Information Theory and Huffman Coding

- Consider a typical Digital Communication System:

- The "channel" could be a physical communication channel or just a CD, hard disk, etc. in a digital storage system.
- The purpose of a communication system is to convey/transmit messages or information.

Elements of Information Theory

- In 1948, Claude Shannon provided a mathematical theory of communications, now known as information theory. This theory forms the foundation of most modern digital communication systems.
- Information theory provides answers to such fundamental questions like:
- What is information --- how to quantify it? What is the irreducible complexity, below which a signal cannot be compressed? (Source entropy)
- What is the ultimate transmission rate (theoretical limit) for reliable communication over a noisy channel? (Channel coding theorem)
- Why digital communication (and not analog), since it involves lot more steps?
It has the ability to combat noise using channel coding techniques.
- We will consider only the problem of source encoding (and decoding).
- A discrete source (of information) generates one of N possible symbols from a source alphabet set $\mathcal{S}=\left\{s_{0}, s_{1}, \cdots, s_{N-1}\right\}$, in every unit of time.

- N is the alphabet size and \mathcal{S} is the set of source symbols.

- Example:

- A piece of text in the English language: $\mathcal{S}=\{a, b, \cdots, z\}$; $N=26$.
- Analog signal $x(t)$, followed by sampling and quantization.
$x(t) \xrightarrow{\text { sample }} x[n] \xrightarrow{\text { quantize to } 8 \text { bits }} \mathcal{S}=\{0,1, \cdots, 255\} ; N=256$.
- How do we represent each of these symbols $\mathcal{S}=\left\{s_{0}, s_{1}, \cdots, s_{N-1}\right\}$ for storage/transmission?
- Use a binary encoding of the symbols; i.e., assign a binary string (codeword) to each of the symbols.
- If we use codewords with r bits each, we will have 2^{r} unique codewords and hence can represent 2^{r} unique symbols.
- Conversely, if there are N different symbols, we need at least $r=\left\lceil\log _{2}(N)\right\rceil$ bits to represent each symbol.
- For example, if we have 100 different symbols, we need at least $\left\lceil\log _{2}(100)\right\rceil=\lceil 6.64\rceil=7$ bits to represent each symbol. Note that $2^{7}=128>100$ but $2^{6}=64<100$.

A possible mapping of the 100 symbols into 7-bit codewords:

Source symbol	Binary codeword
s_{0}	0000000
s_{1}	0000001
s_{2}	0000010
\vdots	\vdots
s_{99}	1100011

- For example, if we quantize a signal into 7 different levels, we need $\left\lceil\log _{2}(7)\right\rceil=\lceil 2.807\rceil=3$ bits to represent each symbol.

A possible mapping of the 7 quantized levels into 3-bit codewords:

Symbol	0	1	2	3	4	5	6
Codeword	000	001	010	011	100	101	110

- In both examples above, all codewords are of the same length.

Therefore, the average codeword length (per symbol) is 7 bits/symbol and 3 bits/symbol, respectively, in the two cases.

- If we know nothing about the source --- in particular, if we do not know the source statistics --- this is possibly the best we can do.
- An illustration of the encoder for the 7-level quantizer example above:

- A fundamental premise of information theory is that a (discrete) source can be modeled as a probabilistic process.
- The source output can be modeled as a discrete random variable X, which can take values in set $\mathcal{S}=\left\{s_{0}, s_{1}, \cdots, s_{N-1}\right\}$, with corresponding probabilities $\left\{p_{0}, p_{1}, \cdots, p_{N-1}\right\}$; i.e., the probability of occurrence of each symbol is given by:

$$
P\left[X=s_{n}\right]=p_{n}, \quad n=0,1, \cdots, N-1 .
$$

Being probabilities, the numbers p_{n} must satisfy

$$
p_{n} \geq 0 \text { and } \sum_{n=0}^{N-1} p_{n}=1
$$

- Shannon introduced the idea of "information gained" by observing an event $\left\{X=s_{n}\right\}$ as follows:

$$
I\left(s_{n}\right)=-\log _{2}\left[P\left\{X=s_{n}\right\}\right]=-\log _{2} p_{n}=\log _{2}\left(\frac{1}{p_{n}}\right) \text { bits. }
$$

