Information Theory and Huffman Coding

¢ Consider a typical Digital Communication System:

x(t)

— >

A/D Conversion
Sampling and
Quantization

x[n]

A 4

Source Encoder

bit stream
\4

Channel Encoder

bit stream
\ 4

Modulator

y(t)

D/A Conversion

A

()

Source Decoder

A

bit stream

Channel Decoder

A 4

A

Demodulator

A

r(t)

Channel

T noise

bit stream

e The “channel” could be a physical communication channel or
just a CD, hard disk, etc. in a digital storage system.

® The purpose of a communication system is to convey/transmit
messages or information.

Elements of Information Theory

In 1948, Claude Shannon provided a mathematical theory of
communications, now known as information theory. This theory
forms the foundation of most modern digital communication
systems.

Information theory provides answers to such fundamental
questions like:

o What is information --- how to quantify it? What is the
irreducible complexity, below which a signal cannot be
compressed? (Source entropy)

o What is the ultimate transmission rate (theoretical limit) for
reliable communication over a noisy channel? (Channel
coding theorem)

Why digital communication (and not analog), since it involves lot
more steps?
It has the ability to combat noise using channel coding techniques.

We will consider only the problem of source encoding (and
decoding).

A discrete source (of information) generates one of N possible
symbols from a source alphabet set § = {sg,S1,**,Sy—1}, in every
unit of time.

Discrete

- v X €S8 ={s0,51,"", Sn-1}
Source

o N is the alphabet size and S is the set of source symbols.

Example:

o A piece of text in the English language: § = {a, b, -+, z};
N = 26.

o Analog signal x(t), followed by sampling and quantization.
sample quantize to 8 bits

x(t) — x[n] >»§ ={0,1,---,255}; N = 256.
How do we represent each of these symbols § = {sg, 1, **, Sy—1}
for storage/transmission?

Use a binary encoding of the symbols; i.e., assign a binary string
(codeword) to each of the symbols.

If we use codewords with r bits each, we will have 2" unique
codewords and hence can represent 2" unique symbols.

Conversely, if there are N different symbols, we need at least
r = [log, (N)] bits to represent each symbol.

o For example, if we have 100 different symbols, we need at least
[log,(100)] = [6.64] = 7 bits to represent each symbol. Note
that 27 = 128 > 100 but 2° = 64 < 100.

A possible mapping of the 100 symbols into 7-bit codewords:

Source symbol | Binary codeword
So 0000000
S1 0000001
So 0000010
S99 1100011

o For example, if we quantize a signal into 7 different levels, we
need [log,(7)] = [2.807] = 3 bits to represent each symbol.

A possible mapping of the 7 quantized levels into 3-bit
codewords:

Symbol |0 | 2 3 4 5 6
Codeword | 000 001 (010 |O11 |100 |101 |110

In both examples above, all codewords are of the same length.
Therefore, the average codeword length (per symbol) is 7
bits/symbol and 3 bits/symbol, respectively, in the two cases.

If we know nothing about the source --- in particular, if we do not
know the source statistics --- this is possibly the best we can do.

An illustration of the encoder for the 7-level quantizer example
above:

Discrete 1,3,2,5,1,0
Source
(Quantizer)

001011010101001000
Encoder >

A 4

A fundamental premise of information theory is that a (discrete)
source can be modeled as a probabilistic process.

The source output can be modeled as a discrete random variable X,
which can take values in set § = {sg, Sy, ***, Sy—1}, With
corresponding probabilities {py, p1, -+, Py—1}; 1.€., the probability
of occurrence of each symbol is given by:
P[X =s,]=p, n=01-,N—1.
Being probabilities, the numbers p,, must satisfy
N-1
pn =0 and pn = 1.

n=0

Shannon introduced the idea of “information gained” by
observing an event {X = s,} as follows:

1
[(50) = ~10ga[PLX = 5,}] = ~logz py = oz () bits.
n
The base for the logarithm depends on the units for measuring
information. Usually, we use base 2, and the resulting unit for
information is “binary digits” or “bits.”

Notice that, each time the source outputs a symbol, the information
gain would be different depending on the specific symbol
observed.

The entropy H(X) of a source is defined as the average
information content per source symbol:

N-1 N-1 N-1 1
H(X) = z pnl(sn) = — Z Pnl0g2 Dn = Z Pn log> (—) bits.
- - — Pn
n=0 n=0 n=0

By convention, in the above formula, we set 0log 0 = 0.

The entropy of a source quantifies the “randomness” of a source. It
1s also a measure of the rate at which a source produces
information.

Higher the source entropy, more the uncertainty associated with a
source output and higher the information associated with the
source.

