Information Theory and Huffman Coding

- Consider a typical Digital Communication System:

 The "channel" could be a physical communication channel or just a CD, hard disk, etc. in a digital storage system.

 The purpose of a communication system is to convey/transmit messages or information.
Elements of Information Theory

- In 1948, Claude Shannon provided a mathematical theory of communications, now known as information theory. This theory forms the foundation of most modern digital communication systems.

- Information theory provides answers to such fundamental questions like:
 - What is information --- how to quantify it? What is the irreducible complexity, below which a signal cannot be compressed? (Source entropy)
 - What is the ultimate transmission rate (theoretical limit) for reliable communication over a noisy channel? (Channel coding theorem)

- Why digital communication (and not analog), since it involves lot more steps? It has the ability to combat noise using channel coding techniques.

- We will consider only the problem of source encoding (and decoding).

- A discrete source (of information) generates one of N possible symbols from a source alphabet set $\mathcal{S} = \{s_0, s_1, \cdots, s_{N-1}\}$, in every unit of time.

 !Discrete Source

 $X \in \mathcal{S} = \{s_0, s_1, \cdots, s_{N-1}\}$

 - N is the alphabet size and \mathcal{S} is the set of source symbols.

- Example:
A piece of text in the English language: $S = \{a, b, \ldots, z\}$; $N = 26$.

Analog signal $x(t)$, followed by sampling and quantization.

$$x(t) \xrightarrow{\text{sample}} x[n] \xrightarrow{\text{quantize to 8 bits}} S = \{0, 1, \ldots, 255\}; \ N = 256.$$

• How do we represent each of these symbols $S = \{s_0, s_1, \ldots, s_{N-1}\}$ for storage/transmission?

• Use a binary encoding of the symbols; i.e., assign a binary string (codeword) to each of the symbols.

• If we use codewords with r bits each, we will have 2^r unique codewords and hence can represent 2^r unique symbols.

• Conversely, if there are N different symbols, we need at least $r = \lceil \log_2(N) \rceil$ bits to represent each symbol.

• For example, if we have 100 different symbols, we need at least $\lceil \log_2(100) \rceil = [6.64] = 7$ bits to represent each symbol. Note that $2^7 = 128 > 100$ but $2^6 = 64 < 100$.

A possible mapping of the 100 symbols into 7-bit codewords:

<table>
<thead>
<tr>
<th>Source symbol</th>
<th>Binary codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>0000000</td>
</tr>
<tr>
<td>s_1</td>
<td>0000001</td>
</tr>
<tr>
<td>s_2</td>
<td>0000010</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>s_{99}</td>
<td>1100011</td>
</tr>
</tbody>
</table>

• For example, if we quantize a signal into 7 different levels, we need $\lceil \log_2(7) \rceil = [2.807] = 3$ bits to represent each symbol.

A possible mapping of the 7 quantized levels into 3-bit codewords:
<table>
<thead>
<tr>
<th>Symbol</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codeword</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
<td>110</td>
</tr>
</tbody>
</table>

- In both examples above, all codewords are of the same length. Therefore, the average codeword length (per symbol) is 7 bits/symbol and 3 bits/symbol, respectively, in the two cases.

- If we know nothing about the source --- in particular, if we do not know the source statistics --- this is possibly the best we can do.

- An illustration of the encoder for the 7-level quantizer example above:

![Diagram](image)

- A fundamental premise of information theory is that a (discrete) source can be modeled as a probabilistic process.

- The source output can be modeled as a discrete random variable \(X\), which can take values in set \(S = \{s_0, s_1, \ldots, s_{N-1}\}\), with corresponding probabilities \(\{p_0, p_1, \ldots, p_{N-1}\}\); i.e., the probability of occurrence of each symbol is given by:

\[
P[X = s_n] = p_n, \quad n = 0, 1, \ldots, N - 1.
\]

Being probabilities, the numbers \(p_n\) must satisfy

\[
p_n \geq 0 \quad \text{and} \quad \sum_{n=0}^{N-1} p_n = 1.
\]

- Shannon introduced the idea of “information gained” by observing an event \(\{X = s_n\}\) as follows:
\[I(s_n) = -\log_2[P\{X = s_n\}] = -\log_2 p_n = \log_2 \left(\frac{1}{p_n} \right) \text{ bits.} \]

- The base for the logarithm depends on the units for measuring information. Usually, we use base 2, and the resulting unit for information is “binary digits” or “bits.”

