can only be used on 16 or 32 bit operands.
Do not use this instruction with memory mapped i/o devices that are 8 bits wide.
General Forms Function
BTC reg,idata
BTC mem,idata
BTC regd,regs
BTC mem,reg
Examples
BTC EBX,4 Test and complement bit 4 of EBX, C <= bit 4
BTC MEM,1 Test and complement bit 1 or EBX, C <= bit 1
BTC EBX,ECX Test and complement bit ECX of EBX, C <= bit ECX
BTC MEM,AX Test and complement bit AX of location DS:MEM, C <= bit AX

Intel 80x86 Instruction Set Summary

6

O D I T S Z A P C
BTR Bit test and reset

(80386 or later) - - - - - - - - *

Description:
This instruction tests the bit specified by the operands and places its value into the carry flag. The
selected bit is then reset. The source operand contains an index into the bit array specified by the
destination operand. The state of the selected bit is copied to the carry flag, and the bit is then
reset. The carry flag will contain the state of the bit before it is reset. This instruction does not
work on byte operands. It can only be used on 16 or 32 bit operands. Do not use this instruction
with memory mapped i/o devices that are 8 bits wide.
General Forms Function
BTR reg,idata
BTR mem,idata
BTR regd,regs
BTR mem,reg
Examples

BTR EBX,4 Test and reset bit 4 of EBX, C <= bit 4
BTR MEM,1 Test and reset bit 1 or EBX, C <= bit 1
BTR EBX,ECX Test and reset bit ECX of EBX, C <= bit ECX
BTR MEM,AX Test and reset bit AX of location DS:MEM, C <= bit AX

O D I T S Z A P C
BTS Bit test and set

(80386 or later) - - - - - - - - *

Description:
This instruction tests the bit specified by the operands then places its value into the carry flag.
The selected bit is then set. The source operand contains the index of the bit array specified by
the destination operand. The state of the selected bit is copied to the carry flag, and the bit is
then set. The carry flag will contain the state of the bit before it is set. This instruction does not
work on byte operands. It can only be used on 16 or 32 bit operands. Do not use this instruction
with memory mapped i/o devices that are 8 bits wide.
General Forms Function
BTS reg,idata
BTS mem,idata
BTS regd,regs
BTS mem,reg
Examples
BTS EBX,4 Test and set bit 4 of EBX, C <= bit 4
BTS MEM,1 Test and set bit 1 or EBX, C <= bit 1
BTS EBX,ECX Test and set bit ECX of EBX, C <= bit ECX
BTS MEM,AX Test and set bit AX of location DS:MEM, C <= bit AX

Intel 80x86 Instruction Set Summary

7

O D I T S Z A P C CALL Call far procedure (subroutine) - - - - - - - - -
Description:
The far procedure call saves the current code segment selector and the address of the next
instruction (IP or EIP) onto the stack. Control then transfers to the destination specified by the
operand.
General Forms Function
CALL idata Push CS:IP and then load CS:IP with value specified in idata
CALLl mem Push CS:IP and then load CS:IP with value contained in mem
Examples

CALL SUBR1 Call procedure SUBR1
CALL FAR PTR JTAB[SI] Call the procedure whose address is stored in memory location

DS:[JTAB+SI]
CALL MEM Call FAR to the procedure whose address is stored in memory

location DS:MEM. This assumes that MEM is declared as a
DWORD

O D I T S Z A P C CALL Call near procedure (subroutine) - - - - - - - - -
Description:
The near procedure call pushes the address of the next instruction (IP or EIP) onto the stack and
then transfers control to the location specified by the operand. If the operand is an immediate
value, the destination is relative to the current location. If the operand is a memory address or
register, the subroutine address is taken indirectly from the operand.
General Forms Function
CALL offset Push IP and then add offset to IP
CALL mem Push IP and then load IP with the contents of mem
CALL reg Push IP and then load IP with the contents of reg
Examples

CALL SUBR1 Call procedure SUBR1
CALL CX Call procedure whose address is in CX
CALL NEAR PTR
JTAB[SI]

Call NEAR to the procedure whose address is stored in memory
location DS:[JTAB+SI]

CALL MEM Call NEAR to the procedure whose address is stored in memory
location DS:MEM. This assumes that MEM is declared as a WORD.

O D I T S Z A P C CBW Convert BYTE to WORD - - - - - - - - -
Description:
This instruction sign extends the byte in AL into AX
Example Function
CBW Sign extend AL into AX

O D I T S Z A P C
CDQ Convert DWORD to QWORD

(80386 or later) - - - - - - - - -

Description:
This instruction sign extends the 32 bit value in EAX into EDX.
Example Function
CDQ Sign extend EAX into EDX

Intel 80x86 Instruction Set Summary

8

O D I T S Z A P C CLC Clear carry flag - - - - - - - - 0
Description:
This instruction will set the carry flag to 0.
Example Function
CLC Set carry flag to 0

O D I T S Z A P C CLD Clear direction flag - 0 - - - - - - -
Description:
This instruction will set the direction flag to 0. This will cause string instructions to increment the
pointer registers.
Example Function
CLD Set direction flag to 0 (string instructions increment index registers)

O D I T S Z A P C CLI Clear interrupt flag - - 0 - - - - - -
Description:
This instruction will set the interrupt enable flag to 0. This causes interrupts to be disabled.
Example Function
CLI Interrupt flag set to 0 (interrupts disabled)

O D I T S Z A P C
CLTS Clear the task-switched flag

(80286 or later) - - - - - - - - -

Description:
This instruction sets the task switched bit (TS) in the MSW (80286) or CR0 register (80386 or
later) to 0.
Example Function
CLTS Task-switched flag in MSW or CR0 set to 0

O D I T S Z A P C CMC Complement carry - - - - - - - - *
Description:
This instruction complements the state of the carry flag in the flags register. If the flag is 1, it will
be set to 0. If the flag is 0, it will be set to 1
Example Function
CMC Complements (inverts) the carry flag

Intel 80x86 Instruction Set Summary

9

O D I T S Z A P C CMP Compare operands * - - - * * * * *
Description:
This instruction compares the two operands. The contents of the source operand is subtracted
from the contents of the destination operand and the flags are set to correspond to the result of
the subtraction. The result of the subtraction is not stored.
General Forms Function
CMP reg,idata Subtract idata from reg and set the flags accordingly
CMP mem,idata Subtract idata from the contents of mem and set the flags

accordingly
CMP regd,regs Subtract regs from regd and set the flags accordingly
CMP reg,mem Subtract the contents of mem from reg and set the flags accordingly
CMP mem,reg Subtract reg from the contents of mem and set the flags accordingly
Examples

CMP BL,CL Compare BL with CL
CMP MEM,AX Compare word at memory location DS:MEM with AX
CMP ECX,DAY1 Compare ECX with the DWORD at memory location DS:DAY1
CMP AL,2 Compare AL with the constant 2
CMP DATA2,1 Compare the contents of memory location DS:DATA2 with 1