- The base for the logarithm depends on the units for measuring information. Usually, we use base 2, and the resulting unit for information is "binary digits" or "bits."
- Notice that, each time the source outputs a symbol, the information gain would be different depending on the specific symbol observed.
- The entropy $H(X)$ of a source is defined as the average information content per source symbol:

$$
H(X)=\sum_{n=0}^{N-1} p_{n} I\left(s_{n}\right)=-\sum_{n=0}^{N-1} p_{n} \log _{2} p_{n}=\sum_{n=0}^{N-1} p_{n} \log _{2}\left(\frac{1}{p_{n}}\right) \text { bits. }
$$

- By convention, in the above formula, we set $0 \log 0=0$.
- The entropy of a source quantifies the "randomness" of a source. It is also a measure of the rate at which a source produces information.
- Higher the source entropy, more the uncertainty associated with a source output and higher the information associated with the source.

Example:

Consider a coin tossing scenario. Each coin-toss can produce two possible outcomes: Head or Tail denoted as $\{H, T\}$.

Note that this is a random source since the outcome of a coin-toss cannot be predicted or known upfront and the outcome will not be the same if we repeat the coin-toss.

Let us consider a few cases:

- Fair coin: Here, the two outcomes Head and tail are equally likely. $p_{H}=p_{T}=0.5$. Therefore,

$$
I(H)=I(T)=-\log _{2} 0.5=-(-1)=1 \mathrm{bit}
$$

$$
H(X)=p_{H} I(H)+p_{T} I(T)=0.5(1)+0.5(1)=1 \text { bit. }
$$

- Biased coin: $p_{H}=0.9$ and $p_{T}=0.1$. Therefore, $I(H)=-\log _{2} 0.9=0.152$ bit and $I(T)=-\log _{2} 0.1=3.32$ bit $H(X)=0.9(0.152)+0.1(3.32)=0.469$ bit.
- Very Biased coin: $p_{H}=0.99$ and $p_{T}=0.01$. Therefore, $I(H)=-\log _{2} 0.99=0.0145$ bit and $I(T)=-\log _{2} 0.01$ $=6.64 \mathrm{bit}$

$$
H(X)=0.99(0.0145)+0.01(6.64)=0.081 \text { bit. }
$$

- Extremely Biased coin: $p_{H}=0.999$ and $p_{T}=0.001$. Exercise for you

Example:

Consider the previous 7-level quantizer, where the probabilities of the different levels are as follows:

Symbol s_{n}	Probability p_{n}	Information (in bits) $I\left(s_{n}\right)=-\log _{2} p_{n}$
0	$1 / 2$	1
1	$1 / 4$	2
2	$1 / 8$	3
3	$1 / 16$	4
4	$1 / 32$	5
5	$1 / 64$	6
6	$1 / 64$	6

Source entropy:

$$
\begin{aligned}
H(X)=- & \sum_{n=0}^{N-1} p_{n} \log _{2} p_{n} \\
& =-\left[\frac{1}{2} \log _{2} \frac{1}{2}+\frac{1}{4} \log _{2} \frac{1}{4}+\cdots+\frac{1}{64} \log _{2} \frac{1}{64}\right] \\
& =\left[\frac{1}{2}+\frac{1}{2}+\frac{3}{8}+\frac{1}{4}+\frac{5}{32}+\frac{3}{32}+\frac{3}{32}\right]=\frac{63}{32}=1.96875 \mathrm{bit} .
\end{aligned}
$$

What is the significance of entropy?

- For our source X, all the symbols in $\{0,1, \cdots, 6\}$ are not equally likely (equiprobable). We may therefore use a variable length code which assigns fewer bits (shorter codeword) to encode symbols with larger probability (e.g., symbol 0 , since $p_{0}=\frac{1}{2}$) and more bits (longer codeword) to encode symbols with smaller probability (e.g., symbol 6 since $p_{6}=\frac{1}{64}$).
- Suppose
$l_{0}=\#$ bits used to encode $0, l_{1}=\#$ bits used to encode $1, \ldots$,
$l_{6}=\#$ bits used to encode 6.
- Then average codeword length is defined as:

$$
\bar{l}=\sum_{n=0}^{N-1} l_{n} p_{n}
$$

and variance of codeword length is defined as:

$$
\sigma^{2}=\sum_{n=0}^{N-1} p_{n}\left(l_{n}-\bar{l}\right)^{2}
$$

- For a fixed length code, we saw earlier that

$$
l_{n}=3, n=0,1, \cdots 6 \Rightarrow \bar{l}=\sum_{n=0}^{N-1} 3 p_{n}=3 \sum_{n=0}^{N-1} p_{n}=3
$$

and consequently $\sigma^{2}=0$.