- Notice that, each time the source outputs a symbol, the information gain would be different depending on the specific symbol observed.

- The entropy \(H(X) \) of a source is defined as the \textbf{average information content per source symbol}:

\[H(X) = \sum_{n=0}^{N-1} p_n I(s_n) = -\sum_{n=0}^{N-1} p_n \log_2 p_n = \sum_{n=0}^{N-1} p_n \log_2 \left(\frac{1}{p_n} \right) \text{ bits.} \]

- By convention, in the above formula, we set \(0 \log 0 = 0 \).

- The entropy of a source quantifies the “randomness” of a source. It is also a measure of the rate at which a source produces information.

- Higher the source entropy, more the uncertainty associated with a source output and higher the information associated with the source.
Example:

Consider a coin tossing scenario. Each coin-toss can produce two possible outcomes: Head or Tail denoted as $\{H, T\}$.

Note that this is a random source since the outcome of a coin-toss cannot be predicted or known upfront and the outcome will not be the same if we repeat the coin-toss.

Let us consider a few cases:

- **Fair coin**: Here, the two outcomes Head and tail are equally likely. $p_H = p_T = 0.5$. Therefore,
 \[
 I(H) = I(T) = - \log_2 0.5 = -(-1) = 1 \text{ bit.}
 \]
 \[
 H(X) = p_H I(H) + p_T I(T) = 0.5(1) + 0.5(1) = 1 \text{ bit.}
 \]

- **Biased coin**: $p_H = 0.9$ and $p_T = 0.1$. Therefore,
 \[
 I(H) = - \log_2 0.9 = 0.152 \text{ bit and } I(T) = - \log_2 0.1 = 3.32 \text{ bit}
 \]
 \[
 H(X) = 0.9(0.152) + 0.1(3.32) = 0.469 \text{ bit.}
 \]

- **Very Biased coin**: $p_H = 0.99$ and $p_T = 0.01$. Therefore,
 \[
 I(H) = - \log_2 0.99 = 0.0145 \text{ bit and } I(T) = - \log_2 0.01 = 6.64 \text{ bit}
 \]
 \[
 H(X) = 0.99(0.0145) + 0.01(6.64) = 0.081 \text{ bit.}
 \]

- **Extremely Biased coin**: $p_H = 0.999$ and $p_T = 0.001$.

 Exercise for you
Example:

Consider the previous 7-level quantizer, where the probabilities of the different levels are as follows:

<table>
<thead>
<tr>
<th>Symbol s_n</th>
<th>Probability p_n</th>
<th>Information (in bits) $I(s_n) = -\log_2 p_n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$1/2$</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>$1/4$</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>$1/8$</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>$1/16$</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>$1/32$</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>$1/64$</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>$1/64$</td>
<td>6</td>
</tr>
</tbody>
</table>

Source entropy:

$$H(X) = -\sum_{n=0}^{N-1} p_n \log_2 p_n$$

$$= -\left[\frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{4} \log_2 \frac{1}{4} + \cdots + \frac{1}{64} \log_2 \frac{1}{64} \right]$$

$$= \left[\frac{1}{2} + \frac{1}{8} + \frac{3}{32} + \frac{5}{32} + \frac{3}{32} + \frac{3}{32} \right] = \frac{63}{32} = 1.96875 \text{ bit.}$$
What is the significance of entropy?

• For our source X, all the symbols in $\{0, 1, \cdots, 6\}$ are not equally likely (equiprobable). We may therefore use a variable length code which assigns fewer bits (shorter codeword) to encode symbols with larger probability (e.g., symbol 0, since $p_0 = \frac{1}{2}$) and more bits (longer codeword) to encode symbols with smaller probability (e.g., symbol 6 since $p_6 = \frac{1}{64}$).

• Suppose $l_0 = \# \text{ bits used to encode } 0$, $l_1 = \# \text{ bits used to encode } 1$, \ldots, $l_6 = \# \text{ bits used to encode } 6$.

• Then average codeword length is defined as:

$$\bar{l} = \sum_{n=0}^{N-1} l_n p_n$$

and variance of codeword length is defined as:

$$\sigma^2 = \sum_{n=0}^{N-1} p_n (l_n - \bar{l})^2$$

• For a fixed length code, we saw earlier that

$$l_n = 3, n = 0, 1, \cdots 6 \Rightarrow \bar{l} = \sum_{n=0}^{N-1} 3p_n = 3 \sum_{n=0}^{N-1} p_n = 3$$

and consequently $\sigma^2 = 0$.

