
Information Theory and Huffman Coding

• Consider a typical Digital Communication System:

• The “channel” could be a physical communication channel or

just a CD, hard disk, etc. in a digital storage system.

• The purpose of a communication system is to convey/transmit

messages or information.

bit stream

bit stream

A/D Conversion

Sampling and

Quantization

Source Encoder

Channel Encoder

Modulator

Channel

D/A Conversion

Source Decoder

Channel Decoder

Demodulator

����

����

bit stream

bit stream

����

	���

noise

�
���

�
���

Elements of Information Theory

• In 1948, Claude Shannon provided a mathematical theory of

communications, now known as information theory. This theory

forms the foundation of most modern digital communication

systems.

• Information theory provides answers to such fundamental

questions like:

� What is information --- how to quantify it? What is the

irreducible complexity, below which a signal cannot be

compressed? (Source entropy)

� What is the ultimate transmission rate (theoretical limit) for

reliable communication over a noisy channel? (Channel

coding theorem)

• Why digital communication (and not analog), since it involves lot

more steps?

It has the ability to combat noise using channel coding techniques.

• We will consider only the problem of source encoding (and

decoding).

• A discrete source (of information) generates one of � possible

symbols from a source alphabet set �
 ���, ��,⋯ , �����, in every

unit of time.

 � ∈ �
 ���, ��,⋯ , �����

� � is the alphabet size and � is the set of source symbols.

• Example:

Discrete

Source

� A piece of text in the English language: �
 ��, �,⋯ , ��;
�
 26.

� Analog signal ����, followed by sampling and quantization.

���� 	� !"#$	%&&&&' ���� 	() *+,-$	+.	/	0,+�	%&&&&&&&&&&&&' �
 �0, 1,⋯ ,255�; 		�
 256.
• How do we represent each of these symbols �
 ���, ��, ⋯ , �����

for storage/transmission?

• Use a binary encoding of the symbols; i.e., assign a binary string

(codeword) to each of the symbols.

• If we use codewords with 	 bits each, we will have 26 unique

codewords and hence can represent 26 unique symbols.

• Conversely, if there are � different symbols, we need at least

	
 7log;���< bits to represent each symbol.

� For example, if we have 100 different symbols, we need at least

7log;�100�<
 76.64<
 7 bits to represent each symbol. Note

that 2?
 128 A 100 but	2B
 64 C 100.

A possible mapping of the 100 symbols into 7-bit codewords:

Source symbol Binary codeword

�� 0000000

�� 0000001

�; 0000010

⋮ ⋮
�EE 1100011

� For example, if we quantize a signal into 7 different levels, we

need 7log;�7�<
 72.807<
 3 bits to represent each symbol.

A possible mapping of the 7 quantized levels into 3-bit

codewords:

Symbol 0 1 2 3 4 5 6

Codeword 000 001 010 011 100 101 110

• In both examples above, all codewords are of the same length.

Therefore, the average codeword length (per symbol) is 7

bits/symbol and 3 bits/symbol, respectively, in the two cases.

• If we know nothing about the source --- in particular, if we do not

know the source statistics --- this is possibly the best we can do.

• An illustration of the encoder for the 7-level quantizer example

above:

• A fundamental premise of information theory is that a (discrete)

source can be modeled as a probabilistic process.

• The source output can be modeled as a discrete random variable �,

which can take values in set �
 ���, ��, ⋯ , �����, with

corresponding probabilities �G�, G�, ⋯ , G����; i.e., the probability

of occurrence of each symbol is given by:

H��
 �I�
 GI,				�
 0, 1,⋯ ,� J 1.
Being probabilities, the numbers GI must satisfy

GI K 0			and			 O GI
���

IP�

 1.

• Shannon introduced the idea of “information gained” by

observing an event ��
 �I� as follows:

001011010101001000 1, 3, 2, 5, 1, 0 Discrete

Source

(Quantizer)

Encoder

Q��I�
 J log;�H��
 �I��
 J log; GI
 log; R 1GIS 	bits.

• The base for the logarithm depends on the units for measuring

information. Usually, we use base 2, and the resulting unit for

information is “binary digits” or “bits.”

• Notice that, each time the source outputs a symbol, the information

gain would be different depending on the specific symbol

observed.

• The entropy X��� of a source is defined as the average

information content per source symbol:

X���
 O GIQ��I�
���

IP�

 JO GI log; GI

���

IP�

 O GI log; R 1GIS 	bits.

���

IP�

• By convention, in the above formula, we set 0 log 0
 0.

• The entropy of a source quantifies the “randomness” of a source. It

is also a measure of the rate at which a source produces

information.

• Higher the source entropy, more the uncertainty associated with a

source output and higher the information associated with the

source.

Example:

Consider a coin tossing scenario. Each coin-toss can produce two

possible outcomes: Head or Tail denoted as �X, Y�.

