WEARABLE HEALTH MONITORING

Online Human Activity Recognition using Low-Power Wearable Devices

G. Bhat*, R. Deb, V. Chaurasia U.Y. Ogras

Muhammad Ali Parkinson Center

Dignity Health.

St. Joseph's Hospital and

Medical Center

Holly Shill

ICCAD 2018

BARROW

Neurological Institute

Outline

Motivation

Human Activity Recognition

- Feature Set and Classifier Design
- Online Reinforcement Learning with Policy Gradients
- Experimental Results
- Conclusions

Health Monitoring using Wearable Devices

- 15% of the world's population lives with a disability
- 110-190 million people face significant difficulties in functioning
- Intl. Parkinson and Movement Disorders Society Task Force on Technology:
 - Low-cost and small form-factor wearable devices offer great potential —
 - Enabled by advances in low power sensors, processors, communications —

Why Human Activity Recognition (HAR)?

- HAR identifies activities, such as walking, sitting, driving, jogging
- It is the first step to solutions for movement disorders

We have to know what the patient is doing to reach a conclusion

- HAR can provide valuable insight to health specialists
- Applications of HAR
 - Patient rehabilitation
 - Fall detection
 - Physical activity promotion

Why Online Learning on Wearable Devices

Smartphones have been popular:

- But, they are not appropriate
 - Some patients cannot even carry them
 - Large power consumption & charging requirements
 - Cannot provide real-time guarantees (e.g., sampling rate)
 - They are not designed for this purpose
- Existing work on wearables and smartphones

	Offline	Online		
Data Collection	\checkmark	$\mathbf{X} \rightarrow \mathbf{A}$		
Learning	\checkmark	$\mathbf{X} \rightarrow \mathbf{V}$		
Inference	\checkmark	~		

Parkinson's Disease Digital Biomarker DREAM Challenge

Our solution

- Tailored to the problem
- Low power & Energy-harvesting
- Adapt to new users and changing user conditions

Proposed Solution: Online Learning for HAR

We use a wearable device to enable online learning for HAR

- Uses a combination of motion and stretch sensors
- First work to use stretch sensor for HAR

Our Novel Contributions

- Novel technique to segment the sensor data as a function of user motion
- Online inference and training using reinforcement learning
- Low power implementation on a wearable device

Outline

Motivation

Human Activity Recognition

- Feature Set and Classifier Design
- Online Reinforcement Learning with Policy Gradients
- Experimental Results
- Conclusions

Goals and Problem Statement

Recognize six common activities and transitions between them

- Achieve greater than 90% accuracy
- Power budget in milliwatts
- These goals make HAR practical for daily use
 - Low power budget enables day-long operation using flexible batteries

Overview of Proposed HAR Framework

Segmentation

Streaming stretch sensor data is processed to generate variable length segments

Feature Generation

 Accelerometer and stretch sensor data are processed to extract the features

Classifier Design

Offline training of neural network using labeled segments

Reinforcement Learning

 Neural network weight updates using user feedback and policy gradient algorithm

10

Segmentation Algorithm

Need for variable length segmentation

- Fixed length segments may contain multiple activities
- This makes it harder to label and classify
- We use stretch sensor data to segment the activities
- Accelerometer is more noisy
- In contrast, stretch sensor provides a clean data for segmentation

Result: Non-uniform activity segments

Segmentation Using Stretch Sensor

- Detect local minimas in stretch sensor to define activity segments
- Use five-point derivative to track trend

$$s'(t) = \frac{s(t-2) - 8s(t-1) + 8s(t+1) - s(t-2)}{12}$$

- Define the "Trend" as
 - Increasing if s'(t) > 0
 - Decreasing if s'(t) < 0
 - Flat if s'(t) = 0
- Create a new segment when the trend changes from
 - Decreasing to Increasing
 - Flat to Increasing

Feature Generation

12

- Most of the prior work on HAR uses statistical features for activity classification
 - However, statistical features do not provide insight into the actual shape of data
- In contrast, we use DWT and FFT to get better insight
- Using this insight we generate the following features
 - Stretch Sensor : **16 FFT coefficients**, minimum and maximum values in the segment
 - Accelerometer : **32 DWT coefficients** for a_x , a_z and body acceleration, mean of a_y
 - General features : Length of the segment and previous activity label

Supervised Learning for Activity Classification

We use a parameterized neural network to classify activities

- Neural networks can be easily used for online learning

Neural network configuration

- One fully connected hidden layer
 - ReLU activation
- Fully connected output layer
 - Softmax activation
- Probability of each activity is

$$\pi(a_i | \mathbf{h}, \theta) = \frac{e^{O_{a_i}(\mathbf{h}, \theta)}}{\sum_{j=1}^{N_A} e^{O_{a_j}(\mathbf{h}, \theta)}}$$

Outline

Motivation

- Human Activity Recognition
 - Feature Set and Classifier Design
 - Online Reinforcement Learning with Policy Gradients
- Experimental Results
- Conclusions

Why Online Learning?