- For a given source, what is the least \bar{l} we can get, using a variable length code?

Prefix-free code

- Note that, if we have a variable length code, it must be uniquely decodable; i.e., the original source sequence must be recoverable from the binary bit stream.
- Consider a source producing three symbols $\mathcal{S}=\{a, b, c\}$. Suppose we use the following binary encoding:

Symbol	a	b	c
Codeword	0	1	01

If we receive a bit stream, say " 010 " --- it may correspond to source symbols "aba" or "ca"

Hence, this is not uniquely decodable (and hence not of any use).

- One way to ensure that a code is uniquely decodable is to have it satisfy the so-called prefix-free condition.
- A code is said to be prefix-free if no codeword is the prefix (initial part) of any other codeword.

- Example 1:

Symbol	a	b	c
Codeword	0	1	01

Codeword " 0 " is a prefix of codeword " 01 ." So this code does not satisfy the prefix-free condition. The above code is NOT a prefixfree code.

- Example 2:

Symbol	a	b	c
Codeword	0	10	11

This code satisfies the prefix condition. It is a prefix-free code

- Result: A prefix-free code is uniquely decodable.
- Prefix-free codes are also referred to as instantaneous codes.
- We will study an important prefix-free code called the Huffman code.

Huffman Code

- The algorithm is best illustrated by means of an example.
- Consider a source which generates one of five possible symbols $\mathcal{S}=\{a, b, c, d, e\}$. The symbols occur with corresponding probabilities $\{0.2,0.4,0.05,0.1,0.25\}$.
- Arrange the symbols in descending order of their probability of occurrence.
- Successively reduce the number of source symbols by replacing the two symbols having least probability, with a "compound symbol." This way, the number of source symbols is reduced by one at each stage.
- The compound symbol is placed at an appropriate location in the next stage, so that the probabilities are again in descending order. Break ties using any arbitrary but consistent rule.
- Code each reduced source, starting with the smallest source and working backwards.
- Illustration of the above steps:

Code Assignment:

Symbol	Prob. $\left(p_{n}\right)$	Codeword	Length $\left(l_{n}\right)$
a	0.2	000	3
b	0.4	1	1
c	0.05	0011	4
d	0.1	0010	4
e	0.25	01	2

- Average codeword length of the code we designed:

$$
\begin{aligned}
\bar{l}=\sum_{n=0}^{4} l_{n} p_{n} & =0.2(3)+0.4(1)+0.05(4)+0.1(4)+0.25(2) \\
= & 2.1 \mathrm{bit} / \mathrm{symbol}
\end{aligned}
$$

- Compare this with entropy of the source for which we designed the code

$$
\begin{aligned}
H(X)=- & \sum_{n=0}^{N-1} p_{n} \log _{2} p_{n} \\
& =-\left[0.2 \log _{2} 0.2+0.4 \log _{2} 0.4+0.1 \log _{2} 0.1\right. \\
& \left.+0.05 \log _{2} 0.05+0.25 \log _{2} 0.25\right]=2.04 \mathrm{bit}<\bar{l}
\end{aligned}
$$

- Compare this with a fixed length encoding scheme, where we would require $\left\lceil\log _{2}(5)\right\rceil=\lceil 2.32\rceil=3$ bit/symbol.
- The resulting code is called a Huffman code. It has many interesting properties. In particular, it is a prefix-free code (no codeword is the prefix of any other codeword) and hence uniquely decodable.
- Conclusion: If the symbols are not equiprobable, a (variable length) Huffman code would in general result in a smaller \bar{l} than a fixed length code.

Decoding

- For the source in the previous example, consider a symbol sequence, and its encoding using the Huffman code we designed:

$$
\text { adecbaae } \rightarrow 0000010010011100000001
$$

- How do we decode this binary string using the Huffman code table?