Note that this is a random source since the outcome of a coin-toss

cannot be predicted or known upfront and the outcome will not be the

same if we repeat the coin-toss.

 Let us consider a few cases:

• Fair coin: Here, the two outcomes Head and tail are equally likely.

GZ
 G[
 0.5. Therefore,

Q�X�
 Q�Y�
 J log; 0.5
 J�J1�
 1	bit.
X���
 GZQ�X� \ G[Q�Y�
 0.5�1� \ 0.5�1�
 1	bit.

• Biased coin: GZ
 0.9 and G[
 0.1. Therefore,

Q�X�
 J log; 0.9
 0.152	bit	and	Q�Y�
 J log; 0.1
 3.32	bit	
X���
 0.9�0.152� \ 0.1�3.32�
 0.469	bit.

• Very Biased coin: GZ
 0.99 and G[
 0.01. Therefore,

Q�X�
 J log; 0.99
 0.0145	bit	and	Q�Y�
 J log; 0.01
 6.64	bit	
X���
 0.99�0.0145� \ 0.01�6.64�
 0.081	bit.

• Extremely Biased coin: GZ
 0.999 and G[
 0.001.

Exercise for you

Example:

Consider the previous 7-level quantizer, where the probabilities of the

different levels are as follows:

Symbol �I Probability GI Information (in bits)

Q��I�
 J log; GI

0 1 2⁄ 1

1 1 4⁄ 2

2 1 8⁄ 3

3 1 16⁄ 4

4 1 32⁄ 5

5 1 64⁄ 6

6 1 64⁄ 6

Source entropy:

X���
 JO GI log; GI
���

IP�

 J _12 log;

1
2 \

1
4 log;

1
4 \⋯\ 1

64 log;
1
64`

 _12 \
1
2 \

3
8 \

1
4 \

5
32 \

3
32 \

3
32`

63
32
 1.96875	bit.

What is the significance of entropy?

• For our source �, all the symbols in �0, 1,⋯ , 6� are not equally

likely (equiprobable). We may therefore use a variable length code

which assigns fewer bits (shorter codeword) to encode symbols

with larger probability (e.g., symbol 0, since G�
 �
;) and more bits

(longer codeword) to encode symbols with smaller probability

(e.g., symbol 6 since GB
 �
Ba).

• Suppose

b� = # bits used to encode 0, b� = # bits used to encode 1, …,

bB = # bits used to encode 6.

• Then average codeword length is defined as:

b ̅
 O bIGI
���

IP�

 and variance of codeword length is defined as:

d;
 O GIebI J bf̅;
���

IP�

• For a fixed length code, we saw earlier that

bI
 3, �
 0, 1,⋯ 6	 ⇒ b ̅
 O 3GI
���

IP�

 3O GI

���

IP�

 3

 and consequently d;
 0.

• For a given source, what is the least b ̅we can get, using a variable

length code?

Prefix-free code

• Note that, if we have a variable length code, it must be uniquely

decodable; i.e., the original source sequence must be recoverable

from the binary bit stream.

• Consider a source producing three symbols �
 ��, �, h�. Suppose

we use the following binary encoding:

Symbol a b c

Codeword 0 1 01

If we receive a bit stream, say “010” --- it may correspond to

source symbols “aba” or “ca”

Hence, this is not uniquely decodable (and hence not of any use).

• One way to ensure that a code is uniquely decodable is to have it

satisfy the so-called prefix-free condition.

• A code is said to be prefix-free if no codeword is the prefix (initial

part) of any other codeword.

• Example 1:

Symbol a b c

Codeword 0 1 01

Codeword “0” is a prefix of codeword “01.” So this code does not

satisfy the prefix-free condition. The above code is NOT a prefix-

free code.

• Example 2:

Symbol a b c

Codeword 0 10 11

This code satisfies the prefix condition. It is a prefix-free code

• Result: A prefix-free code is uniquely decodable.

• Prefix-free codes are also referred to as instantaneous codes.

• We will study an important prefix-free code called the Huffman

code.

Huffman Code

• The algorithm is best illustrated by means of an example.

• Consider a source which generates one of five possible symbols

�
 ��, �, h, i, j�. The symbols occur with corresponding

probabilities �0.2, 0.4, 0.05, 0.1, 0.25�.
• Arrange the symbols in descending order of their probability of

occurrence.

• Successively reduce the number of source symbols by replacing

the two symbols having least probability, with a “compound

symbol.” This way, the number of source symbols is reduced by

one at each stage.

• The compound symbol is placed at an appropriate location in the

next stage, so that the probabilities are again in descending order.

Break ties using any arbitrary but consistent rule.

• Code each reduced source, starting with the smallest source and

working backwards.