O D I T S Z A P C CMPS Compare strings * - - - * * * * *
Description:
This instruction subtracts the memory location specified by DS:SI (or DS:ESI) from the operand
specified by ES:DI (or ES:EDI), setting the flags and discarding the result, was with the CMP
instruction. The size of the operand can be either a BYTE, WORD, or DWORD. Following the
comparison, SI (ESI) and DI (EDI) will be either incremented or decremented, depending on the
state of the direction flag, by an amount appropriate to the size of the operands.
Example Function

CMPSB Compare memory byte at DS:SI with memory byte ES:DI
CMPSW Compare memory word at DS:SI with memory word at ES:DI
CMPSD Compare memory dword at DS:SI with memory dword at ES:DI

O D I T S Z A P C
CMPXCHG Compare and exchange

(80486 and later) * - - - * * * * *

Description:

Example Function

CMPXCHG CX,BX Compare CX with AX, if equal CX<=BX else AX<=BX
CMPXCHG MEM,DX Compare DS:MEM with AX, if equal MEM<=DX else AX<=DX

O D I T S Z A P C
CMPXCHG8B Compare and exchange 8 bytes

(80486 and later) - - - - - * - - -

Description:

Example Function

CMPXCHG8B MEM Compare DS:MEM with EDX:EAX, if equal MEM<=ECX:EBX else
MEM<=EDX:EAX

Intel 80x86 Instruction Set Summary

10

O D I T S Z A P C
CPUID Get CPU identification

(Pentium or later) - - - - - * - - -

Description:

Example Function

CPUID EAX <= CPU identification information

O D I T S Z A P C CWD Convert WORD to DWORD - - - - - - - - -
Description:
This instruction sign extends the word in AX into DX:AX
Example Function

CWD Sign extend AX into DX:AX

O D I T S Z A P C
CWDE Convert WORD to DWORD

(80386 or later) - - - - - - - - -

Description:
This instruction will sign extend the word in AX into EAX.
Example Function

CWDE Sign extend AX into EAX

O D I T S Z A P C DAA Decimal adjust after addition ? - - - * * * * *
Description:
This instruction is used following an addition on packed decimal data to ensure that the value in
AL contains a correct decimal result.
Example Function

DAA Adjust the contents of AL after BCD addition

O D I T S Z A P C DAS Decimal adjust after subtraction ? - - - * * * * *
Description:
This instruction is used following a subtraction of packed decimal data to ensure that the value in
AL contains a correct decimal result.
Example Function

DAS Adjust the contents of AL after BCD subtraction

Intel 80x86 Instruction Set Summary

11

O D I T S Z A P C DEC Decrement * - - - * * * * -
Description:
This instruction subtracts 1 from the specified operand. This instruction does not affect the carry
flag, but affects all other condition code flags.
General Forms Function
DEC reg Subtract 1 from reg
DEC mem Subtract 1 from mem
Example
DEC BH Subtract 1 from BH
DEC CX Subtract 1 from CX
DEC MEM[BX] Subtract 1 from the contents of memory location DS:MEM+BX
DEC EDX Subtract 1 from EDX

O D I T S Z A P C DIV Divide (unsigned) ? - - - ? ? ? ? ?
Description:
This instruction performs an unsigned division of the value in the accumulator register or register
pair by the specified operand, storing the quotient in the low part of the accumulator and the
remainder in the high part of the accumulator. For BYTE operands, the accumulator is AX, with
the resulting quotient in AL and the remainder in AH. For WORD operands, the accumulator is
DX:AX, with the resulting quotient in AX and the remainder in DX. For DWORD operands, the
accumulator is EDX:EAX, with the resulting quotient in EAX and the remainder in EDX.
General Forms Function
DIV BH Divide AX by BH, AH<=remainder, AL<=quotient
DIV CX Divide DX:AX by CX; DX<=remainder, AX<=quotient
DIV ESI Divide EDX:EAX by ESI; EDX<=remainder, EAX<=quotient
Example

DIV BH Divide AX by BH, AH<=remainder, AL<=quotient
DIV CX Divide DX:AX by CX; DX<=remainder, AX<=quotient
DIV ESI Divide EDX:EAX by ESI; EDX<=remainder, EAX<=quotient

O D I T S Z A P C
ENTER Create a stack frame

(80186 or later) - - - - - - - - -

Description:
This instruction will set up a stack frame reserving space for local variables for the procedure.
When the second operand is greater than 0, the pointers to previous stack frames are pushed
onto the stack to allow addressing of stack resident variables whose scopes contain the scope of
the current procedure. The ENTER n,0 instruction is equivalent to this instruction sequence:
 PUSH BP
 MOV BP,SP
 SUB SP,n
Examples Function
ENTER 16,0 Create a stack frame of 16 bytes for level 0
ENTER 32,1 Create a stack frame of 32 bytes for level 1

Intel 80x86 Instruction Set Summary

12

O D I T S Z A P C HLT Halt - - - - - - - - -
Description:
This instruction stops the processor. No other instructions will execute until the processor is
brought out of the halt state by a reset or an interrupt. An NMI or reset will always bring the
processor out of the halt state. If the halt state is entered with maskable interrupts disabled (IF =
0) , then these interrupts will not be acknowledged or bring the processor out of the halt state.
Execution will resume at the instruction following the HLT instruction after the interrupt service
routine is completed.
Example Function
HLT Halts all processing until a reset or interrupt occurs

O D I T S Z A P C IDIV Divide (signed) ? - - - ? ? ? ? ?
Description:
This instruction performs a signed division of the value in the accumulator register or register pair
by the specified operand, storing the quotient in the low part of the accumulator and the
remainder in the high part of the accumulator. For BYTE operands, the accumulator is AX, with
the resulting quotient in AL and the remainder in AH. For WORD operands, the accumulator is
DX:AX, with the resulting quotient in AX and the remainder in DX. For DWORD operands, the
accumulator is EDX:EAX, with the resulting quotient in EAX and the remainder in EDX.
General Forms Function

IDIV BH Divide AX by BH, AH<=remainder, AL<=quotient
IDIV CX Divide DX:AX by CX; DX<=remainder, AX<=quotient
IDIV ESI Divide EDX:EAX by ESI; EDX<=remainder, EAX<=quotient
Example
IDIV BH Divide AX by BH; AH<=remainder, AL<=quotient
IDIV CX Divide DX:AX by CX; DX<=remainder, AX<=quotient
IDIV ESI Divide EDX:EAX by ESI; EDX<=remainder, EAX<=quotient

O D I T S Z A P C IMUL Multiply (signed) * - - - ? ? ? ? *
Description:
This instruction performs a signed multiply. The flags are left in an indeterminate state except for
OF and CF, which are cleared to 0 if the result of the multiplication is the same size as the
multiplicand.
In the single operand form of the instruction, the result is placed in AX if the operands are BYTE,
DX:AX for WORD operands, and EDX:EAX for DWORD operands. The multiple operand forms of
the instruction only exist on 80386 and later processors.
General Forms Function
IMUL reg acc <- acc * reg
IMUL mem acc <- acc * mem
IMUL regd,regs regd <- regd * regs
IMUL regd,mem regd <- regd * mem
IMUL regd,idata regd <- regd * idata
IMUL regd,regs,idata regd <- regs * idata
IMUL regd,mem,idata regd <- mem * idata
Example

