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§ Wearable Internet of Things devices are popular 
– Low cost
– Small form factor
§ Enabled by advances in low power sensors, processors, communications

Wearable IoT Devices: Becoming Ubiquitous
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§ Conflicting objectives
– Maximize active time to enable continuous monitoring
– Provide high accuracy and quality of services

§ Constraints due to wearability
– Small form factor limits the battery capacity
– Bulky batteries are inflexible, 

while flexible batteries have low capacity

§ Critical need for
– Optimizing runtime energy-accuracy trade-off 
– Optimally scale operation of the device as a function 

of the energy budget

Wearable IoT Devices: Requirements
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§ Analogy: Dynamic power management techniques
– Switch between available power states for power-performance optimization
– High-performance states for heavy workloads
– Low-performance states to save power

§ Similarly, multiple design points can be used in IoT devices
– Multiple design points utilize the energy-accuracy tradeoff
– Higher energy design points provide a higher accuracy
– Sacrifice accuracy to conserve energy

§ Key Challenges
– Characterizing accuracy
– Multiple design points to switch between
– Requires use studies

Runtime Management of IoT Devices
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§ Co-optimize accuracy and active time under tight energy budget

REAP Framework

User studies for HAR

Pareto-optimal 
Design Points

Runtime Optimization 
Algorithm

14 users, 6 activities
3553 activity windows
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Optimization Problem Formulation

§ Goal:
– Determine the optimal active time 𝑡" of each DP in activity period 𝑇$
– Solve at runtime at beginning of each activity period
– Operation is constrained by the energy budget 𝐸&
§ Can be formulated as:

maximize 𝐽 𝑡 =
1
𝑇$
0
"12

3

𝑎"5 𝑡"

subject to 𝑡=>> +0
"12

3

𝑡" = 𝑇$

𝑃=>>𝑡=>> +0
"12

3

𝑃"𝑡" ≤ 𝐸&

𝑡"≥ 0, 0 ≤ 𝑖 ≤ 𝑁

– 𝑎" is accuracy of each DP
– Parameter 𝜶 controls accuracy-active 

time tradeoff
– 𝑃" is power consumption of 𝐷𝑃"
– 𝑃=>> is power consumption when off

We solve this problem at runtime
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Runtime Optimization Algorithm
§ Runtime algorithm solves the 

problem and outputs active time 
of each DP

§ Executed for each activity period
§ Pareto-optimal design points and 

Energy budget are inputs
§ Complexity

– Polynomial for typical inputs
– Less than five iterations for solution
– Takes 1.5 ms for five design points

Initialize tableau with 
objective & constrains

Add slack variables

Find Pivot Column

Pivot 
Column 

< 0

Find Pivot Row

Update the tableau

For each iteration

Yes

No

Return 
active time 
of each DP

DPs, Energy 
budget

Input

Output
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§ HAR identifies activities, such as 
walking, sitting, driving, jogging

§ It is the first step to solutions for 
movement disorders

Why Human Activity Recognition (HAR)?

We have to know what the patient is doing to reach a conclusion

§ HAR can provide valuable insight to health specialists
§ Applications of HAR

– Patient rehabilitation
– Fall detection
– Physical activity promotion
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Baseline HAR Implementation
§ Segmentation

– Streaming stretch sensor data is processed to 
generate variable length segments

Classifier

Stretch Sensor

Window 
Boundaries

Accelerometer

Discrete Wavelet Transform

Fast Fourier Transform

Feature Generation

Feature 
Vectors

Segmentation Algorithm

§ Classifier Design
– Offline training of neural network using labeled 

segments

§ Feature Generation
– Accelerometer and stretch sensor data are 

processed to extract the features
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§ Energy and accuracy are 
functions of

– Sensors used
– Active time of sensors
– Type of features
– Classifier complexity

HAR Design Points
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§ Use the trade-off to
– Design 24 design points
– Train NN for each design
– Characterize energy & accuracy
– Obtain 5 Pareto-optimal designs
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Experimental Setup
§ Wearable Device

– TI CC2650 MCU, InvenSense MPU
– Stretchsense Stretch Sensor
– MPU is sampled at 250 Hz
– Stretch sensor at 100 Hz

§ Device Placement
– MPU is placed at the ankle
– Stretch sensor is placed at the knee

§ User studies
– Data from 14 users
– 3553 activity windows

Our user data is available to public at OpenHealth page
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Design point description MCU exec. time distribution (ms) Per activity summary

DP 
no. Features Accuracy 

(%)
Accel. 

Features
Stretch 

Features
NN 

Classifier Total
MCU 

energy 
(mJ)

Sensor 
energy 
(mJ)

Energy 
(mJ)

Power 
(mW)

1 Statistical acceleration,
16-FFT stretch 94 0.83 3.83 1.05 5.71 2.38 2.10 4.48 2.76

2 Statistical y-axis accel,
16-FFT stretch 93 0.27 3.83 1.00 5.10 2.29 1.43 3.72 2.30

3 Statistical x- and y-axis accel 
(0.8 s), 16-FFT stretch 92 0.27 3.83 0.90 5.00 2.10 0.84 2.94 1.82

4 Statistical y-axis
accel (0.6 s), 16-FFT stretch 90 0.14 3.83 1.00 4.97 2.09 0.57 2.66 1.64

5 16-FFT stretch 76 0.00 3.83 0.88 4.71 1.85 0.08 1.93 1.20

§ We choose five Pareto-optimal design points from 24 designs

Pareto-Optimal Design Points
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§ Sweep the available energy budget

§ Solve the problem for each budget

§ REAP outperforms static DPs
– Utilizes multiple design points

§ 2.3 times improvement in active time 
compared to DP1

Accuracy and Active Time Analysis
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§ Solar energy data from NREL
– One month energy harvesting data in 

Golden, Colorado

§ Evaluate REAP with 𝜶 values from 
0.5 to 8

– Lower alpha prioritizes active time
– Higher alpha prioritizes higher accuracy DP

§ REAP can adapt to changing 𝜶 to 
choose appropriate DP

Case Study using Solar Energy Data
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§ Energy harvesting IoT devices offer great potential to enable 
interesting applications

– Health monitoring, activity tracking, gesture-based control

§ Presented a energy-accuracy optimization framework
– Designed Pareto-optimal design points for HAR
– Runtime algorithm to choose active time of design points
– Evaluations using 14 user studies
– 46% higher expected accuracy and 66% longer active time compared to the 

highest performance design point

§ Data sets and source code will be made public

Conclusions