• For a given source, what is the least \bar{l} we can get, using a variable length code?
Prefix-free code

• Note that, if we have a variable length code, it must be uniquely decodable; i.e., the original source sequence must be recoverable from the binary bit stream.

• Consider a source producing three symbols $S = \{a, b, c\}$. Suppose we use the following binary encoding:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codeword</td>
<td>0</td>
<td>1</td>
<td>01</td>
</tr>
</tbody>
</table>

If we receive a bit stream, say “010” --- it may correspond to source symbols “aba” or “ca”

Hence, this is not uniquely decodable (and hence not of any use).

• One way to ensure that a code is uniquely decodable is to have it satisfy the so-called prefix-free condition.

• A code is said to be **prefix-free** if no codeword is the prefix (initial part) of any other codeword.

• **Example 1:**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codeword</td>
<td>0</td>
<td>1</td>
<td>01</td>
</tr>
</tbody>
</table>

Codeword “0” is a prefix of codeword “01.” So this code does not satisfy the prefix-free condition. The above code is **NOT a prefix-free code.**
• **Example 2:**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codeword</td>
<td>0</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

This code satisfies the prefix condition. It is a **prefix-free code**

• **Result:** A prefix-free code is uniquely decodable.

• Prefix-free codes are also referred to as instantaneous codes.

• We will study an important prefix-free code called the Huffman code.
Huffman Code

- The algorithm is best illustrated by means of an example.

- Consider a source which generates one of five possible symbols \(S = \{a, b, c, d, e\} \). The symbols occur with corresponding probabilities \(\{0.2, 0.4, 0.05, 0.1, 0.25\} \).

- Arrange the symbols in descending order of their probability of occurrence.

- Successively reduce the number of source symbols by replacing the two symbols having least probability, with a “compound symbol.” This way, the number of source symbols is reduced by one at each stage.

- The compound symbol is placed at an appropriate location in the next stage, so that the probabilities are again in descending order. Break ties using any arbitrary but consistent rule.

- Code each reduced source, starting with the smallest source and working backwards.

- Illustration of the above steps:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Prob.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.6</td>
<td>1</td>
</tr>
<tr>
<td>e</td>
<td>0.25</td>
<td>0.25</td>
<td>0.35</td>
<td>0.4</td>
<td>01</td>
</tr>
<tr>
<td>a</td>
<td>0.2</td>
<td>0.2</td>
<td>0.25</td>
<td>0.4</td>
<td>00</td>
</tr>
<tr>
<td>d</td>
<td>0.1</td>
<td>0.15</td>
<td>0.15</td>
<td>0.3</td>
<td>001</td>
</tr>
<tr>
<td>c</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.3</td>
<td>001</td>
</tr>
</tbody>
</table>
Code Assignment:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Prob. ((p_n))</th>
<th>Codeword</th>
<th>Length ((l_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>0.2</td>
<td>000</td>
<td>3</td>
</tr>
<tr>
<td>(b)</td>
<td>0.4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(c)</td>
<td>0.05</td>
<td>0011</td>
<td>4</td>
</tr>
<tr>
<td>(d)</td>
<td>0.1</td>
<td>0010</td>
<td>4</td>
</tr>
<tr>
<td>(e)</td>
<td>0.25</td>
<td>01</td>
<td>2</td>
</tr>
</tbody>
</table>

- Average codeword length of the code we designed:
 \[
 \bar{l} = \sum_{n=0}^{4} l_n p_n = 0.2(3) + 0.4(1) + 0.05(4) + 0.1(4) + 0.25(2) \\
 = 2.1 \text{ bit/symbol}.
 \]

- Compare this with entropy of the source for which we designed the code
 \[
 H(X) = - \sum_{n=0}^{N-1} p_n \log_2 p_n \\
 = -[0.2 \log_2 0.2 + 0.4 \log_2 0.4 + 0.1 \log_2 0.1 \\
 + 0.05 \log_2 0.05 + 0.25 \log_2 0.25] = 2.04 \text{ bit} < \bar{l}.
 \]

- Compare this with a fixed length encoding scheme, where we would require \(7 \log_2 5 < 7 \times 2.32 < 3\) bit/symbol.

- The resulting code is called a Huffman code. It has many interesting properties. In particular, it is a prefix-free code (no codeword is the prefix of any other codeword) and hence uniquely decodable.

