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Project Description 
 
Waveform synthesis using a wave table 
 
Periodic digital waveforms with arbitrary frequency content can be produced using a table of stored data that 
describes only a portion of the total waveform. The memorized waveform segment, commonly referred to as a 
wave-table, is typically comprised of a single period of a periodic wave from 0o to 360o (or, if the wave is 
symmetric, just 90o must be stored since only the two MSBs must change to define quadrant). The wavetable 
is typically “power of 2” sized, so that as addresses are incremented beyond the wavetable’s upper boundary, 
the lower bits that form the address alias back into the wavetable address space. 
 
The type or shape of waveform stored in memory is typically matched to the requirements of the wave to be 
produced. For example, a sine wave of any frequency can be produced from wavetable data describing a sine-
wave, but it would be difficult to produce the abrupt transitions of a saw-tooth waveform from a sine-wave 
wavetable. 
 
Wavetable data can be used to produce a waveform in two different ways. Every point in the wavetable can be 
accessed in succession using a variable access rate, or the points in the wavetable can be accessed using a 
constant access rate, but with not every stored point being accessed in exact succession. Using the variable 
access rate method, if 1024 points are stored in a wave-table, and that data must be used to produce a 100Hz 
sine wave, then data points would be accessed at rate of 100Hz x 1024 or about 100KHz. If that same wave-
table data were used to produce a 1KHz waveform, then data points would be accessed at a rate of about 
1MHz. Using this method, a simple counter with a variable clock is used to create the wavetable address. 
 
Using the constant access rate method, new data values are read from the wavetable at a fixed frequency, but 
each and every point isn't necessarily read in sequence – some points may be skipped over to create higher 
frequency outputs, or the same point may be read multiple times to create lower frequency outputs. For 
example, assume data in a 1024-point wavetable is accessed at a constant 100KHz rate. If all points are read in 
succession at 100KHz, a waveform of 100KHz/1024 or about 100Hz would be produced. If every third point 
were read at the same rate (so two points are skipped between each point that is read), then a waveform of 
100KHz/(1024/3) or about 300Hz would be produced. If each point were read three times in a row before 
moving to the next address, then a waveform of (100Hz/1024*3) or about 33Hz would result. 
 
 

Wave Table Points

Every third point: 3x higher frequency

Fixed sample rate

Every point repeated three times:

 3x lower frequency
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In the constant access rate method, the wavetable access frequency  𝑓𝑐 remains constant, so new addresses 
into the wavetable must be computed – they can no longer be created by a variable-clock counter. New 
wavetable addresses are computed by adding some integer to the current address. The higher the number 
added to the address, the more points are skipped and the higher the resulting output frequency. In the 
simplest case, an N-bit register holds the current wavetable address, and an integer (0, 1, 2, 3, 11, 19 or 
whatever) is added to the address register each time a new point is accessed. But simply adding the same 
integer (M) would limit the output frequencies  𝑓𝑜 that can be created to integer multiples of the access 
frequency  𝑓𝑐 divided by the number of points in the wavetable (N): 
  

𝑓𝑜 =
𝑀 ∙ 𝑓𝑐

𝑁 
 

 
A better method is to allow different integers to be added to the address between each access. For example, 
with a 1024-point wavetable and a constant time base of 100KHz, taking every point in succession would result 
in a 100Hz waveform (100KHz / 1K points). Taking every other point would result in a 200Hz waveform 
(100KHz/500 points), and taking every third point would result in a 300Hz output. But what if an output of 
250Hz is needed? That could be accomplished by adding 2, then 3, then 2, then 3, and so on. What about 
255Hz? 
 
To generate wavetable addresses suitable for a wide variety of output frequencies from a fixed wavetable, a 
“phase accumulator” can be used. A phase accumulator is a register that contains more bits than are needed 
for a wavetable address, and an adder to add some amount to the accumulator each time a new address is 
needed. Only the upper, most-significant bits of the accumulator are used as a wavetable address – the lower 
bits “accumulate” information from adding new offsets to the wavetable address. As new numbers are added 
into the phase accumulator, the upper bits (the wavetable address) may or may not change, but information is 
always accumulated in the lower bits. For example, a typical accumulator might be 24 bits, but only the upper 
10 bits are needed to address a 1024-entry wavetable. If an added amount is less than 214, then the upper 10-
bits (the wavetable address bits) may not change with that addition, but that added amount accumulates in 
the lower-order bits. This accumulated information can contribute to the upper bits changing with the next 
addition. 

Step

Register

Phase

Register
WavetableAdder

Addr Data
N10

24
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Sel

 
 
 
The amount (M) added into the accumulator changes based on the desired output frequency. The equation 
below shows the relationship between the output frequency 𝑓𝑜, the addend M, the time base clock frequency 
𝑓𝑐, and the largest number an n-bit accumulator can hold (2𝑛). 
 

𝑓𝑜 =
𝑀 ∙ 𝑓𝑐

2𝑛 
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Using a 16-bit accumulator and a 44.1KHz clock frequency, the equation simplifies to: 
 

𝑓𝑜 =
𝑀∙44,100

65,536
     or     𝑓𝑜 = 𝑀 ∙  673 

 
If we use a 14-bit number for M (0 to 16,384), then we can define frequencies from 0 to about 11KHz. As an 
example, let’s say M = 1486, giving an output frequency 𝑓𝑜 of 1KHz. This means if we add 1486 into the 
accumulator at a rate of 44.1KHz, the upper 10 bits of the 16-bit accumulator will pass through their range (0 
to 1024) at a rate of 1KHz. Since these 10 bits are used as the address into a 1024-point sine wavetable, a 1KHz 
sine-wave will be produced. If we later change M to 2972, then the upper 10 bits will go through their range at 
a rate of 2KHz and a 2KHz sine wave will be produced. 
 
