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Summary

This thesis is submitted in partial fulfillment of the requirements for the degree of
Philosphiae Doctor (PhD) at the Norwegian University of Science and Technology
(NTNU). The thesis is divided into three parts, each of which addresses a specific
topic within state and parameter estimation for nonlinear and uncertain systems.

Part I of the thesis is concerned with state and parameter estimation for auto-
motive vehicles. The main focus is on estimation of the angle between the orienta-
tion of the vehicle and its direction of travel, known as the vehicle sideslip angle.
The lateral dynamics of a car is accurately described by a linear model during nor-
mal operation, but the dynamics becomes highly nonlinear if one or more of the
tires begin to lose road grip. Existing observers for estimating the vehicle sideslip
angle are typically constructed as extended Kalman filters, without nonlinear sta-
bility analysis and with the drawback of being computationally expensive. The
goal of Part I is to construct a vehicle sideslip observer that is less computationally
expensive than the extended Kalman filter and that is based on explicit nonlinear
stability analysis. The observer produces estimates of the longitudinal and lateral
velocities of the vehicle, which are used to calculate the vehicle sideslip angle.
In addition, estimates of the road inclination and bank angle, as well as a road-
tire friction parameter, are introduced to improve accuracy. The observer is tested
using measurements from production passenger cars.

Part II of the thesis is concerned with state and parameter estimation for sys-
tems perturbed by a nonlinear function of the system state, external time-varying
signals, and a set of unknown, constant parameters. The majority of techniques for
estimating unknown parameters in dynamic equations are based on the assumption
that the parameters enter the equations linearly, which is not always accurate. Part
II starts by considering the problem of parameter estimation in the case of full-state
measurement, by using a modular design consisting of a perturbation estimator

and a parameter estimator. The perturbation estimator estimates the full pertur-
bation that depends on the unknown parameters, whereas the parameter estimator
inverts the perturbation estimate dynamically with respect to the unknown param-
eters. The parameter estimates are in turn fed back to the perturbation estimator,
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leading to an exponentially stable interconnection when the gains are chosen ap-
propriately. The case of partial-state measurement is then considered for a class
of systems where the perturbation is separated from the output by a left-invertible,
minimum-phase linear system. To handle this case, the perturbation estimator is
replaced by amodified high-gain observer, similar to extended high-gain observers
found in the literature, which estimates both the state of the system and the pertur-
bation. Part of the high-gain design procedure consists of transforming the linear
part of the system to a special coordinate basis that explicitly reveals the system’s
zero structure and invertibility properties. Numerical software tools for carrying
out such transformations already exist. To facilitate the transformation of systems
with symbolic representations as well, Part II presents a software tool written in
the mathematics software suite Maple.

Part III is concerned with output-feedback stabilization of two classes of sys-
tems containing saturations. First, global stabilization of multivariable linear time-
invariant systems with saturated outputs is considered. An output-feedback design
for single-input single-output systems of this type, which ensures global asymp-
totic stability if the linear system is controllable and observable, can already be
found in the literature. This design is based on deactivating the saturation by using
the sign of the output, and identifying the state of the system in a deadbeat manner
once the saturation becomes inactive. The most logical extension of this design to
systems with multiple outputs would be to deactivate all the saturations simulta-
neously; however, this is a difficult, if not impossible, task. The design presented
in Part III is instead based on deactivating all of the saturations at least once, but
not necessarily at the same time. The state of the system can then be identified
in a deadbeat manner and controlled to the origin. Next, semiglobal stabilization
of sandwich systems, consisting of two linear subsystems in a saturated cascade
connection, is considered under the assumption that a partial-state measurement is
available only from the second subsystem in the cascade. This problem is chal-
lenging because the first subsystem is separated from the output by the saturation,
and the second subsystem is separated from the input by the saturation. The de-
sign presented in Part III therefore combines techniques for stabilizing systems
with saturated inputs with techniques for stabilizing systems with saturated out-
puts. A key element of the design is a detection algorithm that determines whether
the saturation is active or inactive. This detection algorithm operates on time in-
tervals that must be chosen sufficiently small depending on the size of a compact
set of admissible initial conditions.
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Chapter 1

Introduction

The field of control engineering is centered around the task of manipulating phys-
ical systems to achieve a certain desired behavior. Many physical system can be
modeled by a set of continuous-time differential equations of the form

Px D f .t; x; u/; (1.1)

where t 2 R!0 represents time, x 2 Rn represents the state of the system, and
u 2 Rm represents an actuator input that can be specified by the designer. To make
the system behave in a desired manner, the control engineer must design a control
law that specifies the value of the actuator input u at any point in time. Typically,
u is designed to depend on the state x of the system, a strategy known as feedback
control.

1.1 State Estimation

A major obstacle in the actual implementation of feedback control laws is a lack
of information about the current state of the system. Typically, a measurement
y D h.t; x/ is available from the system, but the map h is in general not injective
with respect to x. Thus, one cannot invert h.t; x/ to identify x uniquely from
y at any fixed point in time. To alleviate this problem, a common strategy is to
implement the control law using a state estimate Ox instead of the actual state.

If a control law is to be implemented based on a state estimate Ox, then the
obvious question is how such an estimate may be constructed. Since h is presumed
not to be injective, Ox cannot be a static function of y. Instead, Ox is often designed

1
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as the output of a dynamical system

Pw D ˛1.t; w; u; y/;

Ox D ˛2.t; w; u; y/:

A dynamical system of this type that gives the estimation error Qx WD x ! Ox certain
desirable properties—for example, the property that Qx converges to the origin—
is called an observer. The precise definition of an observer varies throughout the
literature (see, e.g., Marino and Tomei, 1995; Trentelman, Stoorvogel, and Hautus,
2001).

1.1.1 Linear Time-Invariant Systems

A finite-dimensional linear time-invariant (LTI) system is described by the follow-
ing equations:

Px D Ax C Bu; (1.2a)

y D Cx CDu: (1.2b)

A full-order observer for this system can be constructed by replicating the dynam-
ics of the system and adding an output injection term:

POx D A Ox C BuC L.y ! C Ox !Du/: (1.3)

The matrix L is called the observer gain or output injection gain. To analyze this
design, we investigate the dynamics of the error variable Qx:

PQx D .A ! LC/ Qx: (1.4)

The error dynamics (1.4) represents an LTI system that it is exponentially stable
if the matrix A ! LC has all its eigenvalues in the open left-half complex plane.
This property can be ensured by a proper selection of L if, and only if, the pair of
matrices .C;A/ is detectable.

A pair .C;A/ is detectable if all the unobservable eigenvalues of A are located
in the open left-half complex plane. An eigenvalue % of A is called unobservable
if

rank
!

A ! %I
C

"

< n:

A system with no unobservable eigenvalues is called observable. See, for example,
Chen (1999); Trentelman et al. (2001) for further details.

An appealing property of linear systems is that, if an exponentially stabiliz-
ing state-feedback control law u D Fx is implemented as u D F Ox, where Ox is

2
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generated by the observer (1.3) with exponentially stable error dynamics, then the
resulting closed-loop system is also exponentially stable. This property is known
as the separation principle, because it implies that the control law and the observer
may be designed separately without compromising stability.

Unknown Disturbances

The above formulation for linear systems assumes that the model (1.2) is exact.
In reality, however, a physical system is often influenced by additive exogenous
disturbances, both in the dynamic equation (1.2a) and in the measurement equation
(1.2b). In the presence of such disturbances, the goal of having Qx converge to the
origin is often unrealistic. Instead, one may have to settle for Qx converging to some
(hopefully small) neighborhood of the origin.

Two optimization-based frameworks have been developed for designing ob-
servers to minimize or reduce the root mean square (RMS) of the estimation error
Qx in the presence of unknown disturbances. In theH2 framework, the disturbances
are assumed to be white noise signals of unit intensity, and the goal is to minimize
or reduce the H2 norm of the transfer matrix from the disturbances to the esti-
mation error, which is equivalent to the RMS of the estimation error. In the H1

framework, no statistical assumptions are made regarding the disturbances, and
the goal is to minimize or reduce the H1 norm of the transfer matrix from the
disturbances to the estimation error. TheH1 norm is an upper bound on the RMS

gain from the disturbance to the estimation error (see, e.g., Saberi, Stoorvogel, and
Sannuti, 2006).

Some particular design methods of relevance to this thesis are discussed in the
following sections.

Kalman Filters

Perhaps the most celebrated result in the area of state estimation, the Kalman filter
works on discrete-time models—often derived by discretization of a continuous-
time model—of the form

xk D Axk"1 C Buk CWwk; (1.5a)

yk D Cxk CDuk C V vk; (1.5b)

where wk and vk are unknown exogenous disturbances. These unknown distur-
bances are assumed to be Gaussian white noise signals of unit intensity, which are
mutually uncorrelated. The Kalman filter produces a state estimate Oxk according
to the expression

Oxk D A Oxk"1 C Buk C Lk.yk ! C Oxk !Duk/; (1.6)

3
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where Lk is a time-varying observer gain that is computed to minimize the RMS

of the estimation error. The Kalman filter algorithm is recursive and must be ini-
tialized with an estimate of the covariance of the estimation error.

The Kalman-Bucy filter is a version of the Kalman filter for continuous-time
systems, which updates the state estimate as

POx D A Ox C BuC L.t/.y ! C Ox !Du/: (1.7)

The expression (1.7) is the same as (1.3), except that the gain L is replaced by a
time-varying gain L.t/. As t ! 1, L.t/ converges to a stationary gain matrix.
This stationary gain matrix can be computed offline and used to implement an
observer of the form (1.3) with constant gain, resulting in the stationary Kalman
filter. The stationary Kalman filter minimizes the H2 norm of the transfer matrix
from the disturbance to the estimation error, and it is therefore optimal in the H2
framework.

For an introduction to various aspects of Kalman filtering, see, for example,
Brown and Hwang (1997); Grewal and Andrews (2001).

Unknown-Input Observers

Given a system of the form (1.2) with unknown disturbances occurring in the dy-
namic equation (1.2a), it is sometimes possible to construct an unknown-input
observer, which generates estimates that are completely unaffected by the dis-
turbances, without making any statistical assumptions (see, e.g., Darouach, Za-
sadzinski, and Xu, 1994; Chen, Patton, and Zhang, 1996). These properties of
unknown-input observers are obviously appealing; however, such observers can
only be constructed under restrictive conditions—for example, there can only be
one inherent integration between a disturbance and an output.

High-Gain Observers

The restrictive conditions for constructing unknown-input observers motivate the
search for observers that can reduce the effect of the disturbances to any desired
level. High-gain observers, which can be explicitly constructed outside of any op-
timization framework, achieve this by increasing the gain in certain directions, to
force the transfer matrix from the disturbances to the estimation error to approach
zero (see, e.g., Esfandiari and Khalil, 1987; Saberi and Sannuti, 1990; Saberi,
Chen, and Sannuti, 1993). Naturally, an increase in gain results in increased sensi-
tivity to measurement noise, and thus a tradeoff must be made between rejecting a
disturbance in the dynamic equations and keeping the sensitivity to measurement
noise at an acceptable level.
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The requirements for arbitrary suppression of a disturbance using high-gain
observers are significantly less restrictive than the requirements for unknown-input
observers; it is sufficient if the system is left-invertible and minimum-phase with
the unknown disturbances considered as inputs.

Disturbance Modeling

In some cases, a priori information about the nature of a disturbance can be ex-
ploited to improve state estimation. For example, the disturbance signals wk and
vk may not fit the white-noise assumption used in the Kalman filter. Instead, the
signals may have a non-white correlation profile that can be better described as
filtered white noise by the disturbance model

wk D Awwk"1 C Bw!k; (1.8a)

vk D Avvk"1 C Bv&k; (1.8b)

where !k and &k are Gaussian white noise signals of unit intensity. In this case,
the system model (1.5) may be augmented with the disturbance model (1.8), and
a Kalman filter may be designed for the augmented system (see, e.g., Brown and
Hwang, 1997; Grewal and Andrews, 2001).

If a disturbance is known to consist of a finite number of sinusoids with known
frequencies, then it can be modeled precisely by a linear system with complex
pairs of eigenvalues corresponding to those frequencies. The system model (1.2)
can be augmented with this marginally stable disturbance model and an observer
may be designed for the augmented system, assuming it is observable (see, e.g.,
Saberi et al., 2006, Ch. 12, 13).

General periodic signals consisting of an infinite number of sinusoids can be
modeled precisely by a system incorporating a time delay. Repetitive control is a
design framework that makes use of such time-delay systems to handle periodic
disturbances (see, e.g., Hara, Yamamoto, Omata, and Nakano, 1988). The condi-
tions for achieving perfect rejection by repetitive control are restrictive, however.
Furthermore, repetitive control generates retarded or neutral time-lag systems that
are difficult to analyze (see, e.g., Hale, 1977).

1.1.2 Nonlinear and Time-Varying Systems

Section 1.1.1 discusses various state-estimation techniques for LTI systems. When
the system in question is nonlinear or time-varying, state estimation is consider-
ably more complicated. To begin with, the simple notions of observability and
detectability for linear systems cannot be directly carried over to nonlinear sys-
tems.
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For an observable LTI system, different initial conditions can be distinguished
by looking at the system output on any nonempty open time interval, regardless
of the input applied to the system. For an observable nonlinear system, however,
different initial conditions may create identical outputs for certain inputs, or the
outputs may remain identical for a long time before becoming distinct. Many dif-
ferent types of observability have been defined to describe the observability prop-
erties of nonlinear systems in a more fine-grained manner, for example, uniform
observability to signify that the observability is not input-dependent, and local ob-
servability to signify that two initial conditions can be distinguished by observing
trajectories locally (see Nijmeijer and van der Schaft, 1990; Gauthier and Bornard,
1981, for details).