Symb.	Codeword
a	000
b	1
c	0011
d	0010
e	01

$$
\begin{array}{rl}
\mathbf{0 0 0 0 0 1 0} & 10011100000001 \rightarrow a \mathbf{0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 1} \\
& \rightarrow \text { ad010011100000001 } \rightarrow \text { ade } \mathbf{0 0 1 1 1 0 0 0 0 0 0 0 1} \\
& \rightarrow \text { adec } \mathbf{1 0 0 0 0 0 0 0 1} \rightarrow \text { adecb } \mathbf{0 0 0 0 0 0 0} \\
& \rightarrow \text { adecba00001 } \rightarrow \text { adecbaa01 } \rightarrow \text { adecbaae }
\end{array}
$$

- Exercise: Decode the binary string 100000101010000010

Huffman coding example (with ties)

- While arranging the symbols in descending order, one often encounters ties (symbols with the same probability). This is particularly true when the probability of a combined symbol is equal to that of an original symbol.
- In general, ties are broken with a consistent rule. Two common rules to deal with ties are illustrated below.

Combined symbol placed as low as possible

Average codeword length of the code we designed:

$$
\begin{gathered}
\overline{l_{1}}=\sum_{n=0}^{4} l_{n} p_{n}=0.4(1)+0.2(2)+0.2(3)+0.15(4)+0.05(4) \\
=2.2 \mathrm{bit} / \text { symbol. }
\end{gathered}
$$

Variance of codeword lengths:

$$
\begin{aligned}
\sigma_{1}^{2}=\sum_{n=0}^{4} & \left(l_{n}-\overline{l_{1}}\right)^{2} p_{n} \\
& =0.4(1-2.2)^{2}+0.2(2-2.2)^{2}+0.2(3-2.2)^{2} \\
& +0.15(4-2.2)^{2}+0.05(4-2.2)^{2}=1.36
\end{aligned}
$$

Combined symbol placed as high as possible

Symbol	Prob. p_{n}	1	2		3	Codeword	l_{n}
a	0.4	$\begin{gathered} 0.4 \\ \longrightarrow \\ \rightarrow 0.2 \\ 0.2 \\ 0.2 \\ \hline \end{gathered}$	$\rightarrow \begin{array}{ll} 0.4 \\ 0.4 & \xrightarrow[00]{\longrightarrow} \\ 0.2 & -0.6 \\ 0.4 & \square \\ \hline \end{array}$			00	2
b	0.2					10	2
c	0.2					11	2
d	0.15010					010	3
e	$0.05 \square$					011	3

Average codeword length of the code we designed:

$$
\begin{gathered}
\overline{l_{2}}=\sum_{n=0}^{4} l_{n} p_{n}=0.4(2)+0.2(2)+0.2(2)+0.15(3)+0.05(3) \\
=2.2 \mathrm{bit} / \text { symbol. }
\end{gathered}
$$

Variance of codeword lengths:

$$
\begin{aligned}
\sigma_{2}^{2}=\sum_{n=0}^{4} & \left(l_{n}-\overline{l_{2}}\right)^{2} p_{n} \\
& =0.4(2-2.2)^{2}+0.2(2-2.2)^{2}+0.2(2-2.2)^{2} \\
& +0.15(3-2.2)^{2}+0.05(3-2.2)^{2}=0.16
\end{aligned}
$$

- Note that the codes designed by either rule have the same average codeword length \bar{l}. However, the first rule results in a larger variance (measure of variability between codeword lengths) than the second rule.

Exercise: Compute the entropy $H(X)$ of the above source and compare with \bar{l}.

Shannon's source coding theorem

- What is the smallest \bar{l} that can be achieved for a given source using a variable length code?

Theorem: Let X be a discrete source with entropy $H(X)$. The average codeword length for any distortionless encoding of X is bounded by $\bar{l} \geq H(X)$.

In other words, no codes exist that can losslessly represent X if the average codeword length $\bar{l}<H(X)$.

Result: In general, the Huffman codes satisfy

$$
H(X) \leq \bar{l}<H(X)+1
$$

Exercise: Verify that the above is true for the previous Huffman code examples.

Note: We can refine this result by using higher order codes, where we encode a sequence of n symbols at a time (instead of one symbol at a time). In this case

$$
H(X) \leq \bar{l}<H(X)+\frac{1}{n}
$$

