Open book, open notes.

1. Let $\mathrm{h}_{0}(\mathrm{n})=0.25[1,2,1], \mathrm{h}_{1}(\mathrm{n})=0.125[-1,-2,6,-2,-1], \mathrm{g}_{0}(\mathrm{n})=[0.125[-1,2,6,2,-1]$, and $\mathrm{g}_{1}(\mathrm{n})=0.25[-1,2,-1]$.
a. Let $x=[0,1,2,3,4,3,2,1,0,0,0, \ldots]$. Find $y_{1}(n)=x(n) * h_{0}(n)$. What is the delay of this filter?
b. Let $h(n)=h_{0}(n) * g_{0}(n)+h_{1}(n) * g_{1}(n)$. Find $h(n)$. What is the delay of this filter?
2. Below are plots of $x(n)=[1,1,1,0,0,0,1,1]$ and its 8 -point DFT, $X(k)$.

The signals six signals below are derived from $\mathrm{x}(\mathrm{n})$ or $\mathrm{X}(\mathrm{k})$. Find, for each case, the correct plot of the respective DFT or IDFT.
i) $\quad x_{1}(n)=[x(0), \ldots, x(7), x(0), \ldots, x(7)]$. Find the plot of the 16-point DFT of $x_{1}(n)$.
ii) $\quad x_{2}(n)=[x(0), 0, x(1), 0, \ldots, x(7), 0]$. Find the plot of the 16 -point DFT of $x_{2}(n)$.
iii) $\quad x_{3}(n)=(-1)^{n} x(n)$. Find the plot of the 8 -point DFT of $x_{3}(n)$.
iv) $\quad x_{4}(n)=x(n-4)$, (where delay means circular shift). Find the plot of the 8-point DFT of $\mathrm{x}_{4}(\mathrm{n})$.
v) $\quad x_{5}(n)=[x(0), \ldots, x(7), 0, \ldots, 0]$. Find the plot of the 16-point DFT of $x_{5}(n)$.
vi) $\quad X_{6}(k)=[X(0), \ldots, X(3), 0.5 X(4), 0,0,0,0,0,0,0,0.5 X(4), X(5), \ldots, X(7)]$. Find the plot of the 16 -point IDFT of $X_{6}(\mathrm{k})$.

Below are twelve figures: the six on the left (a-f) are plots of time signals, the six on the right (h-m) are plots of frequency signals. Correctly match the figures below to the signals to be identified in i) - vi) above.