Another complication of nonlinear systems is that the separation principle
mentioned in Section 1.1.1 does not hold in general. Hence, separate design of
the control law and the observer is in general not justified from a theoretical point
of view. In practice, however, the two tasks are often successfully separated.

A large number of observer design techniques have been developed for dif-
ferent types of nonlinear systems. In the following sections, a few of these are
discussed.

Extended Kalman Filters

The Kalman filter discussed in Section 1.1.1 retains its optimality properties when
applied to linear time-varying systems; that is, systems where the matrices A, B ,
C , andD depend on time in some known fashion.

For general nonlinear systems, the extended Kalman filter (EKF) provides an
approximate solution that is based on linearization around the estimated state of
the system (see, e.g., Brown and Hwang, 1997; Grewal and Andrews, 2001). The
EKF is easy to construct and often produces good results, and it is therefore widely
used. Nevertheless, its behavior is not optimal, and proving stability of the state
estimates is difficult (see, e.g., Reif, Günther, Yaz, and Unbehauen, 1999).

Observers with Linear Error Dynamics

Sometimes systems with nonlinear dynamics can be transformed to a more desir-
able form by introducing nonlinear state transformations. In particular, it may be
possible to obtain a system where the nonlinearities depend only on known sig-
nals. Marino and Tomei (1995, Ch. 5) gives necessary and sufficient conditions
for transforming a single-input single-output (SISO) system Px D f .x/C g.x; u/,
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y D h.x/ by a local or global diffeomorphism ´ D T .x/ into the form

Ṕ1 D ´2 C '1.y; u/; (1.9a)

Ṕ2 D ´3 C '2.y; u/; (1.9b)
:::

Ṕn D 'n.y; u/; (1.9c)

y D ´1: (1.9d)

The system (1.9) represents an observable LTI system perturbed by the nonlin-
ear functions '1.y; u/; : : : ; 'n.y; u/. These nonlinear functions can be evaluated,
since they depend only on the input and the output, and hence an observer can be
constructed as

PÓ1 D Ó2 C '1.y; u/C l1.y ! Ó1/;
PÓ2 D Ó3 C '2.y; u/C l2.y ! Ó1/;

:::

PÓn D 'n.y; u/C ln.y ! Ó1/;

The resulting error dynamics is linear time-invariant and can be stabilized by a
proper selection of the gains l1; : : : ; ln.

High-Gain Observers

As discussed in Section 1.1.1, high-gain observers for LTI systems can in many
cases be used to suppress the effect of exogenous disturbances. The high-gain
framework can also be used to construct observers for nonlinear systems, by treat-
ing the difference between a nonlinearity and some linear function as a disturbance
to be suppressed. Provided the nonlinearities satisfy Lipschitz-continuity condi-
tions, at least locally in some region of interest, asymptotically perfect estimation
can often be achieved.

This strategy has been used many places in the literature, for example, in Saberi
and Sannuti (1990); Khalil and Esfandiari (1993); Teel and Praly (1994); Khalil
(2002, Ch. 14), where the nonlinearities are separated from the outputs by a left-
invertible, minimum-phase LTI system. A somewhat different construction is used
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in Gauthier and Kupka (2001), where the systems are of the following form:

Px1 D f1.u; x1; x2/;

Px2 D f2.u; x1; x2; x3/;

:::

Pxn D fn.u; x1; x2; : : : ; xn/;

y D h.u; x1/;

with the nonlinearities satisfying inequalities of the type

ˇ

ˇ

ˇ

ˇ

@fi

@xiC1
.u; x1; : : : ; xiC1/

ˇ

ˇ

ˇ

ˇ

" ˛ > 0;
ˇ

ˇ

ˇ

ˇ

@h

@x1
.u; x1/

ˇ

ˇ

ˇ

ˇ

" ˛ > 0

in addition to Lipschitz-continuity conditions.

Monotonic Nonlinearities

Some types of nonlinearities are easier to handle than others. The multivariable
circle criterion (see Khalil, 2002, Th. 7.1) specifies conditions for stability of the
system

Px D Ax ! B .t; y/;
y D Cx !D .t; y/;

when the nonlinear function  is a sector function (see Khalil, 2002, Def. 6.2).
The circle criterion can be used to construct observers for systems with monotonic
nonlinearities. In particular, Fan and Arcak (2003) extends the results from Ar-
cak and Kokotović (2001) to give linear matrix inequality conditions for observer
design for systems of the form

Px D Ax CG'.Hx/C (.y; u/;

y D Cx;

where ' satisfies a multivariable monotonicity condition

@'

@v
.v/C

@'

@v

T

.v/ " 0:
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1.2 Parameter Uncertainty

Sometimes a model of the form (1.1) is available to accurately describe the behav-
ior of a physical system. Quite frequently, however, there are uncertainties in the
model. Such uncertainties are problematic because control and observer design
based on an uncertain model may fail to yield the desired results.

Model uncertainties can often be described in terms of a set of unknown pa-
rameters that are constant or slowly-varying. For example, the model may include
an uncertain friction coefficient, a sensor bias, or a constant disturbance. In these
cases, a natural strategy is to introduce estimates of the unknown parameters to
be updated online. The parameter estimates may be used directly in a control or
state-estimation algorithm—such algorithms are often referred to as adaptive al-
gorithms. The parameter estimates may also be useful in a more indirect sense, by
providing information about the physical system that can be used in a higher-level
decision-making process. Some approaches for handling parameter uncertainty
are discussed below. For simplicity, the discussion focuses only on SISO systems.

Gradient Approach

One type of parameter-estimation technique begins by describing the physical sys-
tem as

.a.s/C NaT.s/#/y D .b.s/C NbT.s/#/u; (1.10)

where a.s/ C NaT.s/# and b.s/ C NbT.s/# represent the denominator and numera-
tor polynomials of the system’s transfer function, and # is a vector of unknown
parameters. The expression (1.10) can be rewritten as ´ D $T# , where ´ D
a.s/y ! b.s/u and $T D NbT.s/u ! NaT.s/y. The quantities ´ and $ can in gen-
eral not be evaluated, because they are defined in terms of non-proper transfer
functions. However, if we define ´f D H.s/´ and $f D H.s/$, where H.s/ is a
low-pass filter of sufficiently high relative degree, then we obtain the linear regres-
sion model ´f D $T

f # , where ´f and $f can be evaluated by using proper transfer
functions.

If we produce an estimate Ó f of ´f by the expression Ó f WD $T
f

O# , where O# is
an estimate of # , then the error e WD ´f ! Ó f is given by the linear relationship
e D $T

f
Q# , where Q# WD # ! O# . The strategy is now to define a convex function

J.e/ to be minimized, a popular choice being J.e/ D 1
2e
2. Then the parameter

estimate O# can be adjusted by the gradient algorithm

PO# D !)
#

@J

@e
.e/
@e

@ O#

$T

D )e$f;
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where ) is a symmetric, positive-definite gain matrix (see, e.g., Ioannou and Sun,
1996). It is common to include a normalization factor in the gradient algorithm,
in particular, if boundedness of $f is not guaranteed. For example, the parameter
estimate may be implemented as

PO# D )e
$f

1C $T
f $f

:

In some cases, the gradient approach may also be used for system with a non-
linear state-space representation (see, e.g., Krstić, Kanellakopoulos, and Koko-
tović, 1995), as long as the unknown parameter vector # appears linearly. The
estimated parameters can be used to implement a control law or an observer.

Least-Squares Estimation

Another way to use linear regression models is for least-squares parameter esti-
mation. Least-squares algorithms are typically applied to discrete-time linear re-
gression models of the form ´k D $T

k
# . Such models can be be generated from

discrete-time systems without the need to introduce low-pass filters (see Åström
and Wittenmark, 1995, Ch. 2). A least-squares estimate based on data from time 0
to time k produces an estimate O# that minimizes the error

k
X

iD0

.´i ! $T
i

O#/2:

As k increases, the size of the computation required to solve this minimization
problem also increases, which poses a problem in real-time applications. To get
around this problem, the least-squares estimate can be computed recursively, with
only the parameter estimate and a symmetric, positive-definite p#p matrix (where
p is the number of parameters) having to be carried over from one time step to the
next. A recursive least-squares algorithm can also be implemented for continuous-
time linear regression models.

The least-squares algorithm weighs the collected data equally, no matter when
the data was collected. Thus, data collected far back in time has the same influence
on the parameter estimate as newly collected data. This may be undesirable if there
is variation in the parameters. It is therefore common to include a forgetting factor
in the algorithm, which ensures that older data is gradually forgotten.

Lyapunov-Based Adaptation

Depending on the system, stability problems may arise when the methods men-
tioned above are applied to particular control or estimation problems. One way

10



1.2. PARAMETER UNCERTAINTY

to tackle stability issues is to carry out a Lyapunov-based design, where the time
derivative of the parameter estimate O# is explicitly chosen to make the time deriva-
tive of a Lyapunov-function candidate negative semidefinite. This approach is best
illustrated by an example.

Example 1.1. Consider the scalar system

Px D !T.t/# C u; (1.11)

where !.t/ is a vector of smooth, bounded signals with bounded derivatives, and #
is a vector of constant, unknown parameters. To control the state x to the origin, a
natural choice of control law is u D !x!!T.t/ O# , where O# is a vector of parameter
estimates. This choice yields the closed-loop system

Px D !x C !T.t/ Q# ; (1.12)

where Q# D # ! O# . The logic behind this choice of control law is that, if the esti-
mation error Q# were zero, then the origin would be globally exponentially stable,
as proven by using the Lyapunov function V D 1

2x
2.

In the presence of a nonzero parameter-estimation error, the time derivative of
V is given by

PV D !x2 C x!T.t/ Q# :

Clearly PV is not sign-definite, due to the term involving Q# . To address this problem,
we create a new Lyapunov-function candidate W D V C 1

2
Q#T)"1 Q# , where ) is a

symmetric, positive-definite gain matrix. Then

PW D !x2 C .x!T.t/C PQ#T)"1/ Q# D !x2 C .x!T.t/ ! PO#T)"1/ Q# :

By choosing PO# D )!.t/x, we obtain PW D !x2, which proves global stability of
the origin. By using the smoothness and boundedness properties of !.t/ we can
show that x is uniformly continuous, and we can therefore use Barbălat’s lemma
(Barbălat, 1959; Khalil, 2002, Lemma 8.2) to prove that x ! 0 as t ! 1.

Example 1.1 illustrates the main idea of Lyapunov-based adaptation, namely,
to obtain a system Px D f .t; x; u/C !.t; x; u/ Q# ; to find a Lyapunov-function can-
didate that is positive definite with respect to both x and Q# ; and to select PO# to com-
pensate for the presence of !.t; x; u/ Q# by canceling sign-indefinite terms in the
derivative of the Lyapunov-function candidate. Sometimes this process is straight-
forward, as in Example 1.1. Other times it can be complicated, in particular, be-
cause there is no systematic method for finding Lyapunov functions for general
nonlinear systems. Krstić et al. (1995) deals with a wide range of Lyapunov-based
adaptive techniques, centered around the backstepping approach to nonlinear con-
trol.
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Persistency of Excitation

In the above discussion, O# has been introduced as an estimate of the unknown
parameter vector # , and Q# D # ! O# has been introduced as a parameter-estimation
error. The most desirable behavior would be for Q# to converge to the origin as
t ! 1. However, this does not necessarily happen with either of the approaches
outlined above. To illustrate the problem, we again consider Example 1.1.

Example 1.1 (Continued). We have already confirmed that x ! 0 as t ! 1,
and from this we can easily show that !T.t/ Q# must also converge to zero. Suppose
first that !.t/ D ! is a constant 2 # 1 vector. Then !T Q# D 0 is satisfied not
only for Q# D 0, but for any Q# in the one-dimensional null space of !T. We may
therefore expect Q# to converge to this null space, but not to the origin.

Suppose instead that !T.t/ D Œsin.t/; cos.t/*. For each fixed t , !T.t/ still has
a one-dimensional null space. This null space keeps changing with time, however,
and the only value of Q# that always ensures !T.t/ Q# D 0 is Q# D 0. Intuitively, it is
therefore natural to expect Q# to converge to the origin.

This intuition may be formalized by imposing a persistency-of-excitation con-
dition on !.t/. Specifically, convergence of Q# to the origin is guaranteed if there
exist constants T > 0 and " > 0 such that for all t ,

Z tCT

t
!.+/!T.+/ d+ " "I:

Persistency-of-excitation conditions are crucial for ensuring parameter conver-
gence for all the methods outlined above. Guaranteeing persistency of excitation
can often be difficult, because the condition may depend on external signals that
cannot be influenced by the designer.

Nonlinear Parameterizations

Common to the approaches described above is that they all apply to systems that
can be described as linear in the unknown parameters; that is, the parameter vec-
tor # appears linearly on the right-hand side of (1.1). Techniques for handling
nonlinear parameterizations are much less well-developed. State and parameter
estimation for nonlinearly parameterized systems is one of the topics of this thesis,
and this issue is further discussed in Section 1.3.2.

1.3 Topics of This Thesis

The thesis is divided into three parts, each of which deals with a particular topic
within state and parameter estimation for nonlinear and uncertain systems. These
three parts are discussed in the following sections.
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1.3.1 Part I: State and Parameter Estimation for Automotive Vehicles

A longstanding trend in the automotive industry is the inclusion of increasingly
advanced safety systems in passenger cars. For example, modern cars are typi-
cally equipped with an anti-lock braking system (ABS), which prevents the wheels
from locking during hard braking, and many cars come with an electronic stabil-
ity control system (ESC), which stabilizes the lateral motion of the car to prevent
skidding. Other examples of automotive safety applications are collision warning
and avoidance, rollover prevention, and crosswind compensation.

These safety systems all rely on information about the current state of the
vehicle and its surroundings, and to retrieve this information a vehicle must be
equipped with a set of sensors. A car with an ESC system is typically equipped
with sensors for measuring the longitudinal and lateral accelerations, the steering
wheel angle, the wheel speeds, and the rate of rotation around the car’s vertical
axis, known as the yaw rate.

