Information Theory and Huffman Coding

• Consider a typical Digital Communication System:

- The "channel" could be a physical communication channel or just a CD, hard disk, etc. in a digital storage system.
- The purpose of a communication system is to convey/transmit messages or information.

Elements of Information Theory

- In 1948, Claude Shannon provided a mathematical theory of communications, now known as **information theory**. This theory forms the foundation of most modern digital communication systems.
- Information theory provides answers to such fundamental questions like:
 - What is information --- how to quantify it? What is the irreducible complexity, below which a signal cannot be compressed? (Source entropy)
 - What is the ultimate transmission rate (theoretical limit) for reliable communication over a noisy channel? (Channel coding theorem)
- Why digital communication (and not analog), since it involves lot more steps?
 It has the ability to combat noise using channel coding techniques.
- We will consider only the problem of source encoding (and decoding).
- A discrete source (of information) generates one of N possible symbols from a source alphabet set $S = \{s_0, s_1, \dots, s_{N-1}\}$, in every unit of time.

Discrete Source $X \in S = \{s_0, s_1, \cdots, s_{N-1}\}$

- \square N is the alphabet size and S is the set of source symbols.
- Example:

- A piece of text in the English language: $S = \{a, b, \dots, z\};$ N = 26.
- Analog signal x(t), followed by sampling and quantization. $x(t) \xrightarrow{\text{sample}} x[n] \xrightarrow{\text{quantize to 8 bits}} S = \{0, 1, \dots, 255\}; N = 256.$
- How do we represent each of these symbols $S = \{s_0, s_1, \dots, s_{N-1}\}$ for storage/transmission?
- Use a binary encoding of the symbols; i.e., assign a binary string (codeword) to each of the symbols.
- If we use codewords with r bits each, we will have 2^r unique codewords and hence can represent 2^r unique symbols.
- Conversely, if there are N different symbols, we need at least $r = \lceil \log_2(N) \rceil$ bits to represent each symbol.
 - For example, if we have 100 different symbols, we need at least $[\log_2(100)] = [6.64] = 7$ bits to represent each symbol. Note that $2^7 = 128 > 100$ but $2^6 = 64 < 100$.

A possible mapping of the 100 symbols into 7-bit codewords:

Source symbol	Binary codeword
s ₀	0000000
<i>s</i> ₁	0000001
<i>S</i> ₂	0000010
•	•
S99	1100011

For example, if we quantize a signal into 7 different levels, we need [log₂(7)] = [2.807] = 3 bits to represent each symbol.

A possible mapping of the 7 quantized levels into 3-bit codewords:

Symbol	0	1	2	3	4	5	6
Codeword	000	001	010	011	100	101	110

- In both examples above, all codewords are of the same length. Therefore, the average codeword length (per symbol) is 7 bits/symbol and 3 bits/symbol, respectively, in the two cases.
- If we know nothing about the source --- in particular, if we do not know the source statistics --- this is possibly the best we can do.
- An illustration of the encoder for the 7-level quantizer example above:

- A fundamental premise of information theory is that a (discrete) source can be modeled as a probabilistic process.
- The source output can be modeled as a discrete random variable X, which can take values in set S = {s₀, s₁, ..., s_{N-1}}, with corresponding probabilities {p₀, p₁, ..., p_{N-1}}; i.e., the probability of occurrence of each symbol is given by:

$$P[X = s_n] = p_n, \quad n = 0, 1, \cdots, N - 1.$$

Being probabilities, the numbers p_n must satisfy

$$p_n \ge 0$$
 and $\sum_{n=0}^{N-1} p_n = 1.$

• Shannon introduced the idea of "information gained" by observing an event $\{X = s_n\}$ as follows:

$$I(s_n) = -\log_2[P\{X = s_n\}] = -\log_2 p_n = \log_2\left(\frac{1}{p_n}\right)$$
 bits.