IMUL CL Multiply CL times AL; product replaces AX
IMUL CX Multiply CX times AX; product replaces DX:AX
IMUL ECX Multiply ECX times EAX; product replaces EDX:EAX
IMUL DX,AX,2 Multiply AX times 2; product replaces DX
IMUL MEM Multiply AX times contents of memory location DS:MEM; product

replaces DX:AX

Intel 80x86 Instruction Set Summary

13

O D I T S Z A P C IN Read data from input port - - - - - - - - -

Description:
This instruction reads a BYTE, WORD or DWORD into the accumulator from an I/O port. The
immediate form of the instruction only allows a BYTE sized operand, and thus restricts access to
the first 256 I/O ports. Placing the 16 bit port address in DX allows access to all I/O ports. The
accumulator is either AL, AX or EAX.
General Forms Function
IN acc,idata
IN acc,DX
Example
IN AL,20H Input data from port 20H to AL
IN AX,DX Input data from port in DX to AX

O D I T S Z A P C INC Increment * - - - * * * * -
Description:
This instruction will add 1 to the value in the specified operand. This instruction does not affect
the carry flag, but affects all other condition code flags.
General Forms Function
INC reg Add 1 to reg
INC mem Add 1 to mem
Example

INC DH Add 1 to DH
INC MEM Add 1 to contents of memory location DS:MEM
INC EDX Add 1 to EDX

O D I T S Z A P C
INS Input string

(80186 or later) - - - - - - - - -

Description:
This instruction will read a value from the input port specified by DX and place the result in the
memory location specified by ES:DI (or ES:EDI). The DI (or EDI) register will then be
incremented or decremented, depending on the state of the direction flag, by an amount
appropriate to the size of the operand. (1 for BYTE, 2 for WORD, 4 for DWORD).
Example Function
INSB Input byte sized data from port DX into memory at ES:DI
INSW Input word sized data from port DX into memory at ES:DI
INSD Input dword sized data from port DX into memory at ES:DI

O D I T S Z A P C INT Software interrupt - - - - - - - - -
Description:
This instruction saves the current flags and execution location on the stack. Control is then
transferred to the location specified by the interrupt vector.
General Form Function
INT vector Software interrupt using vector.
Example

INT 3 Software interrupt using vector 3. This is a special on byte
instruction used for debugger breakpoint

INT 21H Software interrupt using vector 21H, Two byte instruction

Intel 80x86 Instruction Set Summary

14

O D I T S Z A P C INTO Interrupt on overflow - - - - - - - - -
Description:
This instruction will test the state of the overflow flag and signal an exception if it is set by
executing an INT 4.
Example Function

INTO Interrupt using vector 4 if overflow flag = 1

O D I T S Z A P C
INVD Invalidate cache

(80486 or later) - - - - - - - - -

Description:

Example Function

INVD Data in the internal cache is invalidated or erased

O D I T S Z A P C
INVLPG Invalidate TLB

(80486 or later) - - - - - - - - -

Description:

Example Function

INVLPG Clears translation look-aside buffer

O D I T S Z A P C IRET/IRETD Return from interrupt ? ? ? ? ? ? ? ? ?
Description:
This instruction is used to perform a return from an interrupt service routine. This instruction will
pop the IP, CS, and Flags from the stack to return control to the location interrupted by either a
hardware interrupt of a software interrupt.
Example Function

IRET 16 bit FAR return from interrupt, pops FLAGS, CS, IP
IRETD 32 bit FAR return from interrupt, pops EFLAGS, CS, EIP

Intel 80x86 Instruction Set Summary

15

O D I T S Z A P C Jcc Conditional jump - - - - - - - - -
Description:
The Jcc instructions test the conditions described for each mnemonic. If the condition is met, the
processor branches to the specified location within the current code segment. If the condition is
false, execution continues with the instruction following the jump. On the 80286 and earlier
processors, the target of the branch is specified with an 8 bit IP relative displacement. This limits
the maximum distance for the jump to +/- 127 bytes approximately. On the 80386 and later
processors, a 32 bit displacement is allowed, allowing the target of the jump to be anywhere
within the current segment.
General Form Function
Jcc offset Jump if condition is true
Examples

JA LOC Jump to LOC if above (unsigned x>y) (CF=0 & ZF=0)
JAE LOC Jump to LOC if above or equal (CF=0)
JB LOC Jump to LOC if below (unsigned x<y) (CF=1)
JBE LOC Jump to LOC if below or equal (CF=1 | ZF=1)
JC LOC Jump to LOC if carry (CF=1)
JCXZ LOC Jump to LOC if CX=0
JECXZ LOC Jump to LOC if ECX=0
JE LOC Jump to LOC if equal (ZF=1)
JG LOC Jump to LOC if greater (signed x>y) (CF=0F & ZF=0)
JGE LOC Jump to LOC if greater or equal (SF=OF)
JL LOC Jump to LOC if less (signed x<y) (SF!=OF & ZF=0)
JLE LOC Jump to LOC if less or equal (SF!=OF)
JNA LOC Jump to LOC if not above (same as JBE)
JNAE LOC Jump to LOC if not above or equal (same as JB)
JNB LOC Jump to LOC if not below (same as JAE)
JNBE LOC Jump to LOC if not below or equal (same as JA)
JNC LOC Jump to LOC if carry not set (CF=0)
JNE LOC Jump to LOC if not equal (ZF=0)
JNG LOC Jump to LOC if not greater (SF!=OF & ZF=1)
JNGE LOC Jump to LOC if not greater or equal (same as JL)
JNL LOC Jump to LOC if not less than (same as JGE)
JNLE LOC Jump to LOC if not less than or equal (same as JG)
JNO LOC Jump to LOC if not overflow (OF=0)
JNP LOC Jump to LOC if no parity (PF=0) (odd parity)
JNS LOC Jump to LOC no sign (SF=0) (positive number)
JNZ LOC Jump to LOC if not zero (ZF=0)
JO LOC Jump to LOC if overflow (OF=1)
JP LOC Jump to LOC if parity (PF=1) (even parity)
JPE LOC Jump to LOC if parity even (PF=1)
JPO LOC Jump to LOC if parity odd (PF=0)
JS LOC Jump to LOC if sign (SF=1) (negative number)
JZ LOC Jump to LOC if zero (ZF=1)

Intel 80x86 Instruction Set Summary

16

O D I T S Z A P C JMP Near Jump - - - - - - - - -
Description:
This instruction transfers execution of the program to a new location. A new value is loaded into
IP (or EIP) to perform the transfer of control. For the JMP offset form of the instruction, the target
address is specified as a signed displacement that is added to the current contents of IP (or EIP).
For the other forms of the instruction, the operand value replaces the current value of IP (or EIP).
General Forms Function
JMP offset Add offset to the current value in IP
JMP reg Replace the contents of IP with the contents of reg
JMP mem Replace the contents of IP with the contents of mem
Example