Vehicle Sideslip Angle

For a car driving on a horizontal surface, the essential quantities describing its lat-
eral motion are the yaw rate P and the vehicle sideslip angle ˇ, which is the angle
between the orientation of the vehicle and the direction of travel. The yaw rate
and the vehicle sideslip angle are illustrated in Figure 1.1. Unlike the yaw rate,
the vehicle sideslip angle is not measured in a standard ESC-type sensor configura-
tion, because this would require expensive equipment that is difficult to maintain,
such as optical correlation sensors. The vehicle sideslip angle must therefore be
estimated based on the measurements that are available.

During normal operation of a passenger car, the vehicle sideslip angle rarely
exceeds ˙2ı (van Zanten, 2000), and the vehicle’s lateral dynamics can be de-
scribed with a high degree of accuracy by a linear single-track model that is expo-
nentially stable (see, e.g., Kiencke and Nielsen (2000) and Chapter 7 of this thesis).
The linear behavior is a result of the linearity of the friction forces between each
tire and the road surface with respect to the tire-slip angle, that is, the angle be-
tween the orientation of the tire and the direction of travel at the center of the tire.
As long as the vehicle behaves according to the linear single-track model, estima-
tion of the vehicle sideslip angle is relatively straightforward. The difficulty arises
when the vehicle is pushed to the point where, by purpose or by accident, the tires
begin to lose their grip on the road surface. In this case, the road-tire friction forces
saturate as a function of the tire-slip angles, leading to highly nonlinear behavior.
The vehicle sideslip angle may become very high, in some cases well exceeding
90ı. Such situations are typically dangerous to the occupants of the vehicle.
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Figure 1.1: Illustration of the vehicle velocity, yaw rate, and vehicle sideslip angle. The
vehicle velocity vector v at the center of gravity is decomposed into the longitudinal ve-
locity vx and the lateral velocity vy . The angle ˇ between the longitudinal x-axis and the
velocity vector v is the vehicle sideslip angle. The rate of rotation around the vertical axis,
known as the yaw rate, is denoted by P .

Goal of Part I

Many algorithms have been developed for estimating the vehicle sideslip angle. A
majority of these, including those presented by van Zanten (2000); Farrelly and
Wellstead (1996); Fukada (1999); Venhovens and Naab (1999); Ungoren, Peng,
and Tseng (2004); Kiencke and Daiß (1997); Kiencke and Nielsen (2000); Hiemer,
von Vietinghoff, Kiencke, and Matsunaga (2005); von Vietinghoff, Hiemer, and
Kiencke (2005); von Vietinghoff, Olbrich, and Kiencke (2007); Suissa, Zomotor,
and Böttiger (1994); Ray (1997); Best, Gordon, and Dixon (2000); Lee (2006);
Hac and Simpson (2000), are based on a vehicle model—as opposed to a purely
kinematic model—usually including a road-tire friction model. To yield satisfac-
tory results, designs based on a road-tire friction model must contend with the
nonlinear characteristics of the road-tire friction forces when the tires lose road
grip. What is generally missing from the literature, however, is explicit stabil-
ity analysis in light of this nonlinearity. Furthermore, most designs are based on
the EKF, which has the drawback of being computationally complex. The issue
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of computational complexity is relevant because the ultimate goal of designing a
vehicle sideslip observer is implementation in production vehicles—typically on
fixed-point processors with limited computational capacity.

The goal of Part I is to develop a vehicle sideslip observer based on a standard
ESC-type sensor configuration with particular focus on the two issues mentioned
above, namely, explicit nonlinear analysis and a reduction of computational com-
plexity compared to the EKF. Toward this end, an observer is designed to estimate
the longitudinal velocity vx and lateral velocity vy , so that the vehicle sideslip
angle ˇ can be calculated using the expression ˇ D arctan.vy=vx/. To aid the es-
timation of the longitudinal and lateral velocities, estimates of the inclination and
bank angles, as well as a friction parameter, are also introduced. The term incli-
nation angle refers to the road sloping upward or downward along the orientation
of the vehicle; bank angle refers to the road sloping toward the left or the right.
The friction parameter is introduced to account for variations in the road surface
conditions and the tire properties.

The observer is tested on using measurements from production passenger cars,
and the results are compared to an EKF similar to that of Suissa et al. (1994).

Organization

Part I is composed of three chapters that are organized as follows:

$ Chapter 2 consists of the article Grip, Imsland, Johansen, Kalkkuhl, and
Suissa (2009b) from IEEE Control Systems Magazine. This chapter gives
an overview of the full estimation algorithm.

$ Chapter 3 consists of the article Grip, Imsland, Johansen, Fossen, Kalkkuhl,
and Suissa (2008a) from Automatica. This chapter gives an in-depth pre-
sentation and analysis of the algorithm for estimating the road-tire friction
parameter.

$ Chapter 4 consists of the article Grip, Imsland, Johansen, Kalkkuhl, and
Suissa (2009a) from the Proceedings of the American Control Conference.
This chapter presents additional details about the algorithm for estimating
the inclination and bank angles.

There is a significant degree of overlap between the three chapters in Part I, in
particular, between Chapter 2 and each of the other two chapters. The emphasis in
each of the three chapters is nevertheless different.

Because the chapters consist of reprinted articles, there are some differences
in notation. For example, the symbol P is used to denote the yaw rate in Chapters
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2 and 4, whereas the symbol r is used in Chapter 3 to denote the same quantity.
Also, the vehicle sideslip angle is defined as arctan.vy=vx/ in Chapters 2 and 4,
and as ! arctan.vy=vx/ in Chapter 3.

The results in Part I are based upon on the results reported in Imsland, Jo-
hansen, Fossen, Grip, Kalkkuhl, and Suissa (2006), where vehicle sideslip estima-
tion was considered under the assumption of a horizontal road surface and known
road-tire friction conditions. Other articles with related results, which have not
been included in this thesis, are Grip, Imsland, Johansen, Fossen, Kalkkuhl, and
Suissa (2006); Imsland, Grip, Johansen, Fossen, Kalkkuhl, and Suissa (2007a,
2008); Imsland, Johansen, Grip, and Fossen (2007b).

1.3.2 Part II: State and Parameter Estimation for Nonlinearly Pa-
rameterized Systems

As discussed in Section 1.2, there are well-developed techniques for estimating
unknown, constant parameters that appear linearly in the equations of a dynamical
system. When such parameters appear nonlinearly, however, fewer options are
available. Part II of this thesis considers the case when the system equations are
perturbed by some nonlinear function of the state, external time-varying signals,
and a set of unknown, constant parameters.

To handle nonlinear parameterizations, one option is to carry out a Lyapunov-
based design using a linearization of the perturbation around the current parameter
estimate. Such an approach may result in poor results or unstable behavior, as dis-
cussed in Annaswamy, Skantze, and Loh (1998) (where this approach is referred
to as a gradient-type approach). Another option is to estimate the parameters us-
ing an EKF, by considering the unknown parameters as part of the system state.
This approach often yields good results; however, stability analysis is difficult.
Introducing extra parameters to obtain a linear expression is yet another option,
but doing so may increase complexity and affect performance by reducing the
convergence rate of the parameter estimates or introducing stricter persistency-of-
excitation conditions.

One can find several methods in the literature that are not based on lineariz-
ing the problem. In Fomin, Fradkov, and Yakubovich (1981); Ortega (1996), a
Lyapunov-based approach is applied to nonlinear parameterizations with a con-
vexity property. Annaswamy et al. (1998) presents a method based on convexity
or concavity, which is extended to general nonlinear parameterizations in Loh,
Annaswamy, and Skantze (1999). Other results, such as Bošković (1995, 1998);
Zhang, Ge, Hang, and Chai (2000), focus on first-order systems with certain frac-
tional parameterizations. Qu (2003) presents an approach for a class of higher-
order systems with matrix fractional parameterizations, where an auxiliary esti-
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System Perturbation
estimator

Parameter
estimator

u

x .x; O!/

O"

Figure 1.2: Illustration of the system structure in the full-state measurement case. The
perturbation estimator provides an estimate of the perturbation $ D g.t; x; #/ to the pa-
rameter estimator, and the parameter estimator inverts the perturbation estimate dynam-
ically with respect to # . The parameter estimate is in turn fed back to the perturbation
estimator, leading to an exponentially stable interconnection.

mate of the full perturbation to the system equations is used in the estimation of the
unknown parameters. In Qu, Hull, and Wang (2006), an approach for more gen-
eral nonlinear parameterizations is presented, where the parameter estimate used
in the control law is biased by an appropriately chosen vector function. Tyukin
(2003) introduces the idea of virtual algorithms that are designed as though the
time derivative of measured variables is available, before being transformed into
realizable form without explicit differentiation of the measurements. In Tyukin,
Prokhorov, and van Leeuwen (2007), this idea is used to design a family of adap-
tation laws for monotonically parameterized perturbations in the first derivatives.

Whereas the nonlinear methods mentioned above are primarily concerned with
controlling the state of a system, Part II of this thesis is primarily concerned with
estimation. In particular, the focus is on providing asymptotically exact estimates
of the unknown parameters, which can in turn be used for the purpose of control.
The focus on exact parameter estimation restricts the class of perturbations that
can be handled, by imposing strong persistency-of-excitation conditions. On the
other hand, exponential stability of the estimation error is proven through explicit
Lyapunov-type analysis in a conceptually simple framework. Whereas the meth-
ods mentioned above assume that a full-state measurement is available or that the
nonlinearly parameterized perturbation appears in the first-order derivative of the
output, the method presented in Part II specifically addresses the case of partial-
state measurement, where the nonlinearly parameterized perturbation appears in
higher-order derivatives of the output.
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Full-State Measurement

Part II starts by considering the system

Px D f .t; x/C B.t; x/.v.t; x/C $/; (1.13)

where $ D g.t; x; #/ is the nonlinearly parameterized perturbation. Everything
about this system is presumed known, except the parameter vector # . Further-
more, the state x is measured. The design is based on the observation that, if the
perturbation $ D g.t; x; #/ were directly available, then identifying the parameter
vector # would be a matter of inverting a nonlinear equation. This line of thought
leads to a modular design consisting of a perturbation estimator and a parame-

ter estimator, as illustrated in Figure 1.2. The parameter estimator is designed to
dynamically invert the expression g.t; x; #/ with exponential convergence rate, so
that, in the hypothetical case that $ D g.t; x; #/ is precisely known, an asymptoti-
cally exact parameter estimate is produced. The perturbation estimator is designed
to produce an estimate of $. The two modules are then connected, so that the
parameter estimator uses the estimate of $ provided by the perturbation estimator
instead of the actual perturbation. The parameter estimate is in turn fed back to the
perturbation estimator. By adjusting the gain of the perturbation estimator, the ori-
gin of the error dynamics of the interconnected system is rendered exponentially
stable.

The outlined approach is philosophically similar to that of Tyukin (2003);
Tyukin et al. (2007), where the idea of virtual algorithms is employed. How-
ever, rather than specifying algorithms of a particular form that can be realized
without explicit differentiation, the modular approach presented here isolates the
task of inverting a nonlinear equation as the main design challenge and gives the
designer considerable freedom in how to best accomplish this task. The approach
is also similar to Qu (2003), where an auxiliary estimate of the full perturbation
is used to estimate unknown parameters that appear in a matrix fractional form.
Besides being applicable to a more general class of perturbations, however, the
approach presented here makes use of the estimated parameters in the perturbation
estimator in a way that renders the overall error dynamics exponentially stable. In
Qu (2003), the perturbation is instead approximated in a way that ensures conver-
gence to some arbitrarily small ball around the origin, the size of which depends
on the gain.

Partial-State Measurement

The advantage of the modular design becomes apparent when considering the
problem of dealing with a partial-state measurement. In this case, we consider
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systems with linear dynamics that are perturbed by a nonlinearly parameterized
perturbation, that is,

Px D Ax C BuCE$; (1.14a)

y D Cx; (1.14b)

where $ D g.u; y; x; #/, and u is some known, time-varying input signal. The
goal in this case is to estimate both the state x and the unknown parameter vector
# . The approach is the same as before, except that the perturbation estimator
must be extended to estimate both the perturbation and the state of the system.
The perturbation estimator is therefore replaced by a modified high-gain observer,
which works by extending the state space to include $ as a state.

The modified high-gain observer is essentially a disturbance observer designed
to estimate an unknown input to a linear system, with a modification to make use
of the parameter estimate fed back from the parameter estimator. A linear system
has a stable inverse with respect to an unknown input if it is left-invertible and
minimum-phase (see Moylan, 1977), and these are precisely the conditions that
we impose on the linear part of the system. The strategy of estimating unknown
perturbations for the purpose of control has recently been employed in the context
of performance recovery, for example, in Chakrabortty and Arcak (2009), where
the perturbation appears in the first-order derivatives, and in Freidovich and Khalil
(2008), where it appears at the end of an integrator chain in a SISO system and
is estimated by an extended high-gain observer. The modified high-gain observer
used in this thesis is closely related to the extended high-gain observer.

Structural Decomposition

High-gain observer theory typically deals with minimum-phase SISO systems, or
square-invertible, minimum-phase systems of uniform relative degree. The theory
used to construct the modified high-gain observer in this thesis is based on Saberi
and Sannuti (1990), and it encompasses a larger class of left-invertible, minimum-
phase systems that are not necessarily of uniform relative degree. As part of the
design procedure, the error dynamics is transformed to a special coordinate basis
(SCB), originally introduced by Sannuti and Saberi (1987). After a linear sys-
tem has been transformed to the SCB, several fundamental properties are revealed
directly by its state-space representation, in particular, its finite and infinite zero
structure and its invertibility properties.

