
Information Theory and Huffman Coding 
 

 

• Consider a typical Digital Communication System:  

 

 

 

 

 

 

 

 

 

 

 

 

 

• The “channel” could be a physical communication channel or 

just a CD, hard disk, etc. in a digital storage system.  

• The purpose of a communication system is to convey/transmit 

messages or information.  
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Elements of Information Theory 
 

• In 1948, Claude Shannon provided a mathematical theory of 

communications, now known as information theory. This theory 

forms the foundation of most modern digital communication 

systems.  

• Information theory provides answers to such fundamental 

questions like:  

� What is information --- how to quantify it? What is the 

irreducible complexity, below which a signal cannot be 

compressed? (Source entropy) 

� What is the ultimate transmission rate (theoretical limit) for 

reliable communication over a noisy channel? (Channel 

coding theorem) 

• Why digital communication (and not analog), since it involves lot 

more steps? 

It has the ability to combat noise using channel coding techniques.  

• We will consider only the problem of source encoding (and 

decoding).  

• A discrete source (of information) generates one of � possible 

symbols from a source alphabet set � 
 ���, ��,⋯ , �����, in every 

unit of time. 

                                     � ∈ � 
 ���, ��,⋯ , ����� 
 

� � is the alphabet size and � is the set of source symbols.  

• Example:  

Discrete 

Source 



� A piece of text in the English language: � 
 ��, �,⋯ , ��; 
� 
 26. 

� Analog signal ����, followed by sampling and quantization. 

���� 	� !"#$	%&&&&' ���� 	() *+,-$	+.	/	0,+�	%&&&&&&&&&&&&' � 
 �0, 1,⋯ ,255�; 		� 
 256. 
• How do we represent each of these symbols � 
 ���, ��, ⋯ , ����� 

for storage/transmission?  

• Use a binary encoding of the symbols; i.e., assign a binary string 

(codeword) to each of the symbols.  

• If we use codewords with 	 bits each, we will have 26 unique 

codewords and hence can represent 26 unique symbols.  

• Conversely, if there are � different symbols, we need at least 

	 
 7log;���< bits to represent each symbol.  

� For example, if we have 100 different symbols, we need at least 

7log;�100�< 
 76.64< 
 7 bits to represent each symbol. Note 

that 2? 
 128 A 100 but	2B 
 64 C 100.  

A possible mapping of the 100 symbols into 7-bit codewords:  

Source symbol Binary codeword 

�� 0000000 

�� 0000001 

�; 0000010 

⋮ ⋮ 
�EE 1100011 

� For example, if we quantize a signal into 7 different levels, we 

need 7log;�7�< 
 72.807< 
 3 bits to represent each symbol.  

A possible mapping of the 7 quantized levels into 3-bit 

codewords:  

 



Symbol 0 1 2 3 4 5 6 

Codeword 000 001 010 011 100 101 110 

 

• In both examples above, all codewords are of the same length. 

Therefore, the average codeword length (per symbol) is 7 

bits/symbol and 3 bits/symbol, respectively, in the two cases. 

• If we know nothing about the source --- in particular, if we do not 

know the source statistics --- this is possibly the best we can do.  

• An illustration of the encoder for the 7-level quantizer example 

above: 

 

 

 

• A fundamental premise of information theory is that a (discrete) 

source can be modeled as a probabilistic process.  

• The source output can be modeled as a discrete random variable �, 

which can take values in set � 
 ���, ��, ⋯ , �����, with 

corresponding probabilities �G�, G�, ⋯ , G����; i.e., the probability 

of occurrence of each symbol is given by: 

H�� 
 �I� 
 GI,				� 
 0, 1,⋯ ,� J 1. 
Being probabilities, the numbers GI must satisfy 

GI K 0			and			 O GI
���

IP�

 1. 