- Classifiers shipped with the device can be trained using known user data sets
- User patterns can change with
 - Physical condition, age, gender, and, demographics
- Even, condition of a given user may change over time
- Classifiers learned offline must adapt to
 - New users
 - Varying conditions of its user

Challenges

- Online training can be computationally intensive
- Wearable devices do not have large storage area

Online Learning Preliminaries

- State (X): Accelerometer and stretch sensor readings within a segment define the continuous state space
- **Policy model (** π **)**: The activity probabilities
- Action: Activity performed in each segment
- Reward: User provides the reward as a function of the classified action:
 - If correct: +1
 - else: -1

Objective: Maximize the total reward with respect to the classifier weights

Policy Gradient Weight Update

- In general, all weights in the policy network are updated
 - Useful when starting from an untrained network
- We start with a trained policy network
 - First few layers provide broadly applicable features
 - Hence, we update only the output layer weighs
- Derived the policy gradient: $\nabla_{\theta} \pi(a_t | \mathbf{h}, \theta_t)$
- Found the weight update equation as

$$\boldsymbol{\theta}_{t+1} \equiv \boldsymbol{\theta}_t + \alpha r_t \frac{\nabla_{\boldsymbol{\theta}} \pi(\boldsymbol{a}_t | \mathbf{h}, \boldsymbol{\theta}_t)}{\pi(\boldsymbol{a}_t | \mathbf{h}, \boldsymbol{\theta}_t)}$$

where α : Learning rate, r_t : Reward

Outline

- Motivation & Related Work
- Human Activity Recognition
 - Feature Set and Classifier Design
 - Online Reinforcement Learning with Policy Gradients
- Experimental Results
- Conclusions

Experimental Setup

Wearable Device

- TI CC2650 MCU, InvenSense MPU
- Stretchsense Stretch Sensor
- MPU is sampled at 250 Hz
- Stretch sensor at 100 Hz

Device Placement

- MPU is placed at the ankle
- Stretch sensor is placed at the knee

User studies

- Total of 2614 segments from nine users
- Five users used for offline training
- Four users in online training

Our user data is available to public at OpenHealth page

Training by Supervised Learning

- We use a neural network for supervised learning
 - Needs to implemented on a device with 20kB of RAM
- First, we fix the number of hidden layers to one
 - Then, vary the number of neurons in the hidden layer
- We swept the number of neurons
 - Memory requirement increases linearly
 - Accuracy saturates after four neurons
- We choose four neurons in our NN
 - Overall accuracy of 97.7 %
 - Memory requirement of 2 kB

Confusion Matrix for All Activities

- We analyze the confusion matrix for five users
- All activities except Jump show an accuracy greater than 95%
 - Jump shows higher variation among the users
- Transitions have a lower accuracy
 - This is acceptable as we can infer transitions from segments before and after

		Drive	Jump	Lie Down	Sit	Stand	Walk	Tran- sition
	D (155)	99.4%	0.00	0.00	0.00	0.00	0.00	0.6%
Total number of	J (181)	0.00	93.4%	0.00	0.00	1.1%	3.9%	1.6%
windows with the corresponding activity	L (204)	0.00	0.00	100%	0.00	0.00	0.00	0.00
	S (394)	0.25%	0.25%	0.00	97.7%	0.76%	0.00	1.0%
	Sd (350)	0.00	0.29%	0.00	0.00	98.6 %	1.1%	0.00
	W (806)	0.00	0.50%	0.00	0.00	0.62%	98.5 %	0.37%
	T (127)	0.00	3.1%	0.79%	2.4%	0.79%	2.4%	90.5%

Reinforcement Learning for New Users

- Apply reinforcement learning for four new users
 - Never seen by the offline neural network
- Run the policy gradient update for a total of 100 epochs
 - Reward is given after every activity segment
- Accuracy improvement with online learning:
 - User 6: 74% → 91%
 - User 7: 89% → 94%
 - User 8: 86% → 96%
 - User 9: 60% → 91%

HAR algorithm adapts to new users

Energy Consumption Analysis

- Prior studies do not report power & energy breakdown [1]
- Added test ports to our custom prototype
- Performed detailed power/performance/energy analysis

	Block	Exe. Time (ms)	Average Power (mW)	Energy (µJ)
Sense	Read / Segment	1,500.00	1.13	1,695.00
Compute	DWT	7.90	9.50	75.05
	FFT	17.20	11.80	202.96
	NN	2.50	12.90	32.25
	Overall	27.60	11.24	310.26
Communication	BLE	8.60	5.00	43.00

Enables close to 60-hour operation with a 200 mAh battery

23

[1] Shoaib, Muhammad, et al. "A survey of online activity recognition using mobile phones." Sensors 15.1 (2015): 2059-2085.

Conclusions

- Wearable IoT devices offer great potential to enable interesting applications
 - Health monitoring, activity tracking, gesture-based control
- Presented a Human Activity Recognition framework
 - Novel algorithm to segment data as a function of the activity
 - Online inference and training using reinforcement learning
 - Low power implementation on a wearable device
- Data sets and source code will be made public

Comparison with Other Classifiers

Comparison of our classifier to classifiers used by prior work

Our neural network classifier achieves compatible accuracy while enabling efficient online learning