Transforming an arbitrary linear system to the SCB is a complicated operation.
Numerical software tools have been developed for this purpose (see Chu, Liu,
and Tan, 2002; Chen, Lin, and Shamash, 2004) and implemented as part of the
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Linear Systems Toolkit for Matlab (Liu, Chen, and Lin, 2005). However, it is
sometimes more practical to deal with systems that have a symbolic representation,
at least in the preliminary stages of design. To facilitate the transformation of
systems with a symbolic representation to the SCB, Part II introduces a software
tool written in the mathematics software suite Maple, which transforms general
LTI systems represented by symbols or exact fractions to the SCB. This Maple
procedure is based on a modified Silverman algorithm (Silverman, 1969) from
Sannuti and Saberi (1987).

Organization

Part II is composed of three chapters that are organized as follows:

$ Chapter 5 consists of the article Grip, Johansen, Imsland, and Kaasa (2010a)
from Automatica. This chapter deals with parameter estimation for the sys-
tem (1.13) with full-state measurement, as well as the use of a control input
to compensate for the presence of the nonlinearly parameterized perturba-
tion.

$ Chapter 6 consists of the article Grip, Saberi, and Johansen (2009c), which
is under review in Systems & Control Letters. This chapter deals with ob-
server design and parameter estimation for the system (1.14) with partial-
state measurement.

$ Chapter 7 consists of the article Grip and Saberi (2010), which is due to
appear in the International Journal of Control. This chapter deals with the
use of Maple to transform general multivariable LTI systems to the SCB.

As in Part I, there are some notational inconsistencies between the chapters in Part
II. For example, the SCB representation in Chapter 6 is split into three subsys-
tems with state variables ,a, ,b , and ,q , whereas in Chapter 7, the corresponding
subsystems are represented by the state variables xa, xb , and xd .

Articles with related results, which have not been included in this thesis, are
Grip, Johansen, and Imsland (2008b); Grip and Saberi (2009); Grip, Saberi, and
Johansen (2009d).

1.3.3 Part III: Estimation and Control for Systems with Saturations

Of the nonlinearities that occur in physical systems, saturations are among the
most ubiquitous. Saturations may occur due to the limited capacity of an actuator,
limited range of a sensor, or physical limitations within a system. Whereas Parts
I and II are primarily concerned with estimation problems, Part III is concerned
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with output-feedback control of two types of systems containing saturations. State
estimation plays a crucial role in controlling these systems, but control and ob-
server design can in no way be considered separately. The reason for this is that
the observability properties of the systems are highly input-dependent; that is, the
systems lack the property of being uniformly observable. The results presented in
Part III should primarily be viewed as proofs of existence of stabilizing controllers
for the respective systems, and not as practical control designs to be implemented
it their current form.

Stabilization of Multiple-Input Multiple-Output Linear Systems with Satu-

rated Outputs

The first problem considered in Part III is global stabilization of multivariable LTI

systems with saturated outputs. This problem has previously been considered for
SISO systems by Kreisselmeier (1996), and the theory presented here is an exten-
sion of those results. The strategy employed by Kreisselmeier (1996) is to drive
the output out of saturation using only information about the sign of the output.
Once the saturation becomes inactive—if only for a brief interval—the state of the
system can be identified in a deadbeat manner. After the state has been identified,
a deadbeat controller is used to control the state to the origin.

The obvious extension of this strategy to systems with multiple outputs would
be to drive all the outputs simultaneously out of saturation in order to identify the
state. However, it is exceedingly difficult, if not impossible, to coordinate multiple
outputs so that they become unsaturated at the same time. A different strategy
is therefore employed, namely, to deactivate the saturations sequentially. Each
output is brought out of saturation at least once, but not necessarily at the same
time. Once every output has been out of saturation at least once, the state of the
system is identified and controlled to the origin.

Semiglobal Stabilization of Sandwich Systems by Output Feedback

The second problem considered in Part III is semiglobal stabilization of sandwich
systems by output-feedback. In this context, a sandwich system refers to the sys-
tem illustrated in Figure 1.3, consisting of two linear subsystems with a saturation
sandwiched between them. A partial-state measurement is available from the sec-
ond subsystem. The problem of stabilizing this system is related to the problem of
stabilizing systems with saturated outputs, because the first subsystem is separated
from the output by the saturation. At the same time, it is related to the problem of
stabilizing systems with saturated inputs, because the second subsystem is sepa-
rated from the input by the saturation.
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Figure 1.3: Sandwich system consisting of two linear subsystems with a saturation sand-
wiched between them. A partial state measurement is available from the second subsys-
tem.

To handle input saturations, low-gain design methodologies have been devel-
oped in Lin and Saberi (1993, 1995); Lin (1999), and these methodologies have
been generalized to handle stabilization of sandwich systems by state feedback in
Wang, Stoorvogel, Saberi, Grip, Roy, and Sannuti (2009a, 2010b). The results
presented here combine the ideas from Kreisselmeier (1996) for stabilization of
systems with saturated outputs with those from Wang et al. (2009a, 2010b) for
stabilization of sandwich systems by state feedback. Such a combination is not
straightforward, however.

The main challenge is that the saturation is separated from the output by a
dynamical system; thus, no direct information is available to indicate whether the
sandwiched saturation is active or inactive at any given point in time. A crucial
part of the control algorithm is therefore a detection scheme to determine whether
the saturation is active or inactive. This detection scheme works on time intervals
of a freely chosen length, and determines at the end of each interval whether the
saturation was active in the positive direction on the entire interval, active in the
negative direction on the entire interval, inactive on the entire interval, or both
active and inactive on the interval. The interval length must be made sufficiently
small depending on the size of an admissible set of initial conditions.

Organization

Part III is composed of two chapters that are organized as follows:

$ Chapter 8 consists of the article Grip, Saberi, and Wang (2010b), which has
been accepted for publication in IEEE Transactions on Automatic Control.
This chapter addresses the problem of stabilizing multivariable linear sys-
tems with saturated outputs.
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$ Chapter 9 consists of the article Grip, Saberi, Stoorvogel, Wang, and Roy
(2009e), which will be presented at the 2010 American Control Conference.
This chapter addresses the problem of semiglobal stabilization of sandwich
systems by output feedback.

As mentioned above, the results in Chapter 9 are built on the results of Wang et al.
(2009a, 2010b) on stabilization of sandwich systems by state feedback. Stabi-
lization of discrete-time sandwich systems by state feedback is treated in Wang,
Stoorvogel, Saberi, Grip, and Sannuti (2009b); Wang, Saberi, Stoorvogel, and Grip
(2010a).

1.4 Publications

For completeness, this section lists my contributions in terms of published and to-
be published articles. Mymain contributions are covered by the following articles.

H. F. Grip, L. Imsland, T. A. Johansen, T. I. Fossen, J. C. Kalkkuhl, and A. Suissa.
Nonlinear vehicle velocity observer with road-tire friction adaptation. In Proc.

IEEE Conf. Dec. Contr., pages 3603–3608, San Diego, CA, 2006.

H. F. Grip, L. Imsland, T. A. Johansen, T. I. Fossen, J. C. Kalkkuhl, and A. Suissa.
Nonlinear vehicle side-slip estimation with friction adaptation. Automatica,
44(3):611–622, 2008.

H. F. Grip, T. A. Johansen, and L. Imsland. Estimation and control for systems
with nonlinearly parameterized perturbations. In Proc. IFAC World Congr.,
pages 11178–11183, Seoul, South Korea, 2008.

H. F. Grip, L. Imsland, T. A. Johansen, J. C. Kalkkuhl, and A. Suissa. Estimation
of road inclination and bank angle in automotive vehicles. In Proc. American

Contr. Conf., pages 426–432, St. Louis, MO, 2009.

H. F. Grip and A. Saberi. Structural decomposition of linear multivariable systems
using symbolic computations. In Proc. Asian Contr. Conf., pages 1205–1210,
Hong Kong, China, 2009.

H. F. Grip, L. Imsland, T. A. Johansen, J. C. Kalkkuhl, and A. Suissa. Vehi-
cle sideslip estimation: Design, implementation, and experimental validation.
IEEE Contr. Syst. Mag., 29(5):36–52, 2009.
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H. F. Grip, A. Saberi, and T. A. Johansen. State and parameter estimation for
linear systems with nonlinearly parameterized perturbations. In Proc. IEEE

Conf. Dec. Contr., pages 8218–8225, Shanghai, China, 2009.

H. F. Grip and A. Saberi. Observer design in the presence of periodic output
disturbances by mixing of past and present output data. In Proc. IEEE Conf.

Dec. Contr., pages 6101–6106, Shanghai, China, 2009.

H. F. Grip, T. A. Johansen, L. Imsland, and G.-O. Kaasa. Parameter estimation and
compensation in systems with nonlinearly parameterized perturbations. Auto-
matica, 46(1):19–28, 2010.

H. F. Grip, A. Saberi, and X. Wang. Stabilization of multiple-input multiple-output
linear systems with saturated outputs. IEEE Trans. Automat. Contr., 2010. Ac-
cepted.

H. F. Grip and A. Saberi. Structural decomposition of linear multivariable systems
using symbolic computations. Int. J. Contr., 2010. Accepted.

H. F. Grip, A. Saberi, and T. A. Johansen. Observer design and parameter estima-
tion for linear systems with nonlinearly parameterized perturbations. Submitted
to Syst. Contr. Lett., 2009.

H. F. Grip, A. Saberi, A. A. Stoorvogel, X. Wang, and S. Roy. Semiglobal stabi-
lization of sandwich systems by dynamic output feedback. In Proc. American

Contr. Conf., Baltimore, MD, 2010.

H. F. Grip and A. Saberi. High-gain domination of nonlinear perturbations: Trans-
formation to a canonical form by dynamic output shaping. Submitted to IEEE

Conf. Dec. Contr., Atlanta, GA, 2010.

I have also contributed to the results covered by the following articles. My specific
contributions are outlined below the articles.

L. Imsland, T. A. Johansen, T. I. Fossen, H. F. Grip, J. C. Kalkkuhl, and A.
Suissa. Vehicle velocity estimation using nonlinear observers. Automatica,
42(12):2091–2103, 2006.

My contributions to this article include the development of a gain-selection scheme

for longitudinal velocity estimation; tuning, simulation, and experimental testing;

smaller contributions to the theoretical analysis; and general discussion.
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L. Imsland, H. F. Grip, T. A. Johansen, T. I. Fossen, J. C. Kalkkuhl, and A. Su-
issa. Nonlinear observer for vehicle velocity with friction and road bank an-
gle adaptation—Validation and comparison with an extended Kalman filter. In
Proc. SAE World Congr., Detroit, MI, 2007. Paper no. 2007-01-0808.

L. Imsland, H. F. Grip, T. A. Johansen, T. I. Fossen, J. C. Kalkkuhl, and A. Su-
issa. Nonlinear observer for vehicle velocity with friction and road bank angle
adaptation—Validation and comparison with an extended Kalman filter. In A.
C. Alkidas and D. C. Siegla, editors, SAE 2007 Transactions Journal of Passen-

ger Cars: Mechanical Systems, pages 722–734. SAE, Warrendale, PA, 2008.

The two foregoing articles are based on a friction-estimation algorithm that was

developed as part of my MSc degree. Beyond this, my contributions to these ar-

ticles include participation in developing the bank-angle estimation algorithm;

tuning, simulation, and experimental testing; visiting Daimler in Germany to test

the computational complexity of the estimation algorithm; and active involvement

in all aspects of the underlying sideslip estimation project.

L. Imsland, T. A. Johansen, H. F. Grip, and T. I. Fossen. On nonlinear unknown in-
put observers—Applied to lateral vehicle velocity estimation on banked roads.
Int. J. Contr., 80(11):1741–1750, 2007.

My contributions to this article include participation in developing the bank-angle

estimation algorithm; tuning, testing, and simulation; and discussion regarding

the theoretical content.

X. Wang, A. A. Stoorvogel, A. Saberi, H. F. Grip, S. Roy, and P. Sannuti. Stabi-
lization of a class of sandwich nonlinear systems via state feedback. In Proc.

IEEE Conf. Dec. Contr., pages 1417–1421, Shanghai, China, 2009.

X.Wang, A. A. Stoorvogel, A. Saberi, H. F. Grip, S. Roy, and P. Sannuti. Stabiliza-
tion of a class of sandwich systems via state feedback. IEEE Trans. Automat.

Contr., 2010. Accepted.

X. Wang, A. A. Stoorvogel, A. Saberi, H. F. Grip, and P. Sannuti. Stabilization of
nonlinear sandwich systems via state feedback—Discrete-time systems. Sub-
mitted to Int. J. Robust Nonlin. Contr., 2009.

X. Wang, A. Saberi, A. A. Stoorvogel, and H. F. Grip. Stabilization of discrete-
time sandwich systems with low-and-high gain feedback design. Submitted to
IEEE Conf. Dec. Contr., Atlanta, GA, 2010.
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My contributions to the four foregoing articles include discussion and collabora-

tion in developing the details of the theoretical content; the development of simu-

lation examples; and work on the written presentation of the material.
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Chapter 2

Vehicle Sideslip Estimation:

Design, Implementation, and

Experimental Validation

2.1 Introduction

Control systems that help the driver avoid accidents, or limit the damage in case of
an accident, have become ubiquitous in modern passenger cars. For example, new
cars typically have an anti-lock braking system (ABS), which prevents the wheels
from locking during hard braking, and they often have an electronic stability con-
trol system (ESC), which stabilizes the lateral motion of the vehicle to prevent
skidding. Collision warning and avoidance, rollover prevention, crosswind stabi-
lization, and preparation for an impending accident by adjusting seat positions and
seat belts are additional examples of control systems for automotive safety.

