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Health Monitoring using Wearables

= 15% of the world’s population lives with a disability*
= 110-190 million people face difficulties in functioning”*

Intl. Parkinson and Movement Disorders Society Task Force
on Technology:

— Low-cost and small form-factor wearable devices offer great potential
— Enabled by advances in low power sensors and processors
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Why Human Activity Recognition (HAR)?

= |dentify activities, such as walking,
sitting, driving, jogging
= First step to solutions for

movement disorders Walk  Stand  Sit

We have to know what the patient is r
doing to reach a conclusion

Up/down stairs Jump Lie Down

= HAR can provide valuable insight
= Applications of HAR
— Patient rehabilitation l | |
— Fall detection

— Physical activity promotion




Challenges of Wearable Health Technology

= Adaptation & technology challenges hinder widespread adoption
— Comfort: Awkward to wear or carry a device
— Compliance: Stop using technology due to maintenance
— Applications: No killer applications
= 27% users give up due to charging reqs [1]
— Practical solutions must minimize energy

Use of Wearable Devices for PD* . . .
120 = Flexible energy harvesting devices
100 » Wearable
. can address these problems
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560 = However,
S 40 — Ambient power is still lower
2 than 10 to 30 mW requirement
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=) .
Z gl — Mere 40 hrs with 130 mAh battery
2008 2010 2012 2014 2016 2018 2
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*Ranadeep Deb, MS Thesis, 2019

Flexible PV-cell

[1] Ana Ligia Silva de Lima et al.. Feasibility of Large-Scale Deployment of Multiole | @ m
S Wearable Sensors in Parkinson’s Disease. PLOS One 12, 12 (2017), e0189161



Challenges of Wearable Health Technology

= Adaptation & technology challenges hinder widespread adoption

— Comfort: Awkward to wear or carry a device
— Compliance: Stop using technology due to maintenance
— Applications: No killer applications

= 27% users give up due to charging reqgs [1]
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Our Novel Contributions

= The first integrated full hardware accelerator for HAR
— Sensor reading to activity classification

= Novel activity-aware design to minimize energy consumption
— 22.4 udJ per activity (>17 days with 130 mAh battery)

= Post layout evaluation using TSMC 65 nm LP

= Extensive experimental evaluation with 22 users
— Dataset released to puinC (https://github.com/gmbhat/human-activity-recognition)
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A critical step towards self-powered
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https://github.com/gmbhat/human-activity-recognition
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Baseline HAR Engine Overview

Raw Data Preprocessing Feature Generation Baseline Classifier
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= Stretch sensor input: Measures bending of the knee
= Accelerometer input: Measures acceleration at ankle
= Activities
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Input Sensor Data- Accelerometer

= 3-axis accelerometer data
— The most commonly used sensor for activity recognition

— Since it is notoriously known to be noisy, preprocess using
8-point moving average filter

= |[nvensense MPU-9250

= Low pass filter
4

1
S[KT] =< > s[(k +DTy)
i=-3
where T;: Sampling time,
S[kTs]: Averaged sample at time kT
s[kTg]: Raw sample at time kT

Acceleration (g)
¥

= Filter applied to 3-axis data

» Time (s) em
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Input Sensor Data — Stretch Sensor

= 3-axis accelerometer data

— The most commonly used sensor for activity recognition

— Since it is notoriously known to be noisy, preprocess using 8-
point moving average filter

= Use a textile-based stretch sensor (first time for HAR)

S &

m Strethsense Stretcﬁ Sensor

= Low pass filter

4
SIKT,] =5 ) s{Ck + 00T,

1=-3
where T: Sampling time, s[kTs], S[kTs]:
Raw, averaged sample at time kT

e D)



Input Sensor Data — Stretch Sensor

= 3-axis accelerometer data

— The most commonly used sensor for activity recognition

— Since it is notoriously known to be noisy, preprocess using 8-
point moving average filter

= Use a textile-based stretch sensor (first time for HAR)

-

= Stretchsense Stretcﬁ Sensor

= Low pass filter

It has much less noise and power consumption
since it is passive

wriclie 1. oSdllIpirng ure, S{kig], S[KISJ:
Raw, averaged sample at time kT;
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Input Sensor Data — Segmentation

= 3-axis accelerometer data
— The most commonly used sensor for activity recognition

— Since it is notoriously known to be noisy, preprocess using 8-
point moving average filter

= Use a textile-based stretch sensor (first time for HAR)

= Segment data into windows by detecting local minima
in stretch sensor
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Feature Generation

= Non-uniform samples due to variable segment length

= Down sample and smooth
— Down sample block standardizes number of samples
— 64 for accelerometer, 32 for stretch sensor

= 16-bit Neural Network Features

Steth T 8 features

x \§4 »| 64-point FFT of stretch sensor ——> 16 Ieading coeff.
Ly \?4 N DWT of a, | \— 32 approx. coeff.
4z 04 DWT of a, -\ 32 approx. coeff.
bacc \§4 DWT of body accel —x—> 32 approx. coeff.