Example:

Consider a coin tossing scenario. Each coin-toss can produce two
possible outcomes: Head or Tail denoted as {H, T}.

Note that this is a random source since the outcome of a coin-toss
cannot be predicted or known upfront and the outcome will not be the
same if we repeat the coin-toss.

Let us consider a few cases:

¢ Fair coin: Here, the two outcomes Head and tail are equally likely.
py = pr = 0.5. Therefore,
I(H) = I(T) = —log, 0.5 = —(~1) = 1bit
H(X) = puyl(H) + prI(T) = 0.5(1) + 0.5(1) = 1bit.

e Biased coin: py = 0.9 and p; = 0.1. Therefore,
I(H) = —log, 0.9 = 0.152 bitand I(T) = —log, 0.1 = 3.32 bit
H(X) = 0.9(0.152) + 0.1(3.32) = 0.469 bit.

e Very Biased coin: py = 0.99 and py = 0.01. Therefore,
I(H) = —log, 0.99 = 0.0145 bitand I(T) = —log, 0.01
= 6.64 bit
H(X) = 0.99(0.0145) + 0.01(6.64) = 0.081 bit.

e Extremely Biased coin: py = 0.999 and p; = 0.001.
Exercise for you

Example:

Consider the previous 7-level quantizer, where the probabilities of the
different levels are as follows:

Symbol s, Probability p,, | Information (in bits)
I(sp) = —log, py
0 1/2 |
1 1/4 2
2 1/8 3
3 1/16 4
4 1/32 5
5 1/64 6
6 1/64 6

Source entropy:

HX) =— Z Pn l0g, pn
n=0

= [11 L. 1 1+]]
2 ng Og; 64 o2 " 64
[2+ + i2 +§+— 32] —196875b1t

What is the significance of entropy?

e For our source X, all the symbols in {0, 1, -+, 6} are not equally
likely (equiprobable). We may therefore use a variable length code
which assigns fewer bits (shorter codeword) to encode symbols
with larger probability (e.g., symbol 0, since py = %) and more bits
(longer codeword) to encode symbols with smaller probability
(e.g., symbol 6 since pg = 6—14).

e Suppose
l, = # bits used to encode 0, [; = # bits used to encode 1, ...,
l¢ = # bits used to encode 6.

e Then average codeword length is defined as:

N-1
[= Z Lnpn
n=0

and variance of codeword length is defined as:

N-1
0% = 2 pn(ln - Z)Z
n=0

¢ For a fixed length code, we saw earlier that

N-1 N-1
l,=3,n=0,1,---6 :>l‘=z3pn=3zpn=3
n=0 n=0

and consequently a2 = 0.

e For a given source, what is the least [we can get, using a variable
length code?

Prefix-free code

e Note that, if we have a variable length code, it must be uniquely
decodable; i.e., the original source sequence must be recoverable
from the binary bit stream.

e Consider a source producing three symbols § = {a, b, c}. Suppose
we use the following binary encoding:

Symbol |a|b|c
Codeword |0 1|01

If we receive a bit stream, say “010” --- it may correspond to
source symbols “aba” or “ca”

Hence, this is not uniquely decodable (and hence not of any use).

¢ One way to ensure that a code is uniquely decodable is to have it
satisfy the so-called prefix-free condition.

® A code is said to be prefix-free if no codeword is the prefix (initial
part) of any other codeword.

e Example 1:

Symbol | a b c
Codeword | O 1 01

Codeword “0” 1s a prefix of codeword “01.” So this code does not
satisfy the prefix-free condition. The above code is NOT a prefix-
free code.

Example 2:

Symbol |a b c
Codeword | O 10 11

This code satisfies the prefix condition. It is a prefix-free code
Result: A prefix-free code is uniquely decodable.
Prefix-free codes are also referred to as instantaneous codes.

We will study an important prefix-free code called the Huffman
code.

Huffman Code

The algorithm is best illustrated by means of an example.

Consider a source which generates one of five possible symbols
S ={a,b,c,d,e}. The symbols occur with corresponding
probabilities {0.2, 0.4, 0.05, 0.1, 0.25}.

Arrange the symbols in descending order of their probability of
occurrence.

Successively reduce the number of source symbols by replacing
the two symbols having least probability, with a “compound
symbol.” This way, the number of source symbols is reduced by
one at each stage.

The compound symbol is placed at an appropriate location in the
next stage, so that the probabilities are again in descending order.
Break ties using any arbitrary but consistent rule.

Code each reduced source, starting with the smallest source and
working backwards.