These systems rely on information about the state of the vehicle and its sur-
roundings. To obtain this information, modern cars are equipped with various
sensors. For a typical car with an ESC system, necessary measurements include
the steering wheel angle, wheel angular velocities, lateral acceleration, and the
rate of rotation around the vertical body-fixed axis, known as the yaw rate. These
measurements alone contain a great deal of information about the state of the ve-
hicle. The speed of the car can be estimated using the wheel angular velocities,
and a linear reference model taking the speed, steering wheel angle, and additional
measurements as inputs can be used to predict the behavior of the car under normal
driving conditions. The predicted behavior can be compared to the actual behavior
of the car; ESC systems, for example, use the brakes to correct the deviation from
a yaw reference model when the vehicle starts to skid (van Zanten, 2000).
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Figure 2.1: The relationship between the car, an observer, and a controller with control
allocation. The observer combines measurements from the car with a dynamic model, to
provide estimates of unmeasured states to the controller.

Although some quantities are easily measured, others are difficult to measure
because of high cost or impracticality. When some quantity cannot be measured
directly, it is often necessary to estimate it using the measurements that are avail-
able. Observers combine the available measurements with dynamic models to
estimate unknown dynamic states. Often, dynamic models of sufficient accuracy
are not available, and must be carefully constructed as part of the observer design.
The observer estimates can be used to implement control algorithms, as Figure 2.1
illustrates.

2.1.1 Vehicle Sideslip Angle

When a car is driven straight on a flat surface, the direction of travel at the center
of gravity (CG) remains the same as the orientation of the vehicle (that is, the
direction of the longitudinal axis). When the car turns, however, it exhibits a yaw
rate, causing the orientation to change, and a lateral acceleration directed toward
the center of the turn. The car also exhibits a velocity component perpendicular to
the orientation, known as the lateral velocity. Nonzero lateral velocity means that
the orientation of the vehicle and the direction of travel are no longer the same.
The lateral velocity differs from one point on the vehicle body to another; as a
point of reference, we use the vehicle’s CG.
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The angle between the orientation of the vehicle and the direction of travel at
the CG is called the vehicle sideslip angle. In production cars, the vehicle sideslip
angle is not measured, because this measurement requires expensive equipment
such as optical correlation sensors. Under normal circumstances, when the car
is driven safely without danger of losing road grip, the vehicle sideslip angle is
small, not exceeding ˙2ı for the average driver (van Zanten, 2000). Moreover,
for a given speed in normal driving situations, the steering characteristics specify
a tight connection between the steering wheel angle, yaw rate, lateral acceleration,
and vehicle sideslip angle. The vehicle sideslip angle can therefore be estimated
using a static model or a simple linear, dynamic model. In extreme situations,
however, when the vehicle is pushed to the physical limits of adhesion between
the tires and the road surface, the behavior of the car is highly nonlinear, and the
tight coupling of the vehicle sideslip angle to various measured quantities is lost.
This behavior is due to the nonlinearity of the friction forces between the tires and
the road surface. In these situations, the vehicle sideslip angle can become large,
and knowledge about it is essential for a proper description of vehicle behavior.
Accurate online estimation of the vehicle sideslip angle has the potential to enable
development of new automotive safety systems, and to improve existing algorithms
that use information about the vehicle sideslip angle, such as ESC.

2.1.2 Previous Research

Many designs for estimating velocity and sideslip angle are found in the literature.
These designs are typically based on linear or quasi-linear techniques (Farrelly
and Wellstead, 1996; Fukada, 1999; Venhovens and Naab, 1999; Ungoren, Peng,
and Tseng, 2004). A nonlinear observer linearizing the observer error dynamics is
presented in Kiencke and Daiß (1997); Kiencke and Nielsen (2000). An observer
based on forcing the dynamics of the nonlinear estimation error to follow the dy-
namics of a linear reference system is investigated in Hiemer, von Vietinghoff,
Kiencke, and Matsunaga (2005); von Vietinghoff, Hiemer, and Kiencke (2005).
In Hiemer et al. (2005); von Vietinghoff et al. (2005) availability of the longitudi-
nal road-tire friction forces is assumed, whereas in von Vietinghoff, Olbrich, and
Kiencke (2007) the longitudinal forces used in the estimation algorithm are cal-
culated from the brake pressure, clutch position, and throttle angle. An extended
Kalman filter (EKF) based on a road-tire friction model, which includes estimation
of a road-tire friction coefficient, the inclination angle, and the bank angle, is de-
veloped in Suissa, Zomotor, and Böttiger (1994). The term inclination angle refers
to the road sloping upward or downward along the orientation of the vehicle; bank
angle refers to the road sloping toward the left or the right. Alternative EKFs are
used in Ray (1997), which estimates velocity and tire forces without the explicit
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use of a road-tire friction model; and in Best, Gordon, and Dixon (2000), which
is based on a linear model of the road-tire friction forces with online estimation
of road-tire friction parameters. In Lee (2006) a linear observer for the vehicle
velocity is used as an input to a Kalman filter based on the kinematic equations
of motion. In Hac and Simpson (2000) the sideslip angle is estimated along with
both the yaw rate and a road-tire friction coefficient without the use of a yaw rate
measurement.

A majority of designs, including van Zanten (2000); Farrelly and Wellstead
(1996); Fukada (1999); Venhovens and Naab (1999); von Vietinghoff et al. (2005,
2007); Ungoren et al. (2004); Kiencke and Daiß (1997); Kiencke and Nielsen
(2000); Hiemer et al. (2005); Suissa et al. (1994); Ray (1997); Best et al. (2000);
Lee (2006); Hac and Simpson (2000), are based on a vehicle model, usually in-
cluding a model of the road-tire friction forces. The main argument against using
such a model is its inherent uncertainty. Changes in the loading of the vehicle and
the tire characteristics, for example, introduce unknown variations in the model. A
different direction is taken in Klier, Reim, and Stapel (2008), where a six-degree-
of-freedom inertial sensor cluster is used in an EKF that relies mainly on open-
loop integration of the kinematic equations, without a vehicle or friction model.
The main measurement equation comes from the longitudinal velocity, which is
calculated separately based primarily on the wheel speeds. This idea is similar to
the kinematic observer approach in Farrelly and Wellstead (1996). Designs of this
type are sensitive to unknown sensor bias and drift, as well as misalignment of the
sensor cluster. Sensor bias refers to a constant error in the measurement signal;
drift refers to a slowly varying error. Drift in inertial sensors is primarily caused
by variations in temperature.

To estimate the vehicle sideslip angle in real-world situations, some informa-
tion about the surroundings of the vehicle is usually needed. In particular, the road
bank angle has a significant effect on the lateral velocity. Furthermore, when a
design includes modeling of the road-tire friction forces, as in van Zanten (2000);
Farrelly and Wellstead (1996); Fukada (1999); Venhovens and Naab (1999); Un-
goren et al. (2004); Kiencke and Daiß (1997); Kiencke and Nielsen (2000); Hiemer
et al. (2005); von Vietinghoff et al. (2005, 2007); Suissa et al. (1994); Best et al.
(2000); Hac and Simpson (2000), information about the road surface conditions is
needed. When estimating the longitudinal velocity, knowledge of the inclination
angle is useful when the wheel speeds fail to provide high-quality information.
Some model-based designs, such as Fukada (1999); Ungoren et al. (2004); Su-
issa et al. (1994); Ray (1997); Best et al. (2000); Hac and Simpson (2000), take
unknown road surface conditions into account, but it is more commonly assumed
that the road surface conditions are known, or that the vehicle is driven in a way
that minimizes the impact of the road surface conditions. Similarly, although a hor-
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izontal road surface is typically assumed, Fukada (1999); Ungoren et al. (2004);
Suissa et al. (1994); Klier et al. (2008) consider inclination and bank angles. Es-
timation of the road bank angle is considered in Tseng (2001), which is based
on transfer functions from the steering angle and road bank angle to the yaw rate
and lateral acceleration, and in Sentouh, Sebsadji, Mammar, and Glaser (2007),
which uses an EKF to estimate the sideslip angle, which is in turn used in a linear
unknown-input observer to estimate the road bank angle.

Inertial measurements are combined with GPS measurements in Ryu and
Gerdes (2004); Bevly, Gerdes, and Wilson (2002); Bevly (2004); Bevly, Ryu, and
Gerdes (2006); Farrell (2008) to provide estimates of the sideslip angle. Designs
of this type often include estimates of the bank angle and inclination angle.

2.1.3 Goal of This Article

The goal of this article is to develop a vehicle sideslip observer that takes the
nonlinearities of the system into account, both in the design and theoretical anal-
ysis. Design goals include a reduction of computational complexity compared to
the EKF in order to make the observer suitable for implementation in embedded
hardware, and a reduction in the number of tuning parameters compared to the
EKF. The design is based on a standard sensor configuration, and is subjected to
extensive testing in realistic conditions.

Parts of the theoretical foundation for the observer design, as well as some
preliminary experimental results, are found in Imsland, Johansen, Fossen, Grip,
Kalkkuhl, and Suissa (2006), which assumes known road-tire friction properties
and a horizontal road surface, and in Grip, Imsland, Johansen, Fossen, Kalkkuhl,
and Suissa (2008), where the approach from Imsland et al. (2006) is extended to
take unknown road surface conditions into account. In Imsland, Grip, Johansen,
Fossen, Kalkkuhl, and Suissa (2007a) a comparison is made between an EKF and
an observer modified from Imsland et al. (2006); Grip et al. (2008), with an added
algorithm for bank-angle estimation developed in Imsland, Johansen, Grip, and
Fossen (2007b). In the present article, we extend the approach of Imsland et al.
(2006); Grip et al. (2008) by estimating the inclination and bank angles. We refer
to the resulting observer as the nonlinear vehicle sideslip observer (NVSO). The
NVSO has undergone extensive and systematic testing in a variety of situations.
Tests have been performed on both test tracks and normal roads, on high- and low-
friction surfaces, and with significant inclination and bank angles. Based on the
results of this testing, we discuss strengths and weaknesses of the NVSO design, as
well as practical implementation and tuning. We compare the experimental results
with those of an EKF. Since much of the discussion concerns modeling accuracy,
observability, and constraints imposed by the sensor configuration, the results and
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observations are applicable in a wider sense to alternative model-based designs
with similar sensor configurations.

2.1.4 Sensor Configuration

A crucial design consideration in estimation problems of this type is the choice of
sensor configuration. Typical automotive-grade sensor configurations are charac-
terized by the need to minimize costs, which often translates into sensors with low
resolution, narrow range, and significant noise, bias, and drift. The availability and
quality of sensors place fundamental constraints on the accuracy that can be ex-
pected from any estimation scheme. Bias and drift in inertial sensors is particularly
limiting, because it prohibits accurate integration of kinematic equations, except
over short time spans.

We focus on a standard sensor configuration found in modern cars with an
ESC system, consisting of measurements of the longitudinal and lateral acceler-
ations, the yaw rate, the steering wheel angle, and the wheel speeds. Although
GPS measurements would be a valuable addition to the measurements mentioned
above, GPS navigation systems are not yet standard equipment, even in high-end
passenger cars. Moreover, GPS signals are sometimes unavailable or degraded,
for example, when driving through tunnels, under bridges, or near large structures
such as steep mountains or tall buildings. We therefore do not consider GPS mea-
surements to be available.

The ESC-type sensor configuration lacks measurements of the vertical accel-
eration and the angular rates around the vehicle’s longitudinal and lateral axes,
known as the roll and pitch rates, respectively. In addition, ESC-type sensors may
have significant bias and drift, which prohibits a design based exclusively on kine-
matic equations, such as Klier et al. (2008). We therefore supplement the kine-
matic equations with a vehicle model that includes a model of the road-tire friction
forces.

2.2 Vehicle Model

For a car driving on a horizontal surface, the longitudinal and lateral velocities at
the CG are governed by the equations of motion (Kiencke and Nielsen, 2000)

Pvx D ax C P vy ; (2.1)

Pvy D ay ! P vx; (2.2)

where vx and vy are the longitudinal and lateral velocities, ax and ay are the
longitudinal and lateral accelerations, and P is the yaw rate. Each of the equations
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Figure 2.2: Illustration of the vehicle velocity, yaw rate, vehicle sideslip angle, tire-slip
angle, and road-tire friction forces. The vehicle velocity vector v at the CG is decomposed
into the longitudinal velocity vx , which is positive in the forward direction, and the lateral
velocity vy , which is positive in the leftward direction. The angle ˇ between the longi-
tudinal x-axis and the velocity vector v is the vehicle sideslip angle, which is defined as
positive in the counterclockwise direction. For the front left wheel, the velocity vector v1
at the wheel center is shown. The angle ˛1 between v1 and the longitudinal axis of the tire
is the tire-slip angle, which is defined as positive in the clockwise direction. The positive
tire-slip angle shown in the figure generates a positive lateral tire force Fy1. The longitu-
dinal tire force Fx1 is generated by a nonzero longitudinal tire slip. Together, Fx1 and Fy1
make up the tire force vector F1. Similar road-tire friction forces are also generated for
the other three tires.

(2.1), (2.2) includes an acceleration term and a term involving the yaw rate P . The
accelerations are directly related to the forces acting on the vehicle, attributable
mainly to road-tire friction. The terms involving the yaw rate appear because the
coordinate system in which we resolve the velocities and accelerations is fixed to
the car, which rotates with respect to an inertial coordinate system. The vehicle is
illustrated in Figure 2.2, where the velocities and yaw rate are shown together with
the vehicle sideslip angle ˇ, which is given as ˇ D arctan.vy=vx/.
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2.2.1 Road-Tire Friction

When the driver turns the steering wheel to make a regular turn, the tires on the
front axle of the car become misaligned with the direction of travel, and we obtain
a tire-slip angle. The tire-slip angle is conceptually similar to the vehicle sideslip
angle, except that the relevant frame of reference is associated with a single tire
rather than the vehicle body. In particular, the tire-slip angle is defined as the angle
between the velocity vector at the center of the wheel and the orientation of the
tire. This definition is illustrated for the front left wheel in Figure 2.2, where ˛1
denotes the tire-slip angle. A nonzero tire-slip angle implies a nonzero velocity
in the lateral direction of the tire, relative to the road surface. Because the tire
is elastic, however, it does not simply slide laterally over the road surface. As a
point on the tire tread rolls into contact with the surface, its path is deflected and it
briefly grips the surface as it passes through the contact patch. This process results
in a deformation of the tire, and the tire’s resistance to this deformation generates
lateral forces that lead the car to start turning (Haney, 2003, Ch. 6). As the car
starts to turn, tire-slip angles are also built up for the rear tires. After an initial
transient, a steady state is reached where the road-tire friction forces balance to
give zero net moment on the vehicle body, as well as constant lateral acceleration
and lateral velocity.