= Statistical Features
— Variance of ay, ay, a,, by and mean of a,,

— Min, max of stretch sensor and window length
15 9 Yiab



= Detailed neural architecture Statistical

Features

Baseline DNN Classifier
75

space exploration -

. 64-point FFT E

= 2 Hidden layers S
. . DWT i

— RelLU Activation 5

. DWT =

= OQutput layer with 8 neurons — S

— Linear activation with max

— More hardware-friendly compared
to softmax

4-neurons 8-neurons 8-neurons
State machine for DNN

Weight
Load
Segment

= Operation and optimizations
— Design a parameterized module
— Instantiate for hidden and output
layers

— Only one hour required to change
from 3 layer to 2 layer network

16
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Activity-Aware 2-Level Engine

84% of human activities are static (e.g. sit, stand, lie down)
— We do not need a DNN to classify them

— At the same time, more complex dynamic activities must be
classified accurately

Divide the activities into two classes

— A simple support vector machine (SVM) to identify static vs dynamic
— A 2-Layer NN classifier for dynamic activities
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US Department of Labor. 2017. American Time Use Survey. [Online] https://www.bls.gov/tus/ em




Activity-Aware 2-Level Engine

= 84% of human activities are static (e.g. sit, stand, lie down)
— We do not need a DNN to classify them

— At the same time, more complex dynamic activities must be
classified accurately

Avoids power hungry FFT and DNN blocks for

84% of activities

Feature Generation

Raw Data  Preprocessing
j ( A
V4 Stretch
4 a,
Stretch Sensor
ay

% ; Preprocessing

3-axis 5
Accelerometer

Activity-aware Classifier
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Features VS. > Tree
Dynamic? Classifier
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DNN Features Classifier
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18 US Department of Labor. 2017. American Time Use Survey. [Online] https://www.bls.gov/tus/ em




Statistical
Features

Support Vector

Mac

hine

Dynamic

Activity-Aware Classification

Stat. Features

Static .

y

r

Decision Tree
Classifier

Static Activity
Label

DWT 64-point FFT

DWT DWT

2-Layer NN
1 Hidden layer with 4
Neurons

Dynamic Activity Label

= Features are reused between SVM and decision tree

= DWT and FFT calculated only if activity is dynamic

Siab
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Clock and Data Gating

= Human activities are in the order of few Hz
— Use this information to clock gate unused blocks

(o]

(o2}

N

Stretch Capacitance
S

o
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Clock and Data Gating

= Human activities are in the order of few Hz
— Use this information to clock gate unused blocks

= Data dependencies
— e. g., downsampling depends on segment detection

|
Raw Data Preprocessing : Feature Generation Activity-aware Classifier
’ ( N\ l e -
/ Stretch | Statistical Static B .
—> I Features VS, 5 Tree St§t|.c
[ Ax I Dynamic? Classifier Activity
Stretch Sensor . : )
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Preprocessing Y
DWT | |64-point FFT 2-Layer
aZ
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DNN Features | . Dynamic
b Classifier Activity
3-axis dee DWT DWT
J \ )

\
Accelerometer

|
!
|
|
[
Always ON I
I
[

Clock gated blocks e m
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Clock and Data Gating

Data dependencies
— e. g., downsampling depends on segment detection

Human activities are in the order of few Hz
— Use this information to clock gate unused blocks

clk

output_valid

egmentation

Y

R QN

output_valid




Power Gating

= [nsight from wearable applications domain
— Data collection and preprocessing have to be always ON
— Processing blocks can be activated after the data is available

= Major power savings potential by turning off processing pipeline

= Divide logic into two domains
— Segmentation, filtering, FIFO in always-ON domain
— Downsample, feature generation and NN in gated domain