• Shannon introduced the idea of “information gained” by 

observing an event �� 
 �I� as follows: 

001011010101001000 1, 3, 2, 5, 1, 0 Discrete 
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Q��I� 
 J log;�H�� 
 �I�� 
 J log; GI 
 log; R 1GIS 	bits. 

• The base for the logarithm depends on the units for measuring 

information. Usually, we use base 2, and the resulting unit for 

information is “binary digits” or “bits.”  

• Notice that, each time the source outputs a symbol, the information 

gain would be different depending on the specific symbol 

observed.  

• The entropy X��� of a source is defined as the average 

information content per source symbol: 

X��� 
 O GIQ��I�
���

IP�

 JO GI log; GI

���

IP�

 O GI log; R 1GIS 	bits.

���

IP�
 

• By convention, in the above formula, we set 0 log 0 
 0. 

• The entropy of a source quantifies the “randomness” of a source. It 

is also a measure of the rate at which a source produces 

information.  

• Higher the source entropy, more the uncertainty associated with a 

source output and higher the information associated with the 

source.  

  



Example: 

 

Consider a coin tossing scenario. Each coin-toss can produce two 

possible outcomes: Head or Tail denoted as �X, Y�.  
 

Note that this is a random source since the outcome of a coin-toss 

cannot be predicted or known upfront and the outcome will not be the 

same if we repeat the coin-toss.  

 

 Let us consider a few cases: 

 

• Fair coin: Here, the two outcomes Head and tail are equally likely. 

GZ 
 G[ 
 0.5. Therefore, 

Q�X� 
 Q�Y� 
 J log; 0.5 
 J�J1� 
 1	bit. 
X��� 
 GZQ�X� \ G[Q�Y� 
 0.5�1� \ 0.5�1� 
 1	bit. 

 

• Biased coin: GZ 
 0.9 and G[ 
 0.1. Therefore,  

Q�X� 
 J log; 0.9 
 0.152	bit	and	Q�Y� 
 J log; 0.1 
 3.32	bit	 
X��� 
 0.9�0.152� \ 0.1�3.32� 
 0.469	bit. 

 

• Very Biased coin: GZ 
 0.99 and G[ 
 0.01. Therefore,  

Q�X� 
 J log; 0.99 
 0.0145	bit	and	Q�Y� 
 J log; 0.01
 6.64	bit	 
X��� 
 0.99�0.0145� \ 0.01�6.64� 
 0.081	bit. 

 

• Extremely Biased coin: GZ 
 0.999 and G[ 
 0.001. 

Exercise for you  



Example: 

 

Consider the previous 7-level quantizer, where the probabilities of the 

different levels are as follows: 

 

Symbol �I Probability GI Information (in bits) 

Q��I� 
 J log; GI 

0 1 2⁄  1 

1 1 4⁄  2 

2 1 8⁄  3 

3 1 16⁄  4 

4 1 32⁄  5 

5 1 64⁄  6 

6 1 64⁄  6 

 

 

Source entropy: 

X��� 
 JO GI log; GI
���

IP�

 J _12 log;

1
2 \

1
4 log;

1
4 \⋯\ 1

64 log;
1
64`


 _12 \
1
2 \

3
8 \

1
4 \

5
32 \

3
32 \

3
32` 


63
32 
 1.96875	bit. 

  



What is the significance of entropy? 

 
• For our source �, all the symbols in �0, 1,⋯ , 6� are not equally 

likely (equiprobable). We may therefore use a variable length code 

which assigns fewer bits (shorter codeword) to encode symbols 

with larger probability (e.g., symbol 0, since G� 
 �
;) and more bits 

(longer codeword) to encode symbols with smaller probability 

(e.g., symbol 6 since GB 
 �
Ba). 

• Suppose  

b� = # bits used to encode 0, b� = # bits used to encode 1, …,  

bB = # bits used to encode 6.  