JMP LOC Jump to LOC.
JMP DX Jump to address in DX
JMP NEAR PTR MEM Jump NEAR to the address whose offset is in the WORD at memory

location DS:MEM
JMP FAR PTR MEM Jump FAR to the address contained in the DWORD at DS:MEM

O D I T S Z A P C JMP Far Jump - - - - - - - - -
Description:
This instruction transfers execution of the program to a new location. The contents of the
specified operand are loaded into IP (or EIP) and CS.
General Forms Function
JMP idata Replace CS:IP with idata.
JMP mem Replace CS:IP with the contents of mem.
Example

JMP LOC Jump far to LOC.
JMP TABLE[SI] Load CS:IP from the contents at the indicated memory location.
JMP FAR PTR MEM Jump FAR to the address contained in the DWORD at DS:MEM

O D I T S Z A P C LAHF Load AH from the FLAGS - - - - - - - - -
Description:
This instruction moves the contents of the low byte of the FLAGS register into AH.
Example Function

LAHF The low byte of the flags register is copied to AH

O D I T S Z A P C
LAR Load access rights

(80286 or later) - - - - - * - - -

Description:

Example Function

LAR AX,BX The access rights are loaded to AX from BX

Intel 80x86 Instruction Set Summary

17

O D I T S Z A P C LDS/LES/LFS/
LGS/LSS Load far pointer

- - - - - - - - -

Description:
This instruction will load a far pointer into a segment register plus the other specified register. The
specified memory location contains the offset which will be loaded into a general purpose
register, and the following location contains a segment value which will be loaded into the
specified segment register.
General Forms Function
Lseg reg,mem Load reg with the value at mem and load segment register seg with

the contents of mem+2 (or mem+4 for 32 bit operations)
Example
LDS DI,MEM Load DS and DI from the DWORD at DS:MEM
LES AX,MEM Load ES and AX from the DWORD at DS:MEM
LDS ESI,MEM Load DS and ESI from the FWORD at DS:MEM
LES BX,ES:MEM Load ES and BX from the DWORD at ES:MEM
LSS SP,MEM Load SS and SP from the DWORD at DS:MEM

O D I T S Z A P C LEA Load effective address - - - - - - - - -
Description:
This instruction loads the address specified by the memory operand into the specified register.
The effective address calculation specified by the addressing mode of the memory operand is
performed, and the resulting address (offset) is loaded into the register.
General Form Function
LEA reg,mem Load the reg with the effective address of mem.
Example
LEA BX,MEM Load the offset of MEM to BX
LEA DX,MEM[SI][BX] Load DX with the offset of MEM+SI+BX
LEA SI,[DI+4] Load SI with the offset of DI+4

O D I T S Z A P C
LEAVE Leave procedure

(80186 or later) - - - - - - - - -

Description:
This instruction is the inverse of the ENTER instruction. LEAVE is used immediately before return
from a procedure call to remove the stack frame created by ENTER. This instruction is the
equivalent of the following instructions:
 MOV SP,BP
 POP BP
Example Function

LEAVE Reverses the action of ENTER

O D I T S Z A P C
LGDT Load global descriptor table register

(80286 or later) - - - - - - - - -

Description:

Example Function

LGDT MEM64 Loads the global descriptor table register from the 8 byte structure at
memory location DS:MEM64

Intel 80x86 Instruction Set Summary

18

O D I T S Z A P C
LIDT Load interrupt descriptor table register

(80286 or later) - - - - - - - - -

Description:

Example Function

LIDT MEM64 Loads the interrupt descriptor table register from the 8 byte structure
at memory location DS:MEM64

O D I T S Z A P C
LLDT Load local descriptor table register

(80286 or later) - - - - - - - - -

Description:

Example Function

LLDT AX Loads the local descriptor table register with the selector in AX
LLDT MEM[SI] Loads the local descriptor table register with the selector stored in

memory at location DS:MEM+SI

O D I T S Z A P C
LMSW Load machine status word

(80286 or later) - - - - - - - - -

Description:
This instruction copies the contents of the machine status word into the AX register. If executed
on an 80386 or later processor, it will move the contents of the low 16 bits of CR0 to the AX
register.
Example Function
LMSW AX Copies the contents of AX into the machine status word (CR0). This

instruction should only be used on an 80286 processor, as it has
been superceded by the MOV CR0,EAX instruction on 80386 and
later processors.

O D I T S Z A P C LODS Load string - - - - - - - - -
Description:
This instruction will load the BYTE, WORD, or DWORD at DS:SI (or DS:ESI) into the
accumulator. Following the load, SI (or ESI) will be incremented or decremented, depending on
the state of the direction flag, by an amount appropriate to the size of the operand.
Example Function

LODSB Load AL from the BYTE at memory location DS:SI
LODSW Load AX from the WORD at memory location DS:SI
LODSD Load EAX from the DWORD at memory location DS:ESI

Intel 80x86 Instruction Set Summary

19

O D I T S Z A P C

LOOPcc
Loop control. Decrement CX and
Branch

- - - - - - - - -

Description:
These instructions perform a decrement and branch operation. The CX (or ECX) register is
decremented by 1. If the result is 0, the branch is not taken. If the result of the decrement is not 0,
the branch will be taken. For all variants other than LOOP, in addition to the decrement of CX, a
test of the zero flag, ZF, is performed to determine if the branch should be taken.
General Forms Function
LOOPcc off
Example
LOOP LOC Decrement CX, if CX not zero, jump to location CS:LOC
LOOPD LOC Decrement ECX, if ECX not zero, jump to location CS:LOC
LOOPZ LOC Decrement CX, if CX not zero and ZF=1, jump to location CS:LOC
LOOPNZ LOC Decrement CX, if CX not zero and ZF=0, jump to location CS:LOC
LOOPE LOC Same as LOOPZ
LOOPNE LOC Same as LOOPNZ

O D I T S Z A P C
LSL Load segment limit

(80286 or later) - - - - - * - - -

Description:

Example Function

LSL AX,BX Load AX with the segment limit from the selector in BX

O D I T S Z A P C
LTR Load task register

(80286 or later) - - - - - - - - -

Description:

Example Function

LTR AX Loads the selector in AX into the task register

O D I T S Z A P C MOV Move data - - - - - - - - -
Description:
This instruction copies the contents of the source operand into the destination operand.
General Forms Function
MOV reg,idata Move immediate value idata into register reg
MOV mem,idata Move immediate value idata into memory location mem
MOV regd,regs Move the contents of regs into regd
MOV reg,mem Move the contents of memory location mem into reg
MOV mem,reg Move the contents of reg into memory location mem
Examples

MOV CX,BX Move the contents of BX to CX
MOV MEM,AL Move the contents of AL to the byte at memory location DS:MEM
MOV ECX,MEM Move the contents of the DWORD at DS:MEM to ECX
MOV MEM,3 Move the immediate value 3 to the memory location at DS:MEM
MOV DX,MEM[SI+4] Move the contents of memory location DS:MEM+SI+4 to DX