We also define the longitudinal tire slip, as the normalized difference between
the circumferential speed of the tire and the speed of the wheel center along the
orientation of the tire. Longitudinal tire slip gives rise to longitudinal friction
forces, as illustrated in Figure 2.2 by Fx1. Collectively, we refer to the longitudinal
tire slip and lateral tire-slip angle as the tire slips.

During normal driving the road-tire friction forces are approximately linear
with respect to the tire slips. The lateral friction forces are then modeled as
Fy1 D Cy˛1, where the constant Cy is the cornering stiffness. In extreme sit-
uations, however, the tire slips may become so large that this linearity is lost.
Beyond a certain point, the tire loses road grip and the road-tire friction forces
begin to saturate, meaning that an increase in the tire slips does not result in a
corresponding increase in the friction forces. This effect can be seen in Figure
2.3, where the lateral road-tire friction force is plotted against the tire-slip angle
after being normalized by dividing it by the vertical contact force. The curves in
Figure 2.3 correspond to varying degrees of road grip due to various road surface
conditions, ranging roughly from ice for the lower curve to dry asphalt for the up-
per one. The road surface conditions are represented by a friction coefficient -H ,
which is lower for more slippery surfaces. The region where the friction forces
are linear with respect to the tire-slip angle is called the linear region. Beyond the
linear region, where the tire-slip angles are larger, is the nonlinear region.
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Figure 2.3: Nonlinear road-tire friction curves. The lateral tire force, which is normalized
by dividing it by the vertical contact force, is plotted against the lateral tire-slip angle for
various road surface conditions. Where the tire-slip angles are small, the forces increase
linearly, and we call this the linear region. For larger tire-slip angles, in the nonlinear
region, the forces saturate. The curves to the left are created with the longitudinal tire slip
kept at zero. The curves to the right are created with a large longitudinal tire slip.

When the friction forces saturate for the front tires before they do so at the
rear, the car stops responding properly to steering inputs, a situation known as un-
dersteer or plowing. Conversely, when the friction forces saturate for the rear tires
first, the car becomes severely oversteered and may become unstable, a situation
known as fishtailing. The point at which severe under- or oversteer occurs depends
on the driving maneuver, the tires, the design of the vehicle, and the properties
of the road surface. As Figure 2.3 makes clear, road-tire friction forces saturate
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sooner on low-friction surfaces, such as ice, than on high-friction surfaces, such
as asphalt. For a more comprehensive description of road-tire friction, and more
detailed definitions, see Kiencke and Nielsen (2000); Pacejka (2006).

Modeling the Road-Tire Friction Forces

As with many alternative designs for vehicle sideslip estimation (van Zanten, 2000;
Farrelly and Wellstead, 1996; Fukada, 1999; Venhovens and Naab, 1999; Ungoren
et al., 2004; Kiencke and Daiß, 1997; Kiencke and Nielsen, 2000; Hiemer et al.,
2005; von Vietinghoff et al., 2005, 2007; Suissa et al., 1994; Best et al., 2000; Hac
and Simpson, 2000), a key component of the NVSO is a road-tire friction model.
The road-tire friction model takes measurements and observer estimates as inputs,
and returns estimates of the road-tire friction forces. The expression Fy1 D Cy˛1
is an example of a linear friction model, but to account for the nonlinearity of road-
tire friction forces for large tire slips, a nonlinear model is needed. A widely used
nonlinear road-tire friction model is themagic formula (Pacejka, 2006). Like linear
road-tire friction models, nonlinear models such as the magic formula are based on
tire slips. But instead of increasing linearly with the tire slips, the friction forces
in nonlinear models are made to follow curves similar to those seen in Figure 2.3.

The NVSO is not designed with a particular road-tire friction model in mind.
Instead, we use a nonlinear friction model satisfying specific physical properties,
and we base the design and analysis on these properties. The curves in Figure 2.3
are created with a friction model for which the physical road-tire friction curves
are approximated by fractional polynomial expressions, similar to Kiencke and
Nielsen (2000, Ch. 7.2).

2.2.2 The Lateral Acceleration

According to Newton’s second law, the vehicle acceleration along each direction
is equal to the total force acting on the vehicle in that direction, divided by the
mass. When the road surface is slanted, rather than horizontal, gravity acts on the
vehicle in the tangent plane of the road surface, which affects the vehicle velocity.
Assume for now that the road surface is horizontal. The dominant forces acting
in the plane are the road-tire friction forces; we ignore smaller influences such as
wind and air resistance. The road-tire friction forces are algebraic functions of
the tire slips, which in turn are algebraic functions of the vehicle velocity. Con-
sequently, measurements of the vehicle accelerations depend algebraically on the
vehicle velocities, and the accelerations can therefore be used as indirect measure-
ments of the velocities. In particular, the lateral acceleration ay contains valuable
information about the lateral velocity.
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To see how the relationship between the lateral acceleration ay and the lateral
velocity vy can be used, we consider what happens to the lateral road-tire friction
forces when we perturb vy while keeping everything else constant. From Figure
2.2, we see that if vy is increased, the lateral component of the velocity vector
v1 at the center of the front left wheel is also increased, and the tire-slip angle
˛1 for the front left tire is therefore decreased (note that the sign convention for
the tire-slip angle is opposite from the sign convention for the vehicle sideslip
angle). This decrease in the tire-slip angle leads to a decrease in the lateral road-
tire friction force Fy1, as indicated by the shape of the friction curves in Figure 2.3.
Put differently, Fy1 is perturbed in a negative direction in response to a positive
perturbation in vy . The lateral road-tire friction forces for the remaining three tires
are affected in the same way by a perturbation in vy .

The above discussion suggests that the total lateral force on the vehicle, and
therefore the lateral acceleration ay , is perturbed in a negative direction in response
to a positive perturbation in vy . Indeed, it is demonstrated in Imsland et al. (2006)
that, except in some particular cases that we discuss below, the partial derivative
@ay=@vy is less than some negative number when ay is considered as a function
of vy . We therefore consider ay to be strictly decreasing with respect to vy . This
monotonicity is a key property in the NVSO design.

Roll Correction

During a turn, the vehicle body is typically at a slight roll angle $ around the x-
axis, relative to the road surface. The roll angle is roughly proportional to the lat-
eral acceleration and thus can be approximated as $ % p!ay , where the constant
p! is the roll-angle gradient and ay is the lateral acceleration in the tangent plane
of the road surface, as above. The roll angle $ causes the lateral acceleration mea-
surement to be influenced by an additive gravity component sin.$/g % $g, where
g is the acceleration of gravity. The measured lateral acceleration is therefore ap-
proximately .1C p!g/ay . The gravity influence due to roll angle is undesirable,
and to remove it we divide the acceleration measurement by the constant factor
1 C p!g. Throughout the article, we therefore assume that ay is a measurement
that is not influenced by the roll angle.

2.3 Observer Design

To estimate the vehicle sideslip angle, we estimate the longitudinal and lateral
velocities vx and vy at the CG, and then calculate the vehicle sideslip angle from
the velocities using the expression ˇ D arctan.vy=vx/. We assume for now that
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there is no uncertainty in the friction model regarding the road surface conditions.
We discuss the estimation of longitudinal and lateral velocity separately, ignoring
at first the coupling between the two estimates. Throughout the rest of this article,
a hat indicates an estimated quantity, and a tilde indicates an estimation error; thus
Ovx is an estimate of vx , and Qvx WD vx ! Ovx . The goal is to stabilize the estimation
error and make it vanish asymptotically, for example, by making the origin of the
observer error dynamics asymptotically or exponentially stable.

2.3.1 Longitudinal-Velocity Estimation

A conventional speedometer approximates the longitudinal vehicle velocity by us-
ing the wheel speeds. The wheel speeds usually provide good measurements of
the longitudinal velocity, but the accuracy is sometimes severely reduced, for ex-
ample, during strong acceleration or braking, and in situations where one or more
of the wheels are spinning or locked.

To estimate the longitudinal velocity we use the observer

POvx D ax C P Ovy CKvx .t/.vx;ref ! Ovx/; (2.3)

where Ovy is an estimate of the lateral velocity as specified below,Kvx .t/ is a time-
varying gain, and vx;ref is a reference velocity calculated from the wheel speeds,
which plays the role of measurement. The observer (2.3) is a copy of the system
equation (2.1) with an added injection term Kvx .t/.vx;ref ! Ovx/. When vx;ref rep-
resents the true longitudinal velocity, the error dynamics obtained by subtracting
(2.3) from (2.1) are

PQvx D P Qvy !Kvx .t/ Qvx : (2.4)

Ignoring for the moment the error Qvy , global exponential stability of the origin
of (2.4) can be verified if Kvx .t/ is larger than some positive number, that is,
Kvx .t/ " Kvx ;min > 0. The primary challenge therefore lies in producing a
reference velocity vx;ref and selecting a sensible gain Kvx .t/.

Reference Velocity and Gain

The four wheel speeds, together with the steering wheel angle and the yaw rate,
can be used to create four separate measurements of vx . It is possible to create a
reference velocity by taking a weighted average of these four measurements, with
weightings determined by various factors, such as the spread in the four measure-
ments and whether the car is braking or accelerating (Imsland et al., 2006; Grip
et al., 2008). To make speed estimation as reliable as possible in every situation,
however, car manufacturers have developed sophisticated reference velocity algo-
rithms that use information from a variety of sources, such as the accelerations,
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brake pressures, engine torque, and status information from ABS, ESC, and drive-
slip control systems. The goal is to determine which wheel speeds provide accurate
information about the longitudinal velocity at any given time, for example, during
heavy braking or acceleration. We therefore assume that a reference velocity is
available to the observer.

No matter how much effort is put into the reference velocity algorithm, the ac-
curacy of vx;ref varies. We take this variation into account through the time-varying
gain Kvx .t/, which is intended to reflect the accuracy of the reference velocity.
When the accuracy is deemed to be low, the gain Kvx .t/ is reduced to make the
observer less reliant on the reference velocity and more reliant on integration of
the system equations. In creatingKvx .t/, all of the sources of information that are
used to create vx;ref can be used. A measure of the accuracy of vx;ref may indeed
be naturally available from the inner workings of the reference velocity algorithm.
For the experimental results presented in this article, we use a simple algorithm
that is based on reducing the nominal gain depending on the variance of the four
measurements, on the theory that agreement between the measurements indicates
high accuracy. Design of Kvx .t/ is heuristic and must therefore be empirically
based.

2.3.2 Lateral-Velocity Estimation

The wheel speeds can be used to create measurements of the longitudinal velocity.
For the lateral velocity, however, we do not have a similar source of information,
and estimating lateral velocity is therefore more difficult. We start by introducing
Oay.t; Ox/, which denotes an estimate of the lateral acceleration ay . We use Ox to
denote the vector of estimated velocities Ovx and Ovy , and x to denote the vector of
actual velocities vx and vy . The estimate Oay.t; Ox/ is formed by using the nonlinear
friction model for each wheel, where measurements of the steering wheel angle,
yaw rate, and wheel speeds, as well as the estimated velocities Ovx and Ovy , are used
as inputs. The friction forces modeled for each wheel are added up in the lateral
direction of the vehicle and divided by the mass, resulting in the lateral acceleration
estimate Oay.t; Ox/. The time argument in Oay.t; Ox/ denotes the dependence of Oay on
time-varying signals such as the steering wheel angle and yaw rate. We also define
Qay.t; Qx/ WD ay ! Oay.t; Ox/, where Qx WD x ! Ox. To write Qay.t; Qx/ as a function of t
and Qx, we replace Ox with x ! Qx and absorb x in the time argument.

To estimate the lateral velocity we use the observer

POvy D ay ! P Ovx !Kvy .ay ! Oay.t; Ox//; (2.5)

whereKvy is a positive gain. The observer consists of a copy of the original system
(2.2) and an injection term !Kvy .ay ! Oay.t; Ox//. The error dynamics obtained by
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subtracting (2.5) from (2.2) are

PQvy D ! P Qvx CKvy Qay.t; Qx/: (2.6)

To see why the injection term asymptotically stabilizes the observer error, as-
sume for the moment that the longitudinal-velocity estimate Ovx is exact, meaning
that the lateral-velocity estimate Ovy is the only uncertain input to Oay.t; Ox/. As-
suming furthermore that the friction model is continuously differentiable, the as-
sumption that ay is strictly decreasing with respect to vy means that we can use
the mean value theorem to write

Qay.t; Qx/ D !..t; Qx/ Qvy ; (2.7)

where ..t; Qx/ " .min > 0 for some constant .min. The error dynamics can there-
fore be written as PQvy D !Kvy..t; Qx/ Qvy . It is then easy to verify that the origin of
the error dynamics is globally exponentially stable.

We have so far ignored the coupling between the longitudinal and lateral ob-
server components. For each observer component, a quadratic Lyapunov function
can be used to verify the global exponential stability property. Taking the cou-
pling between the observer components into account, we use the sum of the two
Lyapunov functions as a Lyapunov-function candidate for the full error dynamics
(2.4), (2.6). With an additional assumption that the partial derivative of the fric-
tion model with respect to vx is bounded, we can verify that the origin of (2.4),
(2.6) is globally exponentially stable, provided Kvx .t/ is chosen large enough to
dominate the cross terms that occur because of the coupling. The observer is also
input-to-state stable with respect to errors in the reference velocity vx;ref (Imsland
et al., 2006).