• Then average codeword length is defined as: 

b ̅ 
 O bIGI
���

IP�
 

 and variance of codeword length is defined as: 

d; 
 O GIebI J bf̅;
���

IP�
 

• For a fixed length code, we saw earlier that  

bI 
 3, � 
 0, 1,⋯ 6	 ⇒ b ̅ 
 O 3GI
���

IP�

 3O GI

���

IP�

 3 

 and consequently d; 
 0.  

• For a given source, what is the least b ̅we can get, using a variable 

length code? 



Prefix-free code 

 
• Note that, if we have a variable length code, it must be uniquely 

decodable; i.e., the original source sequence must be recoverable 

from the binary bit stream.  

• Consider a source producing three symbols � 
 ��, �, h�. Suppose 

we use the following binary encoding: 

Symbol a b c 

Codeword 0 1 01 

 

If we receive a bit stream, say “010” --- it may correspond to 

source symbols “aba” or “ca” 

Hence, this is not uniquely decodable (and hence not of any use).  

• One way to ensure that a code is uniquely decodable is to have it 

satisfy the so-called prefix-free condition.  

• A code is said to be prefix-free if no codeword is the prefix (initial 

part) of any other codeword.  

• Example 1: 

Symbol a b c 

Codeword 0 1 01 

 

Codeword “0” is a prefix of codeword “01.” So this code does not 

satisfy the prefix-free condition. The above code is NOT a prefix-

free code. 

  



• Example 2: 

 

Symbol a b c 

Codeword 0 10 11 

 

This code satisfies the prefix condition. It is a prefix-free code 

• Result: A prefix-free code is uniquely decodable.  

• Prefix-free codes are also referred to as instantaneous codes.  

• We will study an important prefix-free code called the Huffman 

code.   



Huffman Code 

• The algorithm is best illustrated by means of an example.  

• Consider a source which generates one of five possible symbols 

� 
 ��, �, h, i, j�. The symbols occur with corresponding 

probabilities �0.2, 0.4, 0.05, 0.1, 0.25�. 
• Arrange the symbols in descending order of their probability of 

occurrence.  

• Successively reduce the number of source symbols by replacing 

the two symbols having least probability, with a “compound 

symbol.” This way, the number of source symbols is reduced by 

one at each stage.  

• The compound symbol is placed at an appropriate location in the 

next stage, so that the probabilities are again in descending order. 

Break ties using any arbitrary but consistent rule.  

• Code each reduced source, starting with the smallest source and 

working backwards.  

• Illustration of the above steps: 

 

Symbol Prob. 1 2 3 Codeword 

b 0.4 0.4 0.4 0.6 1 

e 0.25 0.25 0.35 0.4 01 

a 0.2 0.2 0.25  000 

d 

c 

0.1 

0.05 

0.15   0010 

0011 
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000 
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00 

0011 

0010 

0 

1 



Code Assignment: 
 

Symbol Prob. (GI) Codeword Length (bI) 

a 0.2 000 3 

b 0.4 1 1 

c 0.05 0011 4 

d 0.1 0010 4 

e 0.25 01 2 

 

• Average codeword length of the code we designed: 

b ̅ 
 O bIGI
a

IP�

 0.2�3� \ 0.4�1� \ 0.05�4� \ 0.1�4� \ 0.25�2�


 2.1	bit/symbol. 
• Compare this with entropy of the source for which we designed the 

code 

X��� 
 JO GI log; GI
���

IP�
 J�0.2 log; 0.2 \ 0.4 log; 0.4 \ 0.1 log; 0.1
\ 0.05 log; 0.05 \ 0.25 log; 0.25� 
 2.04	bit C b.̅ 

• Compare this with a fixed length encoding scheme, where we 

would require 7log;�5�< 
 72.32< 
 3 bit/symbol.  

 

• The resulting code is called a Huffman code. It has many 

interesting properties. In particular, it is a prefix-free code (no 

codeword is the prefix of any other codeword) and hence uniquely 

decodable.  