- The base for the logarithm depends on the units for measuring information. Usually, we use base 2, and the resulting unit for information is "binary digits" or "bits."
- Notice that, each time the source outputs a symbol, the information gain would be different depending on the specific symbol observed.
- The entropy *H*(*X*) of a source is defined as the **average information content per source symbol**:

$$H(X) = \sum_{n=0}^{N-1} p_n I(s_n) = -\sum_{n=0}^{N-1} p_n \log_2 p_n = \sum_{n=0}^{N-1} p_n \log_2 \left(\frac{1}{p_n}\right) \text{ bits.}$$

- By convention, in the above formula, we set $0 \log 0 = 0$.
- The entropy of a source quantifies the "randomness" of a source. It is also a measure of the rate at which a source produces information.
- Higher the source entropy, more the uncertainty associated with a source output and higher the information associated with the source.

Example:

Consider a coin tossing scenario. Each coin-toss can produce two possible outcomes: Head or Tail denoted as $\{H, T\}$.

Note that this is a random source since the outcome of a coin-toss cannot be predicted or known upfront and the outcome will not be the same if we repeat the coin-toss.

Let us consider a few cases:

- Fair coin: Here, the two outcomes Head and tail are equally likely. $p_H = p_T = 0.5$. Therefore, $I(H) = I(T) = -\log_2 0.5 = -(-1) = 1$ bit. $H(X) = p_H I(H) + p_T I(T) = 0.5(1) + 0.5(1) = 1$ bit.
- **Biased coin**: $p_H = 0.9$ and $p_T = 0.1$. Therefore, $I(H) = -\log_2 0.9 = 0.152$ bit and $I(T) = -\log_2 0.1 = 3.32$ bit H(X) = 0.9(0.152) + 0.1(3.32) = 0.469 bit.
- Very Biased coin: $p_H = 0.99$ and $p_T = 0.01$. Therefore, $I(H) = -\log_2 0.99 = 0.0145$ bit and $I(T) = -\log_2 0.01$ = 6.64 bit H(X) = 0.99(0.0145) + 0.01(6.64) = 0.081 bit.
- Extremely Biased coin: $p_H = 0.999$ and $p_T = 0.001$. Exercise for you

Example:

Consider the previous 7-level quantizer, where the probabilities of the different levels are as follows:

Symbol <i>s</i> _n	Probability p_n	Information (in bits)
		$I(s_n) = -\log_2 p_n$
0	1/2	1
1	1/4	2
2	1/8	3
3	1/16	4
4	1/32	5
5	1/64	6
6	1/64	6

Source entropy:

$$H(X) = -\sum_{n=0}^{N-1} p_n \log_2 p_n$$

= $-\left[\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{4}\log_2\frac{1}{4} + \dots + \frac{1}{64}\log_2\frac{1}{64}\right]$
= $\left[\frac{1}{2} + \frac{1}{2} + \frac{3}{8} + \frac{1}{4} + \frac{5}{32} + \frac{3}{32} + \frac{3}{32}\right] = \frac{63}{32} = 1.96875$ bit.

What is the significance of entropy?

- For our source X, all the symbols in {0, 1, ..., 6} are not equally likely (equiprobable). We may therefore use a variable length code which assigns fewer bits (shorter codeword) to encode symbols with larger probability (e.g., symbol 0, since p₀ = ¹/₂) and more bits (longer codeword) to encode symbols with smaller probability (e.g., symbol 6 since p₆ = ¹/₆₄).
- Suppose

 $l_0 = \#$ bits used to encode 0, $l_1 = \#$ bits used to encode 1, ..., $l_6 = \#$ bits used to encode 6.

• Then average codeword length is defined as:

$$\bar{l} = \sum_{n=0}^{N-1} l_n p_n$$

and variance of codeword length is defined as:

$$\sigma^2 = \sum_{n=0}^{N-1} p_n (l_n - \bar{l})^2$$

• For a fixed length code, we saw earlier that

$$l_n = 3, n = 0, 1, \dots 6 \implies \bar{l} = \sum_{n=0}^{N-1} 3p_n = 3\sum_{n=0}^{N-1} p_n = 3$$

and consequently $\sigma^2 = 0$.