2.4 Unknown Road Surface Conditions

The observer presented in the previous section depends on the construction of a lat-
eral acceleration estimate Oay.t; Ox/ as a function of measured signals and velocity
estimates. The approach works well when the road-tire friction model from which
Oay.t; Ox/ is computed is accurately parameterized. However, the friction model is
sensitive to changes in the road surface conditions, as seen in Figure 2.3. Since
information about the road surface conditions is not available, we modify the ob-
server to take this uncertainty into account by introducing a friction parameter to
be estimated together with the velocities.
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2.4.1 Parameterization

The friction parameter can be defined in several ways. In Imsland et al. (2007a);
Grip, Imsland, Johansen, Fossen, Kalkkuhl, and Suissa (2006) the road-tire friction
coefficient -H is chosen as the parameter to be estimated. We instead scale the
friction forces by redefining Oay as Oay.t; Ox; #/ D # Oa#

y .t; Ox/, where # is the friction
parameter. The value Oa#

y .t; Ox/ is given by

Oa#
y .t; Ox/ D

Oay.t; OxI-#
H /

-#
H

;

where Oay.t; OxI-#
H / represents the lateral acceleration estimate calculated using a

nominal value -#
H of the friction coefficient. In words, Oa#

y .t; Ox/ is a normalized
lateral acceleration estimate based on a fixed road-tire friction coefficient, and #
is a scaling factor that changes depending on the road surface. As is evident from
Figure 2.3, variation in -H does not correspond precisely to a scaling of the fric-
tion forces. The friction parameter is nevertheless closely related to -H , and, for
large tire-slip angles, where the curves in Figure 2.3 flatten out, # % -H . Be-
cause the friction parameter appears linearly, the design and analysis is simplified
compared to estimating -H directly.

The friction parameter is defined with respect to the lateral acceleration of the
vehicle, rather than the friction forces at each wheel. This definition means that,
on a nonuniform road surface, the parameter represents an average of the road-tire
friction properties over all the wheels. In the stability analysis we assume that the
friction parameter is positive and constant.

2.4.2 Modified Observer Design

Since the longitudinal-velocity estimation does not depend on the friction model,
we consider only the lateral-velocity estimation. We modify the lateral-velocity
estimate to obtain

POvy D ay ! P Ovx CKvyƒ.t; Ox/!.t; Ox/.ay ! Oay.t; Ox; O#//; (2.8)

and introduce an estimate of # , given by

PO# D K"ƒ.t; Ox/ Oa#
y .t; Ox/.ay ! Oay.t; Ox; O#//: (2.9)

The value !.t; Ox/ in (2.8) is an approximate slope of the line between

. Ovy ; Oa#
y .t;,1// and .vy ; Oa#

y .t;,2//;
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with ,1 D Œ Ovx; Ovy *T and ,2 D Œ Ovx; vy *T. The slope is negative, according to
(2.7), and the approximation can be made in several ways (Grip et al., 2008). We
choose !.t; Ox/ D Œ@ Oa#

y=@ Ovy *.t; Ox/, which is sufficiently accurate to give good per-
formance in practical experiments. In the analysis below, we assume that !.t; Ox/
represents the true slope. The valueƒ.t; Ox/ is a strictly positive scaling that can be
chosen freely. We chooseƒ.t; Ox/ D .!2.t; Ox/C Oa#

y
2
.t; Ox//"1=2 as a normalization

factor to prevent large variations in the magnitude of the gain on the right-hand
side of (2.8), (2.9), because such variations can cause numerical problems when
implementing the observer. In the following discussion of the lateral-velocity and
friction estimation, we ignore the longitudinal-velocity error Qvx .

Analysis of the observer (2.8), (2.9) starts with the Lyapunov-function candi-
date

V D # Qv2y C
Kvy
K"

Q#2:

The time derivative of V is negative semidefinite, satisfying

PV & !k Qa2y.t; Qx; Q#/;

for some positive k, where Qay.t; Qx; Q#/ D ay ! Oay.t; Ox; O#/. From the negative
semidefiniteness of PV we conclude that the origin of the error dynamics is uni-
formly globally stable. Stability is not enough, however; we also need to show
that the error vanishes with time. The bound on PV suggests that this behavior
occurs if the observer error is observable from Qay.t; Qx; Q#/. We therefore use the
results from Loría, Panteley, Popović, and Teel (2005) to prove that if Qay.t; Qx; Q#/
satisfies a property known as uniform ı-persistency of excitation with respect to Qvy
and Q# , then the origin is uniformly globally asymptotically stable.

The excitation condition takes the form of an inequality. Specifically, for each
. Qx; Q#/ we assume that there exist positive constants T and " such that

Z tCT

t
Qa2y.+; Qx; Q#/ d+ " ". Qv2y C Q#2/ (2.10)

holds for all t " 0. The inequality (2.10) requires the error Qay.t; Qx; Q#/ to con-
tain information about both the lateral-velocity error and the friction-parameter
error, when taken over sufficiently long time windows. An implication of (2.10)
is that Qay.t; Qx; Q#/ cannot remain zero for an extended period of time unless both
the lateral-velocity error and the friction-parameter error are also zero. This impli-
cation hints at the invariance-like origins of the stability proof; the results applied
from Loría et al. (2005) are based on Matrosov’s theorem, a counterpart to the
Krasovskii-LaSalle invariance principle that is applicable to nonautonomous sys-
tems. Note that, unlike some nonlinear persistency of excitation conditions, the
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condition in (2.10) does not depend on knowledge about the trajectories of the
observer error. This property allows the condition to be evaluated based on the
physical behavior of the car in different situations.

Under conditions given in Grip et al. (2008), the excitation condition can also
be used directly in the Lyapunov function, by letting

V D # Qv2y C
Kvy
K"

Q#2 ! -

Z 1

t
et"# Qa2y.+; Qx; Q#/ d+;

where - is a small positive number. In this case, PV is negative definite in a region
around the origin, yielding local exponential stability.

2.4.3 Physical Interpretation

The excitation condition (2.10) has a clear physical interpretation. This condition
is satisfied when there is sufficient variation in the lateral movement so that the
road surface conditions influence the behavior of the car; it is not satisfied when
there is no variation in the lateral movement. We can therefore estimate the lateral
velocity and the friction parameter simultaneously during dynamic maneuvers, but
we cannot expect to do so during steady-state maneuvers. This conclusion has in-
tuitive appeal. It is clear, for example, that we cannot determine the road surface
conditions from the lateral acceleration when the car is driven straight for an indef-
initely long time. An analogy to this situation is a person trying to determine how
slippery the pavement is without moving around, and without the aid of visual in-
formation. A secondary result regarding the observer is that when the car is driven
straight for an indefinitely long time, the velocity errors Qvx and Qvy still converge
to zero, even though the friction-parameter error Q# does not (Grip et al., 2008).

2.4.4 When to Estimate Friction

In normal driving situations, the tire slips are well within the linear region, and
the road surface conditions have little impact on the behavior of the car (Hac and
Simpson, 2000). Moreover, the excitation condition shows that variation in the
lateral movement of the car is needed to estimate the friction parameter. These
observations suggest that it is often undesirable to estimate the friction parameter,
and we therefore estimate it only when necessary and possible.

When the friction parameter is not estimated, we choose to let it be exponen-
tially attracted to a default value ## corresponding to a high-friction surface. There
are two reasons for choosing ## high, rather than low. The first reason is that driv-
ing on high-friction surfaces such as asphalt and concrete is more common than
driving on low-friction surfaces such as ice and snow. The second reason is that
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using a friction parameter that is too low results in vehicle sideslip estimates that
are too high, often by a large amount.

To determine when to estimate friction, we use a linear reference model for
the yaw rate to determine when the car becomes over- or understeered. We also
estimate Pvy , according to (2.2), by ay ! P Ovx , highpass-filtered with a 10-s time
constant. A high estimate of Pvy indicates a fast-changing sideslip angle, which
in turn indicates a high level of excitation and that some of the tires might be in
the nonlinear region. When the Pvy estimate is high, and the reference yaw rate
is above a threshold value, we turn the friction estimation on. We also turn the
friction estimation on when the car is oversteered; and when the vehicle’s ESC

system is active, but not due to steady-state understeer. A small delay in turning
the friction estimation off reduces chattering in the friction-estimation condition.

It is worth examining whether friction estimation is sometimes necessary, but
not possible due to a lack of excitation. This situation can occur during long,
steady-state maneuvers with one or more of the tires in the nonlinear region. On
high-friction surfaces, maneuvers of this type are easily carried out. A standard
identification maneuver consists of driving along a circle while slowly increasing
the speed until the circle can no longer be maintained. Toward the end of this
circle maneuver, it is common for the front tires to be well within the nonlinear
region, leading to severe steady-state understeer. Recall, however, that the friction
parameter is attracted to a high default value when friction estimation is turned off.
For steady-state maneuvers on high-friction surfaces, the default friction parameter
is therefore approximately correct. On slippery surfaces such as snow and ice,
maintaining a steady-state maneuver for a long time with some of the tires in the
nonlinear region is more difficult. If such a situation occurs, however, it can lead
to estimation errors, typically in the direction of underestimated vehicle sideslip
angle.

The difficulty in handling low-excitation situations is not specific to the NVSO.
Because the problem is fundamentally a lack of information, all estimation strate-
gies suffer in low-excitation situations. It is always possible to perform open-loop
integration of the kinematic equations, but the accuracy is then entirely dependent
on the sensor specifications.

Experimental results indicate that the friction-estimation condition has a large
impact on the performance of the observer, in particular on low-friction surfaces. If
friction estimation is turned on too late, the observer might fail to capture sudden
changes in the vehicle sideslip angle. If friction estimation is turned on without
sufficient excitation, modeling errors and sensor bias might cause the friction pa-
rameter to be estimated as too low, leading to large errors in the estimated vehicle
sideslip angle. The friction-estimation condition therefore requires careful tuning,
involving some tradeoffs in performance for different situations.
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2.5 Inclination and Bank Angles

The above discussion assumes that the road surface is horizontal. This assumption
is usually not accurate, however, and we now consider nonzero inclination and
bank angles. To define these angles, we say that the orientation of the road surface
is obtained from the horizontal position by an inclination-angle rotation ‚ around
the vehicle’s y-axis and a subsequent bank-angle rotation ˆ around the x-axis.
The inclination and bank angles cause gravity components to appear in (2.1), (2.2),
which become (Klier et al., 2008)

Pvx D ax C P vy C g sin.‚/; (2.11)

Pvy D ay ! P vx ! g cos.‚/ sin.ˆ/: (2.12)

In (2.11), (2.12), ax and ay denote the accelerations measured by the accelerome-
ters, which equal the total road-tire friction forces acting on the vehicle divided by
the mass, as before. We assume that the inclination and bank angles vary slowly
enough compared to the dynamics of the system to be modeled as constants.

We return to the observer without friction estimation as the basis for adding
inclination- and bank-angle estimation. The approximate effect of a nonzero incli-
nation or bank angle is to create an estimation bias, which is more pronounced for
the lateral-velocity estimate. Inspired by the theory of nonlinear unknown-input
observers, one method for estimating the bank angle is developed in Imsland et al.
(2007b); however, the nature of the disturbance suggests that something similar
to standard integral action is appropriate. We present such a solution here, at first
dealing with the inclination and bank angles separately.

2.5.1 Inclination Angle

We define #i D sin.‚/, and introduce an estimate O#i of #i. Typical inclination
angles are small enough that ‚ % #i, and the estimate O#i is therefore considered
an estimate of the inclination angle. We use O#i to compensate for the disturbance,
by letting

POvx D ax C P Ovy C g O#i CKvx .t/.vx;ref ! Ovx/; (2.13)

where O#i is given by
PO#i D K"iKvx .t/.vx;ref ! Ovx/; (2.14)

with K"i a positive gain. The total gain in (2.14) is K"iKvx .t/. The reason for
including the time-varying gainKvx .t/ in (2.14) is the same as in the longitudinal-
velocity estimation (2.13), namely, that we wish to rely less on the reference ve-
locity vx;ref whenever it is of poor quality.
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To justify this approach, we use the theory of absolute stability (Khalil, 2002,
Ch. 7.1). We split the gain Kvx .t/ into a constant part and a time-varying part
by writing Kvx .t/ D a C .Kvx .t/ ! a/, where 0 < a < Kvx ;min, and Kvx ;min
is a lower bound on Kvx .t/. Ignoring for the moment the lateral-velocity error
Qvy , and assuming that vx;ref represents the true longitudinal velocity, we write the
error dynamics of the longitudinal-velocity and inclination-angle estimates as the
interconnection of the linear time-invariant system

PQvx D !a Qvx C g Q#i C u;

PQ#i D !K"ia Qvx CK"iu

with the time-varying sector function u D !.Kvx .t/ ! a/ Qvx . With K"i chosen
sufficiently small compared to a, the transfer function from u to Qvx is strictly
positive real. Using the circle criterion (Khalil, 2002, Th. 7.1), we can conclude
that the origin of the error dynamics is globally exponentially stable.