Intel 80x86 Instruction Set Summary

20

O D I T S Z A P C MOV Move selector/segment - - - - - - - - -
Description:
This instruction copies the contents of the source operand into the destination segment register.
General Forms Function
MOV sreg,reg Move the contents of reg into segment register sreg
MOV sreg,mem Move the contents of memory location mem into segment register

sreg
MOV reg,sreg Move the contents of segment register sreg into register reg
MOV mem,sreg Move the contents of segment register sreg into memory location

mem
Examples

MOV DS,AX Move the contents of AX into DS
MOV ES,ES:[BX+2] Move the contents of the WORD at memory location ES:BX+2 to ES
MOV DX,SS Move the contents of SS into DX
MOV MEM,DS Move the contents of DS into memory location DS:MEM

O D I T S Z A P C
MOV Move special

(80386 or later) - - - - - - - - -

Description:

Example Function

MOV CR0,EAX Move the contents of EAX to Control Register 0
MOV EAX,DR1 Move the contents of DR1 to EAX

O D I T S Z A P C MOVS Move string - - - - - - - - -
Description:
This instruction copies the memory operand specified by DS:SI (or DS:ESI) to the memory
location specified by ES:DI (or ES:EDI). Following the memory copy, SI and DI (or ESI and EDI)
will be incremented or decremented, depending on the state of the direction flag, by an amount
corresponding to the size of the operand transferred.
Example Function
MOVSB Move the byte at memory location DS:SI to memory location ES:DI
MOVSW Move the word at memory location DS:SI to memory location ES:DI
MOVSD Move the dword at memory location DS:ESI to location ES:EDI

O D I T S Z A P C
MOVSX Move and sign extend

(80386 or later) - - - - - - - - -

Description:
This instruction is used to convert a signed 8 bit value into a signed 16 bit value, or a signed 16
bit value into a signed 32 bit value. The sign bit of the source operand will be replicated through
the high byte (for 8 -> 16 extension) or word (for 16 -> 32 bit extension) of the destination
Example Function

MOVSX AX,AL Sign extend AL into AX
MOVSX EDX,DX Sign extend DX into EDX
MOVSZ ECX,MEM Sign extend the word at memory location DS:MEM into ECX

Intel 80x86 Instruction Set Summary

21

O D I T S Z A P C
MOVZX Move and zero extend

(80386 or later) - - - - - - - - -

Description:
This instruction is used to convert an unsigned 8 bit value into an unsigned 16 bit value or an
unsigned 16 bit value into an unsigned 32 bit value. The high byte (for 8 -> 16 bit extension) or
word (for 16 -> 32 bit extension) will be filled with 0.
Example Function

MOVZX AX,AL Zero extend AL into AX
MOVZX EBX,AX Zero extend AX into EBX
MOVZX EDX,MEM Zero extend the word at memory location DS:MEM into EDX

O D I T S Z A P C MUL Unsigned multiplication * - - - ? ? ? ? *
Description:
This instruction performs an unsigned multiply. The flags are left in an indeterminate state except
for OF and CF, which are cleared to 0 if the result of the multiplication is the same size as the
multiplicand.
In the single operand form of the instruction, the result is placed in AX if the operands are BYTE,
DX:AX for WORD operands, and EDX:EAX for DWORD operands. The multiple operand forms of
the instruction only exist on 80386 and later processors
General Forms Function
MUL reg acc <- acc * reg
MUL mem acc <- acc * mem
MUL regd,regs regd <- regd * regs
MUL regd,mem regd <- regd * mem
MUL regd,idata regd <- regd * idata
MUL regd,regs,idata regd <- regs * idata
MUL regd,mem,idata regd <- mem * idata
Example

MUL CL Multiply CL times AL, the product replaces AX
MUL CX Multiply CX times AX, the product replaces DX:AX

O D I T S Z A P C NEG Negate * - - - * * * * *
Description:
This instruction subtracts its operand from 0. This results in the 2’s complement negation of the
operand.
General Form Function
NEG reg Negate the contents or reg
NEG mem Negate the contents of mem.
Example

NEG CX Negate the contents of CX
NEG ARRAY[SI+2] Negate the contents of the specified memory location

O D I T S Z A P C NOP No operation - - - - - - - - -
Description:
This instruction performs no operation.
Example

NOP No operation

Intel 80x86 Instruction Set Summary

22

O D I T S Z A P C NOT Complement or logical negation - - - - - - - - -
Description:
This instruction performs the logical, bitwise complement of its operand. Each bit of the operand
is inverted.
General Form Function
NOT reg Invert the bits of reg
NOT mem Invert the bits of the memory location mem
Example

NOT AX Invert the bits of AX
NOT VAR Invert the bits of memory location VAR
NOT ARRAY[DI] Invert the bits of memory location ARRAY+DI

O D I T S Z A P C OR Logical inclusive OR 0 - - - * * ? * 0
Description:
This instruction performs a logical OR operation between each bit of the source operand and
each bit of the destination operand. The result is stored in the destination.
General Form Function
OR reg,idata Logical OR reg with idata
OR mem,idata Logical OR contents of memory location mem with idata
OR regd,regs Logical OR regd with regs
OR reg,mem Logical OR reg with contents of memory location mem
OR mem,reg Logical OR contents of memory location mem with reg
Examples
OR AL,07FH Sets all but the high bit of AL
OR DATA3,DX Logical OR of word at memory location DS:DATA3 with DX
OR CL,ES:[DI+2] Logical OR of byte at memory location ES:DI+2 with CL
OR BX,CX Logical OR of BX with CX
OR AX,MASK[SI] Logical OR of word at memory location DS:MASK+SI with AX

O D I T S Z A P C OUT Write data to output port - - - - - - - - -
Description:
This instruction writes the value in the accumulator (AL or AX) to the specified data port. Using an
immediate value as the port address allows access to ports 0-255 (0-0FFh). In order to access
any output port address (0-FFFF) it is necessary to use the out dx,ax form of the instruction
General Form Function
OUT idata,acc
OUT DX,acc
Examples
OUT 27h,AL Write the value in AL to port 27h
OUT DX,AX Write the value in AX to port at address in DX

Intel 80x86 Instruction Set Summary

23

O D I T S Z A P C
OUTS Output string

(80186 or later) - - - - - - - - -

Description:
This instruction will write the byte, word, or dword at location DS:SI (DS:ESI for 32 bit operation)
to the output port whose address is in DX. (EDX for 32 bit operation). The SI (ESI) register will
then be adjusted according to the size of the operand and the setting of the direction flag. The
OUTS instruction can be prefixed with a REP prefix, in which case, CX (ECX) contains the
number of times the OUTS instruction is to be repeated.
General Form Function
OUTSB Output byte to port
OUTSW Output word to port
OUTSD Output dword to port
Example

OUTSB Write byte at DS:SI to output port whose address is in DX

O D I T S Z A P C POP Pop data from stack - - - - - - - - -
Description:
This instruction pops the current value from the top of the stack, stores it in the destination, and
adjusts the stack pointer.
General Form Function
POP reg POP top of stack into reg
POP mem POP top of stack into memory location mem
Example

POP CX POP top of stack into CX
POP VAR1 POP top of stack into memory location VAR1

O D I T S Z A P C POP Pop segment register from stack - - - - - - - - -
Description:
This instruction will pop the current value from the top of the stack into the indicated segment
register and adjust the stack pointer. The CS register is not a valid destination, but any other
segment register may be used.
General Form Function
POP sreg POP top of stack into segment register sreg
Example

POP DS POP the top of the stack into DS

Intel 80x86 Instruction Set Summary

24

O D I T S Z A P C
POPA/POPAD Pop all general registers

(80186 or later) - - - - - - - - -

Description:
This instruction will pop all general purpose registers (16 bit for POPA, 32 bit for POPAD) from
the top of the stack and adjust the stack pointer.