- **Conclusion:** If the symbols are not equiprobable, a (variable length) Huffman code would in general result in a smaller \(\bar{l}\) than a fixed length code.
Decoding

• For the source in the previous example, consider a symbol sequence, and its encoding using the Huffman code we designed:

\[adecbaae \rightarrow 00000100100111000000001 \]

• How do we decode this binary string using the Huffman code table?

<table>
<thead>
<tr>
<th>Symb.</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>000</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>0011</td>
</tr>
<tr>
<td>d</td>
<td>0010</td>
</tr>
<tr>
<td>e</td>
<td>01</td>
</tr>
</tbody>
</table>

\[00000100100111000000001 \rightarrow a0010010011100000001\]
\[\rightarrow ad010011100000001 \rightarrow ade00111000000001\]
\[\rightarrow adec100000001 \rightarrow adecb000000\]
\[\rightarrow adecba0001 \rightarrow adecbaa01 \rightarrow adecbaae\]

• Exercise: Decode the binary string 100000101010000010
Huffman coding example (with ties)

• While arranging the symbols in descending order, one often encounters ties (symbols with the same probability). This is particularly true when the probability of a combined symbol is equal to that of an original symbol.

• In general, ties are broken with a consistent rule. Two common rules to deal with ties are illustrated below.

 Combined symbol placed as low as possible

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Prob. p_n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Codeword</th>
<th>l_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0.2</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
<td>01</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>000</td>
<td>3</td>
</tr>
<tr>
<td>d</td>
<td>0.15</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0010</td>
<td>4</td>
</tr>
<tr>
<td>e</td>
<td>0.05</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0011</td>
<td>4</td>
</tr>
</tbody>
</table>

Average codeword length of the code we designed:

$$\bar{l}_1 = \sum_{n=0}^{4} l_n p_n = 0.4(1) + 0.2(2) + 0.2(3) + 0.15(4) + 0.05(4)$$

= 2.2 bit/symbol.

Variance of codeword lengths:

$$\sigma_1^2 = \sum_{n=0}^{4} (l_n - \bar{l}_1)^2 p_n$$

= 0.4(1 - 2.2)^2 + 0.2(2 - 2.2)^2 + 0.2(3 - 2.2)^2

+ 0.15(4 - 2.2)^2 + 0.05(4 - 2.2)^2 = 1.36.$$
Combined symbol placed as high as possible

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Prob. p_n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Codeword</th>
<th>l_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.6</td>
<td>00</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>0.2</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>11</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>0.15</td>
<td>010</td>
<td>0.2</td>
<td>11</td>
<td>010</td>
<td>3</td>
</tr>
<tr>
<td>e</td>
<td>0.05</td>
<td>011</td>
<td>11</td>
<td>011</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Average codeword length of the code we designed:

$$\bar{l}_2 = \sum_{n=0}^{4} l_n p_n = 0.4(2) + 0.2(2) + 0.2(2) + 0.15(3) + 0.05(3)$$

$$= 2.2 \ text{bit/symbol.}$$

Variance of codeword lengths:

$$\sigma_2^2 = \sum_{n=0}^{4} (l_n - \bar{l}_2)^2 p_n$$

$$= 0.4(2 - 2.2)^2 + 0.2(2 - 2.2)^2 + 0.2(2 - 2.2)^2$$
$$+ 0.15(3 - 2.2)^2 + 0.05(3 - 2.2)^2 = 0.16.$$

- Note that the codes designed by either rule have the same average codeword length \bar{l}. However, the first rule results in a larger variance (measure of variability between codeword lengths) than the second rule.

Exercise: Compute the entropy $H(X)$ of the above source and compare with \bar{l}.
Shannon’s source coding theorem

- What is the smallest \bar{l} that can be achieved for a given source using a variable length code?

Theorem: Let X be a discrete source with entropy $H(X)$. The average codeword length for any **distortionless encoding** of X is bounded by

$$\bar{l} \geq H(X).$$

In other words, no codes exist that can losslessly represent X if the average codeword length $\bar{l} < H(X)$.

Result: In general, the Huffman codes satisfy

$$H(X) \leq \bar{l} < H(X) + 1.$$

Exercise: Verify that the above is true for the previous Huffman code examples.

Note: We can refine this result by using higher order codes, where we encode a sequence of n symbols at a time (instead of one symbol at a time). In this case

$$H(X) \leq \bar{l} < H(X) + \frac{1}{n}.$$