• Conclusion: If the symbols are not equiprobable, a (variable 

length) Huffman code would in general result in a smaller b ̅than a 

fixed length code.   



Decoding 

• For the source in the previous example, consider a symbol 

sequence, and its encoding using the Huffman code we designed:  

�ijh���j → 0000010010011100000001 

• How do we decode this binary string using the Huffman code 

table?  

Symb. Codeword 

a 000 

b 1 

c 0011 

d 0010 

e 01 

 

ooo0010010011100000001 → �oopo010011100000001
→ �iop0011100000001 → �ijoopp100000001
→ �ijhp00000001 → �ijh�ooo0000
→ �ijh��ooo01 → �ijh���op → �ijh���j 

• Exercise: Decode the binary string 100000101010000010 

  



Huffman coding example (with ties) 

 

• While arranging the symbols in descending order, one often 

encounters ties (symbols with the same probability). This is 

particularly true when the probability of a combined symbol is 

equal to that of an original symbol.  

• In general, ties are broken with a consistent rule. Two common 

rules to deal with ties are illustrated below.  
 

Combined symbol placed as low as possible 

 

Symbol Prob. GI 1 2 3 Codeword bI
a 0.4 0.4 0.4 0.6 1 1 

b 0.2 0.2 0.4 0.4 01 2 

c 0.2 0.2 0.2  000 3 

d 

e 

0.15 

0.05 

0.2   0010 

0011 

4 

4 

 

Average codeword length of the code we designed: 

b�q 
 O bIGI
a

IP�

 0.4�1� \ 0.2�2� \ 0.2�3� \ 0.15�4� \ 0.05�4�


 2.2	bit/symbol. 
Variance of codeword lengths: 

d�; 
 OebI J b�qf;GI
a

IP� 
 0.4�1 J 2.2�; \ 0.2�2 J 2.2�; \ 0.2�3 J 2.2�;
\ 0.15�4 J 2.2�; \ 0.05�4 J 2.2�; 
 1.36. 
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Combined symbol placed as high as possible 

 

Symbol Prob.	GI 1 2 3 Codeword bI  

a 0.4 0.4 0.4 0.6 00 2 

b 0.2 0.2 0.4 0.4 10 2 

c 0.2 0.2 0.2  11 2 

d 

e 

0.15 

0.05 

0.2   010 

011 

3 

3 

 

Average codeword length of the code we designed: 

b;q 
 O bIGI
a

IP�

 0.4�2� \ 0.2�2� \ 0.2�2� \ 0.15�3� \ 0.05�3�


 2.2	bit/symbol. 
 

Variance of codeword lengths: 

d;; 
 OebI J b;qf;GI
a

IP� 
 0.4�2 J 2.2�; \ 0.2�2 J 2.2�; \ 0.2�2 J 2.2�;
\ 0.15�3 J 2.2�; \ 0.05�3 J 2.2�; 
 0.16. 

 

• Note that the codes designed by either rule have the same average 

codeword length b.̅ However, the first rule results in a larger 

variance (measure of variability between codeword lengths) than 

the second rule.  

 

Exercise: Compute the entropy X��� of the above source and 

compare with b.̅ 
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Shannon’s source coding theorem 

• What is the smallest b ̅that can be achieved for a given source using 

a variable length code?  

 

Theorem: Let � be a discrete source with entropy X���. The average 

codeword length for any distortionless encoding of � is bounded by 

b ̅ K X���. 
 

In other words, no codes exist that can losslessly represent � if the 

average codeword length b ̅ C X���. 
 

Result: In general, the Huffman codes satisfy  

X��� r b ̅ C X��� \ 1. 
 

Exercise: Verify that the above is true for the previous Huffman code 

examples.  

 

Note: We can refine this result by using higher order codes, where we 

encode a sequence of � symbols at a time (instead of one symbol at a 

time). In this case 

X��� r b ̅ C X��� \ 1
�. 

 