The registers are popped in the following order:
 DI, SI, BP, SP, BX, DX, CX, AX

This instruction was introduced with the 80186, and does not exist in earlier processors.
General Form Function
POPA POP 16 bit general registers from stack
POPAD POP 32 bit general registers from stack
Example

POPA

O D I T S Z A P C POPF/POPFD Pop flags from stack ? ? ? ? ? ? ? ? ?
Description:
This instruction pops the FLAGS register (EFLAGS for POPFD) from the top of the stack and
adjusts the stack pointer.
General Form Function

POPF POP flags from top of stack to FLAGS register
POPFD POP flags from top of stack to EFLAGS register
Example

POPF

O D I T S Z A P C PUSH Push data onto stack - - - - - - - - -
Description:
This instruction pushes the operand onto the stack, and adjusts the stack pointer. The operand
pushed becomes the new top of the stack.
General Form Function
PUSH idata PUSH immediate value onto the stack
PUSH reg PUSH contents of reg onto the stack
PUSH mem PUSH contents of memory location mem onto the stack
Example

PUSH 12 PUSH the value 12 onto the stack
PUSH DX PUSH the contents of register DX onto the stack
PUSH TABLE[BX+2] PUSH the contents of the memory location onto the stack

O D I T S Z A P C PUSH Push segment register onto stack - - - - - - - - -
Description:
This instruction will push the contents of the specified segment register onto the stack and adjust
the stack pointer. The operand pushed becomes the new top of the stack.
General Form Function
PUSH sreg PUSH sreg onto the stack
Example

PUSH ES PUSH the contents of ES onto the stack

Intel 80x86 Instruction Set Summary

25

O D I T S Z A P C PUSHA/
PUSHAD Push all general registers onto stack

(80186 or later)

- - - - - - - - -

Description:
This instruction will push the contents of all of the general purpose registers (16 bit for PUSHA,
32 bit for PUSHAD) onto the stack and adjust the stack pointer.

General Form Function

PUSHA PUSH 16 bit general registers onto the stack
PUSHAD PUSH 32 bit general registers onto the stack
Example

PUSHA

O D I T S Z A P C PUSHF/
PUSHFD Push flags onto stack

- - - - - - - - -

Description:
This instruction pushes the FLAGS register (EFLAGS for PUSHFD) onto the top of the stack and
adjusts the stack pointer.
General Form Function

PUSHF PUSH 16 bit flags onto the stack
PUSHFD PUSH 32 bit eflags onto the stack
Example

PUSHF

O D I T S Z A P C RCL Rotate left through carry * - - - - - - - *
Description:
This instruction concatenates the carry flag with the specified operand and rotates the result left
by the specified number of bit positions. For each bit position of rotation, the current contents of
the carry flag goes to the low bit position of the operand, and the high bit of the operand goes to
the carry flag. (Note: on processors prior to the 80386, the only valid value for idata is 1)
General Form Function
RCL reg,idata Rotate register reg left through carry by idata bit positions
RCL mem,idata Rotate memory location mem left by idata bit positions
RCL reg,CL Rotate register reg left by the number of bit positions in CL
RCL mem,CL Rotate memory location mem left by the number of bit posn’s in CL
Example

RCL BX,1 Rotate register BX left through carry by 1 bit position
RCL VAR,CL Rotate memory location VAR left through carry by CL bit positions
RCL DL,CL Rotate register DL left through carry by CL bit positions

Intel 80x86 Instruction Set Summary

26

O D I T S Z A P C RCR Rotate right through carry * - - - - - - - *
Description:
This instruction concatenates the carry flag with the specified operand and rotates the result right
by the specified number of bit positions. For each bit position of rotation, the current contents of
the carry flag goes to the low bit position of the operand, and the high bit of the operand goes to
the carry flag. (Note: on processors prior to the 80386, the only valid value for idata is 1)
General Form Function
RCR reg,idata Rotate register reg right through carry by idata bit positions
RCR mem,idata Rotate memory location mem right by idata bit positions
RCR reg,CL Rotate register reg right by the number of bit positions in CL
RCR mem,CL Rotate memory location mem right by the number of bit posn’s in CL
Example

RCR BX,1 Rotate register BX right through carry by 1 bit position
RCR VAR,CL Rotate memory location VAR right through carry by CL bit positions
RCR DL,CL Rotate register DL right through carry by CL bit positions

O D I T S Z A P C REPcc Repeat string prefix - - - - - - - - -
Description:
The repeat prefix may be applied to any string instruction. When used with a string instruction,
the contents of the CX register (ECX for 32 bit operation) will be decremented and the string
instruction repeated until CX goes to 0. If a REPcc form of the prefix is used, then the state of ZF
is also tested when using CMPS or SCAS instructions.
General Form Function
REP Repeat while CX (ECX) is not 0
REPE Repeat while CX (ECS) is not 0 and ZF is set
REPZ Repeat while CX (ECX) is not 0 and ZF is set. (same as REPE)
REPNE Repeat while CX (ECX) is not 0 and ZF is clear
REPNZ Repeat while CX (ECX) is not 0 and ZF is clear (same as REPNE)
Example

REP MOVSB Repeat MOVSB while CX is not 0
REPZ SCASW Repeat SCSAW while CX is not 0 and ZF is set
REPNE CMPSB Repeat CMPSB while CX is not 0 and ZF is clear

O D I T S Z A P C RET Near return from procedure - - - - - - - - -
Description:
This instruction restores the IP register (EIP for 32 bit operation) to the value it held before the
last CALL instruction. The previous value of IP (EIP) is popped from the stack. If the optional
idata operand is present, the idata value is added to SP (ESP) after the return address is popped
from the stack.
General Form Function

RET Return from near subroutine call
RET idata Return from near subroutine call and adjust stack by idata
Example

RET Return from subroutine
RET 4 Return from subroutine and then add 4 to SP (ESP)

Intel 80x86 Instruction Set Summary

27

O D I T S Z A P C RETF Far return from procedure - - - - - - - - -
Description:
This instruction restores the CS and IP registers (CS and EIP for 32 bit operation) to the values
held before the last CALL instruction. The previous values of IP (EIP) and CS are popped from
the stack. If the optional idata operand is present, the idata value is added to SP (ESP) after the
return address is popped from the stack.
General Form Function
RETF Return from far subroutine call
RETF idata Return from far subroutine call and adjust stack by idata
Example

RETF Return from subroutine call
RETF 8 Return from subroutine call and add 8 to SP (ESP)