Note that if M = 64 (the largest 6-bit binary number), then after 1024 successive additions each point in the 
wavetable will be visited exactly once. At 44.1KHz, 1024 additions results in an output frequency of 
44100/1024, or 43Hz (which agrees with the formula 𝑓𝑜 = 𝑀 ∙  673 above).  At frequencies below 43Hz, the 
amount M added into the accumulator isn’t large enough to cause the wavetable address to change with each 
addition, and the same wavetable point will be accessed on successive reads. At frequencies above 43Hz, the 
wavetable address may be changed by an amount greater than 1 and therefore some wavetable points will be 
skipped. At any given output frequency 𝑓𝑜, the number of samples or points from the wavetable (𝑝) used to 
create one period is given by 

𝑝 =  
2𝑛

𝑀
 , or equivalently,  𝑝 =  

𝑓𝑐

𝑓𝑜
 

 
where 2𝑛 is the largest number the accumulator can hold, M is the addend required to create the output 
frequency 𝑓𝑜, and 𝑓𝑐  is the wavetable access frequency. Nyquist criteria require that 𝑝 be greater than 2 to 
create a minimally recognizable output waveform, but in practice, the larger 𝑝 is, the better (typically, at least 
10 points per period is considered a comfortable minimum). In our example, if our goal is to create waveforms 
up to 10KHz using a 1024-point wavetable, a 16-bit accumulator and a 44.1KHz access frequency, we end up 
with 

𝑝 =  
216 

14859
,  

 
or just 4 points per period at10KHz. Although this is above Nyquist, it will result in a 10KHz waveform with lots 
of quantization noise. To get more points per waveform, we must increase the access frequency 𝑓𝑐 into the 
wavetable. 
 
Output to PWM 
 
Waveform data from the lookup table can be sent directly to the PWM circuit for conversion into an analog 
signal. To get the best possible analog output, the PWM should be run at the highest possible frequency. This 
is to separate the PWM carrier frequency (the “window” frequency) from the encoded analog waveform 
frequency by the widest possible margin, to make output filtering more efficient. Given a maximum system 
clock 𝑓𝑠𝑦𝑠𝑐𝑙𝑘 and n bits of data in the wavetable, the maximum PWM frequency is  

 
𝑓

𝑃𝑊𝑀= 
𝑓𝑠𝑦𝑠𝑐𝑙𝑘

2𝑛
 

 

 
If the wavetable stores 8-bit data and we have a maximum clock frequency of 50MHz, then maximum  𝑓𝑃𝑊𝑀 of 
195KHz is possible. If the synthesizer produces data above this frequency, the PWM cannot consume it; if the 
synthesizer produces data below this frequency, then the potential to create higher fidelity waveforms is being 
wasted. 
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Project Requirements 
 
  

Problem 1 
 
Create a wavetable-based synthesizer that can produce sine waves in the 100Hz – 10KHz range. Connect the 
synthesizer to your PWM circuit (and to the analog filter), and use a scope to validate the output. Run the PWM 
at the maximum possible window frequency (without multiplying the clock to a higher frequency than is directly 
available on your board). 
 
You will find a .csv file (comma-separated value) file on the website that contains 1024 8-bit entries – you can 
make that into a ROM in Verilog or VHDL for inclusion in your project. 
 
When validating your output, be sure 100Hz, 10KHz, and some intermediate frequency sine waves are free of 
distortion and have minimal noise. 
 

Extra Credit 
 
Keeping your PWM window frequency the same, use a 10-bit wavetable instead of an 8-bit table. You will need a 
system clock frequency that is four times faster to account for the extra sample bits, which may mean you need 
to run your synthesizer faster as well. You can get higher clock frequencies by using the clock management tiles 
in the FPGA.  
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# Deliverable Wt Pts Score Lab Assistant Signature Date Wks Late 

P1 

Circuit demonstration 20      

All source files present; well commented; well partitioned; 
easy to follow 

6 
 

Verbal questions answered well 6  

EC 

Circuit demonstration 5      

All source files present; well commented; well partitioned; 
easy to follow 

1 
 

Verbal questions answered well 1  

 

 
 
 
  

Working Design Submission 

I am submitting my own work in this project. I know penalties will be assessed if I submit work for credit that is not my own. 

Point Scale: 4 – Exemplary; 3 –  Complete; 2 – Incomplete; 1 – Minor Effort; 0 – Not Submitted 

 

 

 

      

Print Name  Sign Name  Date 

 

  

Optional Report Wt Pts Score Lab Assistant Signature Date Wks Late 

Design intent/problem clear 1      

Good diagrams, well written partition description 1  

Well written technical descriptions 1  

Signals/blocks identified and described 1  

Good state & other diagrams 1  
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List and describe what is working: 
 
 
 
 
 
 
List and describe what is not working: 
 
 
 
 
 
 
 
State what you would do if you continued on this design: 
 
 
 
 
 
 
 

  
 

Non-Working Design Submission 

I am submitting my own work in this project. I know penalties will be assessed if I submit work for credit that is not my own. 

Point Scale: 4 – Exemplary; 3 –  Complete; 2 – Incomplete; 1 – Minor Effort; 0 – Not Submitted 

 

 

 

      

Print Name  Sign Name  Date 

 

  

Required Report Wt Pts Score Lab Assistant Signature Date Wks Late 
Design intent/problem clear 3      
High-level design-to specs and design context clear 2  
Design status clear (working and non-working) 2  
Good background materials 5  
Good diagrams, well written partition description 3  
Well written technical descriptions 5  
Signals and blocks identified and described 2  
Good state diagrams & other diagrams 3  
Good discussion of what went right and wrong 3  
Meaningful plan of action for continued work 2  
Meaningful conclusion 2  