= Use signal from segmentation to wake up

_____________________________________

Stretch DS Foat @ global clk
eatures | | (€)): gated clk 1
& Stats 0 g

i . @: gatedclk 2

-1 | Accel.Ds | @: gatedcik3

FIFO Segmentation o e Classifier @: gated clk 4
" Power Domain 1| Power Domain 2

24
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Experimental Setup

26

Design tools and hardware technology

— TSMC 65 nm LP

— Cadence Innovus for APR

— Synopsys PrimeTime for power
User studies

— Data from 22 users

— Total of 4740 segments

Training data split n

— 4 users for test

— 18 users for training
* 60% train, 20% cross-val, 20% test =

— 37% test data from unseen users

Low-power loT device with
accelerometer, processor
and wireless communication

Stretch sensorin
Neutral (stand) Stretched (sit)
position position

Data used in ESWEEK
lIoMT design contest

— 16 teams from 7 countries

Presentations on Tuesday
15t 12 pm to 1pm

Data available open source

Fiab
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Design Area: Baseline Engine

Synthesize at 100 kHz - : | : 0 JLazrro

Floorplan during APR
— Optimize to match logic

Total area = 1.353 mm?

FFT has the highest area
Blocks with memory have
higher area

— FIFO for storing samples
— Neural network

[~ ] FIFO buffers
o, M DNN
9% .
B Downsampling
% DNN feature
> % I DWT
1% e :
| Segmentation
33% E—1 Low pass filter

Flab




Design Area: 2-Level Engine

= Total area = 1.357 mm? : |
AX_FIFO : : S

— Only 0.3% larger than the —
baseline design ;

= Resembles baseline design
— Processing blocks are common

0.5
Baseline [ 2-Level
~oall/B -]
b= 14% ["_] FIFO buffers
£ 03] e 13% I DNN
© 10% [ Downsampling
:h; U B 1 e 7 [ DNN feature
- —— ° DWT
0.1 |7,l e ------ T ~ s,

SVM
1 Segmentation

> O @ S & @ () :
Qé S Qé &\o & 3 \'\O g&@ R 6\\ ,ée, Low pass filter
O @Q @ N ‘\°® g SVM feature
QO‘O o”fb eé Q&Q Q’b” Aé 0\,9\ B Decision tree
Q\ 04\ 0 < 04\ =) oz'
Q EERN
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Accuracy of the Baseline Engine

= Weight and Activation Quantization to 16-bits

ZWmax

A =

q 216 where W,,,,,: Largest weight

= Confusion matrix for baseline classifier
— Greater than 93% accuracy for all activities

Jump Lie Sit Stand Walk Stairs  Stairs Tran-  Accuracy

Down up Down sition (%)
Jump 442 0 0 0 5 0 5 6 97
Lie down 0 474 0 0 0 0 0 0 100
Sit 0 665 26 0 0 0 5 93
Stand 0 16 576 1 0 0 27 93
Walk 31 0 1 10 1913 0 10 42 95
Stairs up 0 0 0 1 101 6 1 93
Stairs down 0 0 0 1 1 97 1 97
Transition 2 7 14 14 4 0 229 83

0
7
2 FYlab



Accuracy of 2-Level Engine

= 99% accuracy in classifying static and dynamic activities
= Accuracy improvement with 2-Level engine

[/ /] Baseline ] 2-Level

-
0 o
o o
l L]

(o]
o
l Ll

Accuracy (%)

-~
o

{ 1% to 8% accuracy improvement with }
only 0.3% larger area
Y 0:3% larg Yiab
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Power Consumption of Baseline Engine

5
5
45
4
1

a

' [ Dynamic Power [ /] Leakage Power Total Power

o

o
‘\

o

Power Consumption (uW)

o O

Always ON Classification

= Always ON modules consume about 14 yW

= FFT has highest power among classification blocks

= Total power consumption of 51 yW

31 Ylab
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Power Consumption of 2-Level Engine

Static activities consume 19.5 yW (2.6 X reduction)

Dynamic activities consume 44.6 yW (1.14X reduction)

10X improvement compared to embedded solutions
— Including sensor and communication energy

17 day operation using a 130 mAh flexible battery




Peak Power Consumption Benefits

Our goal is to operate with ambient energy
— Peak power must be lower than energy harvesting capacity

More than 80% time spent in static activities
— Activity-aware engine provides lower peak power

(41
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I | | | | | 2.6X and 1.1X reduction
= / in peak power for static
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/ Dynamic Activity

Power consumption (W)

L J

|

376.5 37 3775 378 3785 379 379.5 380 380.5
Time (s)

e D)



Conclusion

" Presented two human activity recognition engines

— Fully integrated solution from sensor to activity classification
— Novel activity-aware engine

— 22.4 pd per activity using TSMC 65 nm LP
— Further power savings possible with voltage scaling

= Dataset from 22 users released to public
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> healthy monitoring devices e m