• For a given source, what is the least \overline{l} we can get, using a variable length code?

Prefix-free code

- Note that, if we have a variable length code, it must be uniquely decodable; i.e., the original source sequence must be recoverable from the binary bit stream.
- Consider a source producing three symbols $S = \{a, b, c\}$. Suppose we use the following binary encoding:

Symbol	a	b	С
Codeword	0	1	01

If we receive a bit stream, say "010" --- it may correspond to source symbols "*aba*" or "*ca*"

Hence, this is not uniquely decodable (and hence not of any use).

- One way to ensure that a code is uniquely decodable is to have it satisfy the so-called prefix-free condition.
- A code is said to be **prefix-free** if no codeword is the prefix (initial part) of any other codeword.
- Example 1:

Symbol	a	b	С
Codeword	0	1	01

Codeword "0" is a prefix of codeword "01." So this code does not satisfy the prefix-free condition. The above code is **NOT a prefix-free code**.

• Example 2:

Symbol	a	b	С
Codeword	0	10	11

This code satisfies the prefix condition. It is a **prefix-free code**

- **Result:** A prefix-free code is uniquely decodable.
- Prefix-free codes are also referred to as instantaneous codes.
- We will study an important prefix-free code called the Huffman code.

Huffman Code

- The algorithm is best illustrated by means of an example.
- Consider a source which generates one of five possible symbols
 S = {a, b, c, d, e}. The symbols occur with corresponding probabilities {0.2, 0.4, 0.05, 0.1, 0.25}.
- Arrange the symbols in descending order of their probability of occurrence.
- Successively reduce the number of source symbols by replacing the two symbols having least probability, with a "compound symbol." This way, the number of source symbols is reduced by one at each stage.
- The compound symbol is placed at an appropriate location in the next stage, so that the probabilities are again in descending order. Break ties using any arbitrary but consistent rule.
- Code each reduced source, starting with the smallest source and working backwards.

Symbol	Prob.	1	2	3	Codeword
b	0.4	0.4	0.4	►0.6 ⁰	1
e	0.25	0.25	0.35^{-00}	0.4 - 1	01
a	0.2	0.2 000	0.25 01	-	000
d	0.1 0010	$0.15 \frac{1}{001}$			0010
c	$0.05 \ _0011$				0011

• Illustration of the above steps:

Code Assignment:

Symbol	Prob. (p_n)	Codeword	Length (l_n)
a	0.2	000	3
b	0.4	1	1
С	0.05	0011	4
d	0.1	0010	4
e	0.25	01	2

• Average codeword length of the code we designed:

$$\bar{l} = \sum_{n=0}^{4} l_n p_n = 0.2(3) + 0.4(1) + 0.05(4) + 0.1(4) + 0.25(2)$$
$$= 2.1 \text{ bit/symbol.}$$

• Compare this with entropy of the source for which we designed the code

$$H(X) = -\sum_{n=0}^{N-1} p_n \log_2 p_n$$

= -[0.2 \log_2 0.2 + 0.4 \log_2 0.4 + 0.1 \log_2 0.1
+ 0.05 \log_2 0.05 + 0.25 \log_2 0.25] = 2.04 bit < \bar{l}.

- Compare this with a fixed length encoding scheme, where we would require $[\log_2(5)] = [2.32] = 3$ bit/symbol.
- The resulting code is called a Huffman code. It has many interesting properties. In particular, it is a prefix-free code (no codeword is the prefix of any other codeword) and hence uniquely decodable.
- **Conclusion**: If the symbols are not equiprobable, a (variable length) Huffman code would in general result in a smaller \overline{l} than a fixed length code.

Decoding

• For the source in the previous example, consider a symbol sequence, and its encoding using the Huffman code we designed:

 $adecbaae \rightarrow 0000010010011100000001$

• How do we decode this binary string using the Huffman code table?