O D I T S Z A P C ROL Rotate left * - - - - - - - *
Description:
This instruction rotates the destination operand left by the specified number of bit positions. For
each bit position of rotation, the high bit position of the destination goes to the low bit position and
also to the carry flag. (Note: on processors prior to the 80386, the only valid value for idata is 1)
General Form Function
ROL reg,idata Rotate register reg left by idata bit positions
ROL mem,idata Rotate memory location mem left by idata bit positions
ROL reg,CL Rotate register reg left by the number of bit positions in CL
ROL mem,CL Rotate memory location mem left by the number of bit posn’s in CL
Example

ROL BX,1 Rotate register BX left by 1 bit position
ROL VAR,CL Rotate memory location VAR left by CL bit positions
ROL DL,CL Rotate register DL left by CL bit positions

O D I T S Z A P C ROR Rotate right * - - - - - - - *
Description:
This instruction rotates the destination operand right by the specified number of bit positions. For
each bit position of rotation, the low bit position of the destination operand goes to the high bit
position and also to the carry flag. (Note: on processors prior to the 80386, the only valid value
for idata is 1)
General Form Function
ROR reg,idata Rotate register reg right by idata bit positions
ROR mem,idata Rotate memory location mem right by idata bit positions
ROR reg,CL Rotate register reg right by the number of bit positions in CL
ROR mem,CL Rotate memory location mem right by the number of bit posn’s in CL
Example

ROR BX,1 Rotate register BX right by 1 bit position
ROR VAR,CL Rotate memory location VAR right by CL bit positions
ROR DL,CL Rotate register DL right by CL bit positions

Intel 80x86 Instruction Set Summary

28

O D I T S Z A P C SAHF Store AH to flags - - - - * * * * *
Description:
This instruction transfers the contents of the AH register to the low 8 bit positions of the FLAGS
register (EFLAGS for 32 bit operation).
General Form Function

SAHF Set flags from AH
Example

SAHF Set flags from AH

O D I T S Z A P C SAL Shift left arithmetic * - - - * * ? * *

Description:
This instruction shifts the destination operand left arithmetically by the specified number of bit
positions. The low order bit positions of the destination are set to 0. The high order bits shifted
out of the destination are lost. The arithmetic shift left (SAL) and logical shift left (SHL) are
equivalent operations. (Note: on processors prior to the 80386, the only valid value for idata is 1)
General Form Function
SAL reg,idata Shift register reg left arithmetically by idata bit positions
SAL mem,idata Shift memory location mem left arithmetically by idata bit positions
SAL reg,CL Shift register reg left arithmetically by CL bit positions
SAL mem,CL Shift memory location mem left arithmetically by CL bit positions
Example

SAL BL,1 Shift BL left arithmetically by 1 bit position
SAL VAR,1 Shift memory location VAR left arithmetically by 1 bit position
SAL DX,CL Shift DX left arithmetically by CL bit positions

O D I T S Z A P C SAR Shift right arithmetic * - - - * * ? * *
Description:
This instruction shifts the destination operand right arithmetically by the specified number of bit
positions. The value of the sign bit is replicated to the next lower bit positions, and the low order
bits of the destination value are lost. (Note: on processors prior to the 80386, the only valid value
for idata is 1)
General Form Function
SAR reg,idata Shift register reg right arithmetically by idata bit positions
SAR mem,idata Shift memory location mem right arithmetically by idata bit positions
SAR reg,CL Shift register reg right arithmetically by CL bit positions
SAR mem,CL Shift memory location mem right arithmetically by CL bit positions
Example

SAR BL,1 Shift BL right arithmetically by 1 bit position
SAR VAR,1 Shift memory location VAR right arithmetically by 1 bit position
SAR DX,CL Shift DX right arithmetically by CL bit positions

Intel 80x86 Instruction Set Summary

29

O D I T S Z A P C SBB Subtract with borrow * - - - * * * * *
Description:
This instruction subtracts the source operand and the current value of the carry flag from the
destination operand. This instruction treats the carry flag as a borrow flag from a previous
subtraction.
General Form Function
SBB reg,idata Subtract idata with borrow from register reg
SBB mem,idata Subtract idata with borrow from memory location mem
SBB regd,regs Subtract register regd with borrow from register regs
SBB reg,mem Subtract memory location mem from register reg
SBB mem,reg Subtract register reg from memory location mem
Example

SBB AX,CX Subtract with borrow CX from AX
SBB VAR,DX Subtract with borrow DX from memory location VAR
SBB BL,VAR Subtract with borrow memory location VAR from BL

O D I T S Z A P C SCAS Scan string * - - - * * * * *
Description:
This instruction compares the value in the accumulator (AL, AX or EAX) with the contents of the
memory location specified by ES:DI (or ES:EDI). The flags are set according to the results of the
comparison and the contents of the DI (EDI) register is adjusted by the size of the operand. The
size of the operand is added to DI (EDI) if the direction flag is clear and subtracted from DI (EDI)
if the direction flag is set.

A repeat prefix (REP, REPE, REPZ, REPNE, REPNZ) can be used with this instruction to cause
it to be repeated.
General Form Function

SCASB Scan string byte
SCASW Scan string word
SCASD Scan string double word (80386 or later)
Example

SCASB Compare AL with the byte at ES:DI, set flags, adjust DI by 1
SCASW Compare AX with the word at ES:DI, set flags adjust DI by 2

O D I T S Z A P C
SETcc Set byte on condition

(80386 or later) - - - - - - - - -

Description:

General Form Function

Example

Intel 80x86 Instruction Set Summary

30

O D I T S Z A P C
SGDT Store global descriptor table register

(80286 or later) - - - - - - - - -

Description:

General Form Function

Example

O D I T S Z A P C SHL Shift left logical * - - - * * ? * *
Description:
This instruction shifts the destination operand left logically by the specified number of bit
positions. The low order bit positions of the destination are set to 0. The high order bits shifted
out of the destination are lost. The arithmetic shift left (SAL) and logical shift left (SHL) are
equivalent operations. (Note: on processors prior to the 80386, the only valid value for idata is 1)
General Form Function
SHL reg,idata Shift register reg by idata bit positions
SHL mem,idata Shift memory location mem left by idata bit positions
SHL reg,CL Shift register reg left by CL bit positions
SHL mem,CL Shift memory location mem left by CL bit positions
Example

SHL BL,1 Shift BL left by 1 bit position
SHL VAR,1 Shift memory location VAR left by 1 bit position
SHL DX,CL Shift DX left by CL bit positions

O D I T S Z A P C
SHLD Shift double operand left logical

(80386 or later) * - - - * * ? * *

Description:

General Form Function

Example

O D I T S Z A P C SHR Shift right logical * - - - * * ? * *
Description:
This instruction shifts the destination operand right logically by the specified number of bit
positions. The high order bit positions of the destination are set to 0. The low order bits shifted
out of the destination are lost. (Note: on processors prior to the 80386, the only valid value for
idata is 1)
General Form Function
SHR reg,idata Shift register reg right by idata bit positions
SHR mem,idata Shift memory location mem right by idata bit positions
SHR reg,CL Shift register reg right by CL bit positions
SHR mem,CL Shift memory location mem right by CL bit positions
Example