[llustration of the above steps:

Symbol Prob. 1 2 3 Codeword
b 0.4 0.4 0.4 06— 1

e 0.25 0.25 0354 04— 01

a 0.2 02 Y 025701 000

d 0.1 0010, 0.1555 0010

c 0.05 — 0011

0011

Code Assignment:

Symbol Prob. (p,,) Codeword Length (1)

a 0.2 000 3
b 0.4 1 1
c 0.05 0011 4
d 0.1 0010 4
e 0.25 01 2

e Average codeword length of the code we designed:
4

[= L,p, =0.2(3)+0.4(1) + 0.05(4) + 0.1(4) + 0.25(2)
n=0
= 2.1 bit/symbol.
e Compare this with entropy of the source for which we designed the
code

N-1
HX) =— Z Pn l0g; pn
n=0

= —[0.2log, 0.2 + 0.4log, 0.4 + 0.110g, 0.1
+ 0.05log, 0.05 + 0.25log, 0.25] = 2.04 bit < L.

e Compare this with a fixed length encoding scheme, where we
would require [log,(5)] = [2.32] = 3 bit/symbol.

® The resulting code is called a Huffman code. It has many
interesting properties. In particular, it is a prefix-free code (no

codeword is the prefix of any other codeword) and hence uniquely
decodable.

¢ Conclusion: If the symbols are not equiprobable, a (variable

length) Huffman code would in general result in a smaller [than a
fixed length code.

Decoding

¢ For the source in the previous example, consider a symbol
sequence, and its encoding using the Huffman code we designed:

adecbaae — 0000010010011100000001

e How do we decode this binary string using the Huffman code
table?

Symb. Codeword

a 000

b |

c 0011
d 0010
e 01

0000010010011100000001 —» a0010010011100000001
— ad010011100000001 - ade0011100000001
— adec100000001 — adecb0000000
— adecba00001 — adecbaa01 — adecbaae

e Exercise: Decode the binary string 100000101010000010

Huffman coding example (with ties)

® While arranging the symbols in descending order, one often
encounters ties (symbols with the same probability). This is
particularly true when the probability of a combined symbol is
equal to that of an original symbol.

® |n general, ties are broken with a consistent rule. Two common
rules to deal with ties are illustrated below.

Combined symbol placed as low as possible

Symbol Prob.p, 1 2 3 Codeword [,

a 0.4 0.4 0.4 0.6 1 1

b 0.2 0.2 0.4 m4_>0.4—l 01 2

c 0.2 0.2 Oﬂ_’ 0.2 0 000 3

d 0.15 9010,.0.2 0010 4
] 7 oo

e 0.05 0011 4

0011

Average codeword length of the code we designed:

4
[, = Z L,pn, = 0.4(1) + 0.2(2) + 0.2(3) + 0.15(4) + 0.05(4)

n=0
= 2.2 bit/symbol.
Variance of codeword lengths:

4
0_12 = Z(ln - l_l)zpn
n=0

=0.4(1—-22)2+0.2(2—2.2)2+ 0.2(3 — 2.2)2
+0.15(4 — 2.2)% 4+ 0.05(4 — 2.2)% = 1.36.

Combined symbol placed as high as possible

Symbol Prob Dn 3 Codeword [,
a —> O 4 0.6-% 00 2
b 0.4 04— 10 2
c 0 2 0 02 01 11 2
d O 15 010 010 3
e 0.05 011 3

011

Average codeword length of the code we designed:
l, = 2 L,pn = 0.4(2) +0.2(2) + 0.2(2) + 0.15(3) + 0.05(3)
= 2.2 bit/symbol.
Variance of codeword lengths:

4
0_22 = Z(ln - l_Z)zpn
n=0

=0.4(2-22)2+02(2—22)2+0.2(2 — 2.2)2
+0.15(3 — 2.2)% 4+ 0.05(3 — 2.2)2 = 0.16.

¢ Note that the codes designed by either rule have the same average
codeword length [. However, the first rule results in a larger
variance (measure of variability between codeword lengths) than
the second rule.

Exercise: Compute the entropy H(X) of the above source and
compare with [.

Shannon’s source coding theorem

e What is the smallest [that can be achieved for a given source using
a variable length code?

Theorem: Let X be a discrete source with entropy H(X). The average
codeword length for any distortionless encoding of X is bounded by
[> H(X).

In other words, no codes exist that can losslessly represent X if the
average codeword length | < H(X).

Result: In general, the Huffman _codes satisfy
HX)<I<HX)+1.

Exercise: Verify that the above is true for the previous Huffman code
examples.

Note: We can refine this result by using higher order codes, where we
encode a sequence of n symbols at a time (instead of one symbol at a
time). In this case

HX) <I< HX) +%.