Symb.	Codeword
a	000
b	1
С	0011
d	0010
е	01

000001001001110000001 → a**0010**01001110000001 → ad**01**001110000001 → ade**0011**10000001

 $\rightarrow adec10000001 \rightarrow adecb0000000$

- $\rightarrow adecba00001 \rightarrow adecbaa01 \rightarrow adecbaae$
- Exercise: Decode the binary string 100000101010000010

Huffman coding example (with ties)

- While arranging the symbols in descending order, one often encounters ties (symbols with the same probability). This is particularly true when the probability of a combined symbol is equal to that of an original symbol.
- In general, ties are broken with a consistent rule. Two common rules to deal with ties are illustrated below.

Symbol	Prob. p_n	1	2	3	Codeword	l_n
a	0.4	0.4	0.4	► 0.6 <u></u>	1	1
b	0.2	0.2	0.4 00	0.4 - 1	01	2
С	0.2	$0.2 \frac{000}{100}$	0.2 01	1	000	3
d	0.15 0010	0.2			0010	4
e	0.05 - 0011	001			0011	4
	0011					

Combined symbol placed as low as possible

Average codeword length of the code we designed:

$$\bar{l_1} = \sum_{n=0}^{4} l_n p_n = 0.4(1) + 0.2(2) + 0.2(3) + 0.15(4) + 0.05(4)$$

= 2.2 bit/symbol.

Variance of codeword lengths:

$$\sigma_1^2 = \sum_{n=0}^{4} (l_n - \bar{l_1})^2 p_n$$

= 0.4(1 - 2.2)^2 + 0.2(2 - 2.2)^2 + 0.2(3 - 2.2)^2
+ 0.15(4 - 2.2)^2 + 0.05(4 - 2.2)^2 = 1.36.

Combined symbol placed as high as possible

Symbol	Prob. p_n	1	2	3	Codeword	l_n
a	0.4	0.4 _ſ	→ 0.4	→0.6 -0	00	2
b	0.2	→ 0.2	0.4	0.4 - 1	10	2
С	0.2	0.2 10	$0.2 \overline{0}$	1	11	2
d	0.15 <u>010</u>	0.2			010	3
e	$0.05 _ \\ 011$	11			011	3

Average codeword length of the code we designed:

$$\bar{l_2} = \sum_{n=0}^{4} l_n p_n = 0.4(2) + 0.2(2) + 0.2(2) + 0.15(3) + 0.05(3)$$

= 2.2 bit/symbol.

Variance of codeword lengths:

$$\sigma_2^2 = \sum_{n=0}^{4} \left(l_n - \bar{l_2} \right)^2 p_n$$

= 0.4(2 - 2.2)² + 0.2(2 - 2.2)² + 0.2(2 - 2.2)²
+ 0.15(3 - 2.2)² + 0.05(3 - 2.2)² = 0.16.

• Note that the codes designed by either rule have the same average codeword length \overline{l} . However, the first rule results in a larger variance (measure of variability between codeword lengths) than the second rule.

Exercise: Compute the entropy H(X) of the above source and compare with \overline{l} .

Shannon's source coding theorem

• What is the smallest \overline{l} that can be achieved for a given source using a variable length code?

Theorem: Let *X* be a discrete source with entropy H(X). The average codeword length for any **distortionless encoding** of *X* is bounded by $\overline{l} \ge H(X)$.

In other words, no codes exist that can losslessly represent *X* if the average codeword length $\overline{l} < H(X)$.

Result: In general, the Huffman codes satisfy $H(X) \le \overline{l} < H(X) + 1.$

Exercise: Verify that the above is true for the previous Huffman code examples.

Note: We can refine this result by using higher order codes, where we encode a sequence of n symbols at a time (instead of one symbol at a time). In this case

$$H(X) \le \bar{l} < H(X) + \frac{1}{n}.$$