SHR BL,1 Shift BL right by 1 bit position
SHR VAR,1 Shift memory location VAR right by 1 bit position
SHR DX,CL Shift DX right by CL bit positions

Intel 80x86 Instruction Set Summary

31

O D I T S Z A P C
SHRD Shift double operand right logical

(80386 or later) * - - - * * ? * *

Description:

General Form Function

Example

O D I T S Z A P C
SIDT Store interrupt descriptor table register

(80286 or later) - - - - - - - - -

Description:

General Form Function

Example

O D I T S Z A P C
SLDT Store local descriptor table register

(80286 or later) - - - - - - - - -

Description:

General Form Function

Example

O D I T S Z A P C
SMSW Store machine status word

(80286 or later) - - - - - - - - -

Description:

General Form Function

Example

O D I T S Z A P C STC Set carry flag - - - - - - - - 1
Description:
This instruction will set the carry flag, CF, to 1.
General Form Function
STC Set the carry flag
Example

STC Set the carry flag

Intel 80x86 Instruction Set Summary

32

O D I T S Z A P C STD Set direction flag - 1 - - - - - - -
Description:
This instruction will set the direction flag, DF, to 1. This setting causes string instructions to
decrement the pointer registers.
General Form Function

STD Set the direction flag to 1
Example

STD Set the direction flag to 1

O D I T S Z A P C STI Set interrupt flag - - 1 - - - - - -

Description:
This instruction will set the interrupt flag. When the interrupt flag is set, the processor will respond
to interrupt requests.
General Form Function

STI Set the interrupt flag
Example

STI Set the interrupt flag

O D I T S Z A P C STOS Store string - - - - - - - - -
Description:
This instruction will write the contents of the accumulator (AL, AX or EAX) to the memory location
specified by ES:DI (ES:EDI for 32 bit operations). It then adjusts DI (EDI) according to the size of
the operand the current setting of the direction flag. The operand size is added to DI (EDI) if the
direction flag is clear. It is subtracted from DI (EDI) if the direction flag is set.

A repeat prefix (REP) can be used with this instruction to cause it to be repeated.
General Form Function
STOSB Store string byte
STOSW Store string word
STOSD Store string double word (80386 and later)
Example

STOSB Store contents of AL at memory location ES:DI and adjust DI by 1
STOSW Store contents of AX at memory location ES:DI and adjust DI by 2

O D I T S Z A P C
STR Store task register

(80286 or later) - - - - - - - - -

Description:

General Form Function

Example

Intel 80x86 Instruction Set Summary

33

O D I T S Z A P C SUB Subtract borrow * - - - * * * * *
Description:
This instruction subtracts the source operand from the destination operand. This instruction treats
the carry flag as a borrow flag and will set the carry flag if a borrow occurs.
General Form Function
SUB reg,idata Subtract idata from register reg
SUB mem,idata Subtract idata from memory location mem
SUB regd,regs Subtract register regd from register regs
SUB reg,mem Subtract memory location mem from register reg
SUB mem,reg Subtract register reg from memory location mem
Example

SUB AX,CX Subtract CX from AX
SUB VAR,DX Subtract DX from memory location VAR
SUB BL,VAR Subtract memory location VAR from BL

O D I T S Z A P C TEST Test bits 0 - - - * * ? * 0
Description:
This instruction is used to perform a logical comparison of the bits in the two operands. The
contents of the source and destination registers are bitwise ANDed. The result of the AND
operation is discarded and the flags are set according to the logical result of the AND.
General Form Function
TEST reg,idata Bitwise and register reg with idata and set the flags
TEST mem,idata Bitwise and memory location mem with idata and set the flags
TEST regd,regs Bitwise and register regd with register regs and set the flags
TEST reg,mem Bitwise and register reg with memory location mem and set the flags
TEST mem,reg Bitwise and memory location mem with register reg and set the flags
Example

TEST AL,3Fh AND the contents of AL with 3Fh and set the flags
TEST AX,DX AND the contents of AX with DX and set the flags
TEST VAR,01h AND the contents of memory location VAR with 01h and set flags

O D I T S Z A P C
VERR Verify read access

(80286 or later) - - - - - * - - -

Description:

General Form Function

Example

O D I T S Z A P C
VERW Verify write access

(80286 or later) - - - - - * - - -

Description:

General Form Function

Example

Intel 80x86 Instruction Set Summary

34

O D I T S Z A P C WAIT Wait until not busy - - - - - - - - -
Description:
This instruction causes the processor to go into an idle state until the BUSY pin goes to an
inactive state. It is normally used to synchronize the main processor with a coprocessor such as
the math coprocessor (8087). This instruction should be used after floating point coprocessor
instructions to ensure that the coprocessor instruction has completed prior to accessing the
result.
General Form Function
WAIT Wait for coprocessor not busy
Example

WAIT

O D I T S Z A P C
WBINVD Write and invalidate cache

(80486 or later) - - - - - - - - -

Description:

General Form Function

Example

O D I T S Z A P C
XADD Exchange and add

(80486 or later) * - - - * * * * *

Description:

General Form Function

Example

O D I T S Z A P C XCHG Exchange - - - - - - - - -
Description:
This instruction will exchange the contents of the two operands.
General Form Function
XCHG regd,regs Exchange the contents of register regd with register regs
XCHG reg,mem Exchange the contents of register reg with memory location mem
XCHG mem,reg Exchange the contents of memory location mem with register reg
Example

XCHG AX,DX Exchange the contents of AX with DX
XCHG VAR,CL Exchange the contents of CL with memory location VAR

Intel 80x86 Instruction Set Summary

35

O D I T S Z A P C XLAT Translate using table - - - - - - - - -
Description:
This instruction uses the contents of AL as an index into a table located at the memory location
specified by DS:BX (DS:EBX for 32 bit operation). The contents of AL is replaced by the byte at
the indexed location in the table.
General Form Function

XLAT Translate using table
Example

XLAT Translate AL using table at DS:BX

O D I T S Z A P C XOR Logical exclusive OR 0 - - - * * ? * 0
Description:
This instruction performs a logical exclusive or operation between each bit of the source operand
and each bit of the destination operand. The result is stored in the destination.
General Form Function
XOR reg,idata Logical XOR reg with idata
XOR mem,idata Logical XOR contents of memory location mem with idata
XOR regd,regs Logical XOR regd with regs
XOR reg,mem Logical XOR reg with contents of memory location mem
XOR mem,reg Logical XOR contents of memory location mem with reg
Examples
XOR AL,07FH Inverts all but the high bit of AL
XOR DATA3,DX Logical XOR of word at memory location DS:DATA3 with DX
XOR CL,ES:[DI+2] Logical XOR of byte at memory location ES:DI+2 with CL
XOR BX,CX Logical XOR of BX with CX
XOR AX,MASK[SI] Logical XOR of word at memory location DS:MASK+SI with AX

Intel 80x86 Instruction Set Summary

36

Revision History:
09/05/2001 (GeneA): Initial version completed
09/10/2001 (GeneA); Corrected error in example to MOV instruction