• Illustration of the above steps:

Symbol Prob. 1 2 3 Codeword

b 0.4 0.4 0.4 0.6 1

e 0.25 0.25 0.35 0.4 01

a 0.2 0.2 0.25 000

d

c

0.1

0.05

0.15 0010

0011

001

000
01

00

0011

0010

0

1

Code Assignment:

Symbol Prob. (GI) Codeword Length (bI)

a 0.2 000 3

b 0.4 1 1

c 0.05 0011 4

d 0.1 0010 4

e 0.25 01 2

• Average codeword length of the code we designed:

b ̅
 O bIGI
a

IP�

 0.2�3� \ 0.4�1� \ 0.05�4� \ 0.1�4� \ 0.25�2�

 2.1	bit/symbol.
• Compare this with entropy of the source for which we designed the

code

X���
 JO GI log; GI
���

IP�
 J�0.2 log; 0.2 \ 0.4 log; 0.4 \ 0.1 log; 0.1
\ 0.05 log; 0.05 \ 0.25 log; 0.25�
 2.04	bit C b.̅

• Compare this with a fixed length encoding scheme, where we

would require 7log;�5�<
 72.32<
 3 bit/symbol.

• The resulting code is called a Huffman code. It has many

interesting properties. In particular, it is a prefix-free code (no

codeword is the prefix of any other codeword) and hence uniquely

decodable.

• Conclusion: If the symbols are not equiprobable, a (variable

length) Huffman code would in general result in a smaller b ̅than a

fixed length code.

Decoding

• For the source in the previous example, consider a symbol

sequence, and its encoding using the Huffman code we designed:

�ijh���j → 0000010010011100000001

• How do we decode this binary string using the Huffman code

table?

Symb. Codeword

a 000

b 1

c 0011

d 0010

e 01

ooo0010010011100000001 → �oopo010011100000001
→ �iop0011100000001 → �ijoopp100000001
→ �ijhp00000001 → �ijh�ooo0000
→ �ijh��ooo01 → �ijh���op → �ijh���j

• Exercise: Decode the binary string 100000101010000010

Huffman coding example (with ties)

• While arranging the symbols in descending order, one often

encounters ties (symbols with the same probability). This is

particularly true when the probability of a combined symbol is

equal to that of an original symbol.

• In general, ties are broken with a consistent rule. Two common

rules to deal with ties are illustrated below.

Combined symbol placed as low as possible

Symbol Prob. GI 1 2 3 Codeword bI
a 0.4 0.4 0.4 0.6 1 1

b 0.2 0.2 0.4 0.4 01 2

c 0.2 0.2 0.2 000 3

d

e

0.15

0.05

0.2 0010

0011

4

4

Average codeword length of the code we designed:

b�q
 O bIGI
a

IP�

 0.4�1� \ 0.2�2� \ 0.2�3� \ 0.15�4� \ 0.05�4�

 2.2	bit/symbol.
Variance of codeword lengths:

d�;
 OebI J b�qf;GI
a

IP�
 0.4�1 J 2.2�; \ 0.2�2 J 2.2�; \ 0.2�3 J 2.2�;
\ 0.15�4 J 2.2�; \ 0.05�4 J 2.2�;
 1.36.

00
1

0

01

001

000

0011

0010

Combined symbol placed as high as possible

Symbol Prob.	GI 1 2 3 Codeword bI

a 0.4 0.4 0.4 0.6 00 2

b 0.2 0.2 0.4 0.4 10 2

c 0.2 0.2 0.2 11 2

d

e

0.15

0.05

0.2 010

011

3

3

Average codeword length of the code we designed:

b;q
 O bIGI
a

IP�

 0.4�2� \ 0.2�2� \ 0.2�2� \ 0.15�3� \ 0.05�3�

 2.2	bit/symbol.

Variance of codeword lengths:

d;;
 OebI J b;qf;GI
a

IP�
 0.4�2 J 2.2�; \ 0.2�2 J 2.2�; \ 0.2�2 J 2.2�;
\ 0.15�3 J 2.2�; \ 0.05�3 J 2.2�;
 0.16.

• Note that the codes designed by either rule have the same average

codeword length b.̅ However, the first rule results in a larger

variance (measure of variability between codeword lengths) than

the second rule.

Exercise: Compute the entropy X��� of the above source and

compare with b.̅

011

1

0

01

00

11

10

010

Shannon’s source coding theorem

• What is the smallest b ̅that can be achieved for a given source using

a variable length code?

Theorem: Let � be a discrete source with entropy X���. The average

codeword length for any distortionless encoding of � is bounded by

b ̅ K X���.

In other words, no codes exist that can losslessly represent � if the

average codeword length b ̅ C X���.

Result: In general, the Huffman codes satisfy

X��� r b ̅ C X��� \ 1.

Exercise: Verify that the above is true for the previous Huffman code

examples.

Note: We can refine this result by using higher order codes, where we

encode a sequence of � symbols at a time (instead of one symbol at a

time). In this case

X��� r b ̅ C X��� \ 1
�.