2.5.2 Bank Angle

We handle the bank angle in roughly the same way as the inclination angle. We
define #b D cos.‚/ sin.ˆ/, and introduce an estimate O#b of #b. Typical bank and
inclination angles are small enough that ˆ % #b, and O#b is therefore considered
an estimate of the bank angle. Using O#b for compensation in the observer without
friction estimation, we obtain

POvy D ay ! P Ovx ! g O#b !Kvy .ay ! Oay.t; Ox//: (2.15)

Since no counterpart to vx;ref is available for the lateral velocity, we again use the
lateral acceleration as an indirect measurement of the lateral velocity, letting

PO#b D K"b.ay ! Oay.t; Ox//: (2.16)

Ignoring the effect of the longitudinal-velocity error Qvx , we write the error dynam-
ics of the lateral-velocity and bank-angle estimates as the interconnection of the
linear time-invariant system

PQvy D !Kvy.min Qvy ! g Q#b CKvyu;

PQ#b D K"b.min Qvy !K"bu

with the time-varying sector nonlinearity u D !...t; Qx/ ! .min/ Qvy . With K"b

chosen sufficiently small compared to Kvy and .min, we conclude, as above, that
the origin of the error dynamics is globally exponentially stable.
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Absolute stability provides two separate Lyapunov functions, V1 for the . Qvx ,
Q#i/ subsystem and V2 for the . Qvy , Q#b/ subsystem. Following the proof of the circle
criterion (Khalil, 2002, Th. 7.1), an excess term !.Kvx ;min ! a/ Qv2x appears in the
time derivative PV1. This term can be made arbitrarily negative by increasing the
difference between Kvx ;min and a. We thus form a new Lyapunov-function candi-
date as the weighted sum V1 C cV2, where c is a positive constant. By choosing c
sufficiently large and using the excess term to dominate the cross terms, global ex-
ponential stability of the overall error dynamics, including the subsystem coupling
that we have so far ignored, is proven.

Exponential stability is a useful property because it implies a certain level of
robustness to perturbations (Khalil, 2002, Ch. 9). For example, an accelerometer
bias added to (2.15), (2.16) can perturb the solutions, typically producing a bias in
the bank-angle estimate, but it does not cause the estimates to drift off or become
unstable.

2.6 Combined Approach

The above discussion extends the initial observer design in two separate directions,
namely, by adding estimation of a friction parameter and by adding estimation of
the inclination and bank angles. Including these extensions simultaneously causes
no problem in the longitudinal direction, because the estimation of the longitudinal
velocity and inclination angle does not depend on the friction model. In the lateral
direction, however, more careful consideration is needed.

The lateral-velocity estimate changes depending on whether friction estimation
is turned on or off, as can be seen from (2.5) and (2.8). Because of this change,
we also modify the bank-angle estimate when friction estimation is turned on, by
replacing (2.16) with

PO#b D !K"bƒ.t; Ox/!.t; Ox/.ay ! Oay.t; Ox; O#//: (2.17)

With this modification the error dynamics for the lateral-velocity and bank-angle
estimates can still be written in the form required by the absolute-stability analysis.

In previous sections tunable gains are used to dominate cross terms that appear
in the Lyapunov analysis. When estimating friction, however, the stability margin
depends on the excitation condition placed on the error Qay.t; Qx; Q#/, specifically,
T and " in (2.10), which cannot be modified using tunable gains. We therefore
cannot find a particular set of gains to guarantee stability in combination with bank-
angle estimation. From a practical point of view, it can be difficult to distinguish
the effect of low friction and a bank angle, as noted in van Zanten (2000). This
observation suggests that, with the chosen sensor configuration, the estimation
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problem is poorly conditioned in some situations, and the difficulty in analyzing
the combined approach reflects this problem.

The simplest strategy for avoiding interference between the friction estima-
tion and the bank-angle estimation would be to disable the bank-angle estima-
tion whenever friction estimation is turned on. This strategy, however, may cause
problems when driving on slippery surfaces in hilly terrains, where combinations
of large vehicle sideslip angles and large bank angles may occur. For this rea-
son, we need to perform bank-angle estimation when estimating friction, but we
set the gain lower when one of three conditions holds. The first condition is
jay! Oay.t; Ox; O#/j > c1 for some c1 > 0. The second condition is j R ! OR .t; Ox; O#/j >
c2 for some c2 > 0, where R is the yaw acceleration found by numerical differ-
entiation of the yaw rate, and OR .t; Ox; O#/ is calculated using the friction model in
the same way as Oay.t; Ox; O#/ with the forces scaled by O# . The third condition is
sign. P ref/ D sign. P / and .j P refj ! j P j/ Ovx > c3 for some c3 > 0, where P ref
is the reference yaw rate used in the friction-estimation condition. From experi-
mental data, these conditions are found to reduce the negative interference of the
bank-angle estimation on low-friction surfaces. We emphasize, however, that the
conditions are heuristic and that alternative conditions may be equally good or
better, in particular, when different types of vehicles are used.

The full observer that merges the friction-parameter estimation and the inclin-
ation- and bank-angle estimation has two modes. In the first mode, with friction
estimation turned off, the observer equations are

POvx D ax C P Ovy C g O#i CKvx .t/.vx;ref ! Ovx/; (2.18)
POvy D ay ! P Ovx ! g O#b !Kvy .ay ! Oay.t; Ox; O#//; (2.19)
PO# D Ke.#

# ! O#/; (2.20)
PO#i D K"iKvx .t/.vx;ref ! Ovx/; (2.21)
PO#b D K"b.t/.ay ! Oay.t; Ox; O#//: (2.22)

We see from (2.20) that the friction-parameter estimate is exponentially attracted
to the default value ##. In the second mode, with friction estimation turned on, the
observer equations are

POvx D ax C P Ovy C g O#i CKvx .t/.vx;ref ! Ovx/; (2.23)
POvy D ay ! P Ovx ! g O#b CKvyƒ.t; Ox/!.t; Ox/.ay ! Oay.t; Ox; O#//; (2.24)
PO# D K"ƒ.t; Ox/ Oa#

y .t; Ox/.ay ! Oay.t; Ox; O#//; (2.25)
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PO#i D K"iKvx .t/.vx;ref ! Ovx/; (2.26)
PO#b D !K"b.t/ƒ.t; Ox/!.t; Ox/.ay ! Oay.t; Ox; O#//: (2.27)

In both modes, K"b.t/ is reduced according to the practical conditions described
above. Based on experimental results, we set the gain K"i , which is used for
inclination-angle estimation, to be lower for the second mode than for the first.
The best choice of observer gains and other tunable parameters, such as threshold
values for logical conditions, are likely to vary depending on the vehicle type and
model.

2.7 Remarks about Road-Tire Friction

The above development assumes a strictly decreasing relationship between the lat-
eral acceleration and the lateral velocity. The curves in Figure 2.3 nevertheless
flatten out for large tire-slip angles, suggesting that, when the friction forces are si-
multaneously saturated for all four tires, the strictly decreasing relationship might
not hold for limited periods of time. Reflecting this possibility, the stability re-
sults in Imsland et al. (2006) are stated as regional. We can prove stability of
the observer with friction estimation (2.8), (2.9) using the weaker condition of a
nonstrictly decreasing relationship, because ..t; Qx/ D 0 is acceptable in (2.7) for
limited periods of time (Grip et al., 2008). However, the observer tends to act as
an open-loop integrator when the friction forces become saturated for all of the
tires. If the situation persists for a long time, the achievable performance is there-
fore dictated by the sensor specifications, and the estimates may start to drift off
due to sensor bias. It is difficult to overcome this deficiency because the vehicle
model provides no useful information for stabilizing the estimates when all of the
friction forces are saturated. In some applications it is desirable to detect large ve-
hicle sideslip angles, in excess of 90ı, which means that the tire forces may remain
saturated for a considerable amount of time.

It is also common for the actual friction curves to decrease slightly, rather
than to flatten out, for large tire-slip angles. Even the weakened condition of a
nonstrictly decreasing relationship may therefore fail to hold in some extreme sit-
uations. Nonlinear friction models, like the magic formula, typically model this
decrease. Not modeling this decrease may lead to limited modeling errors in some
situations, but has a stabilizing effect on the observer dynamics itself. More to the
point, experimental results indicate that this discrepancy does not cause a deterio-
ration in the quality of the estimates.
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2.8 Implementation and Practical Modifications

For implementation in real-time hardware, the observer (2.18)–(2.27) is discretized
using the forward Euler method with a sample time of 10ms. At each time step the
reference velocity vx;ref and the gain Kvx .t/ are updated. The friction model used
in Figure 2.3 is also used in the implementation, with nominal friction coefficient
-#
H D 1. The default friction parameter is set to ## D 1.
The friction model needs information about the vertical contact forces between

the tires and the road, known as the wheel loads. These loads change during driv-
ing, depending mainly on the acceleration of the vehicle. We therefore use the
measured longitudinal and lateral accelerations to calculate the wheel loads, simi-
lar to Kiencke and Nielsen (2000, Ch. 7.4).

The friction model specifies an algebraic relationship between the tire slips
and the road-tire friction forces. In reality, however, dynamic effects known as tire
relaxation dynamics cause a small phase lag in the buildup of forces. Although the
tire relaxation dynamics are negligible at high speeds, taking them into account can
yield improvements at low speeds. We approximate the effect of the tire relaxation
dynamics using an approach similar to that in Pacejka (2006, Ch. 1) by filtering
the output of the friction model using the first-order transfer function 1=.T s C 1/,
where T D Te C le= Ovx is a speed-dependent time constant, which is small for
large velocities.

To calculate the steering angles for the front wheels, we use a lookup table
based on a steering transmission curve, with the measured steering wheel angle as
the input. We do not use the output of the lookup table directly, however, because
the steering angles are also affected by elasto-kinematic effects in the wheel sus-
pension system (Matschinsky, 2007). A simplified way to account for these effects
is the introduction of caster, which is the distance between the wheel contact point
and the point where the steering axis intersects the road (Bosch, 2005). The caster
acts as a moment arm causing the lateral road-tire friction forces to exert a torque
on the steering axis. Positive caster causes the steering wheel to naturally return to
the neutral position when it is released, thereby contributing to the stability of the
steering system. To account for the effect of caster, the output from the lookup ta-
ble must be reduced in proportion to the lateral road-tire friction forces. Following
Pacejka (2006, Ch. 1), we calculate the steering angle for each of the front wheels
using the expression ıy D ıu ! Fyf e=cl , where ıy is the steering angle, ıu is the
output of the lookup table, Fyf is the sum of the lateral road-tire friction forces for
the front wheels, e is the caster length, and cl is a steering stiffness constant. We
calculate Fyf directly from the output of the friction model, which in turn depends
on the steering angles, meaning that the expression for ıy specifies a nonlinear al-
gebraic equation. For practical purposes, this problem is solved by using a delay of
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one time step for the value Fyf used in the calculation of ıy , to avoid an algebraic
loop in the solution.

We restrict the estimated friction parameter O# to the interval Œ0:05; 1:1*, which
spans the range of road surfaces that one can expect to encounter. We thereby
obtain a discrete-time equivalent of a continuous-time parameter projection, which
is theoretically justified in the continuous-time analysis (Grip et al., 2006). We
also ensure that 1:2g O# " .a2x C a2y/

1=2, since 1:2 O#g is the approximate maximum
acceleration achievable from the friction model when multiplied by the friction
parameter. This maximum must never be smaller than the actual acceleration of
the vehicle.

2.9 Experimental Testing

Using data from a rear-wheel-drive passenger car, we test the observer in vari-
ous situations, including dynamic and steady-state maneuvers on high- and low-
friction surfaces, with different tires and at different speeds. The measurements
are taken from automotive-grade sensors with no additional bias correction, and
are filtered with a 15-Hz discrete lowpass filter before entering the observer. The
inertial sensors are different for the high-friction and low-friction tests. For the
high-friction tests, the yaw-rate sensor specifications indicate that bias and drift
together may add up to a maximum of 3:5ı=s, and the acceleration sensor specifi-
cations indicate that bias and drift may add up to a maximum of 1:0 m=s2. For the
low-friction tests, the corresponding numbers are 3:5ı=s for the yaw-rate sensor
and 0:6 m=s2 for the acceleration sensors.

As a reference, we use an optical correlation sensor to obtain independent ve-
hicle velocities. The tuning of the observer and the parameterization of the friction
model are the same for all tests, even though the tires are different.

The required accuracy of the vehicle sideslip estimate depends on the applica-
tion. Typically, the error must be less than about 1ı if the estimate is to be used for
feedback control. When the main goal is to detect severe skidding, for example,
to tighten seat belts before an impending accident, the requirements are less strin-
gent. It is then sufficient to estimate large vehicle sideslip angles, approximately
in the range 10–130ı. An error of 2–3ı degrees, or approximately 10% for vehicle
sideslip angles larger than 30ı, is then acceptable.

2.9.1 Comparison with EKF

We compare the observer estimates to those of an EKF similar to the one presented
in Suissa et al. (1994). The states in the EKF are the longitudinal and lateral veloci-
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ties, the inclination and bank angles, and the friction coefficient -H . The dynamic
model used in the EKF is based on (2.11), (2.12), where the yaw rate is consid-
ered a known, time-varying quantity. The derivatives of the friction coefficient,
inclination angle, and bank angle are modeled as filtered white noise. The result-
ing dynamic model is linear time varying, which improves the accuracy of the EKF

prediction compared to using a nonlinear dynamic model. The measurement equa-
tions are given by the force and moment balances through the nonlinear friction
model for the longitudinal acceleration ax , the lateral acceleration ay , and the yaw
acceleration R , which is calculated by numerically differentiating P . In addition,
an externally calculated reference velocity is used as a measurement. The EKF

switches between slow and fast estimation of the friction coefficient, depending on
the situation. The switching rule is the same as for the nonlinear observer, and the
same friction model is used in both designs. As with the NVSO, the continuous-
time model is discretized using the forward Euler method with a sample time of
10 ms. For efficient and stable numerical implementation, the Bierman algorithm
(Bierman, 2006) is used in the measurement update process. The execution time of
the NVSO is approximately one-third of that of the EKF. In the NVSO, the friction
model dominates other computations.

2.9.2 Dynamic Maneuvers on High-Friction Surfaces

We begin with two examples of dynamic, high-excitation maneuvers on dry as-
phalt. The first maneuver consists of a series of steps in the steering wheel angle,
carried out at a constant, high speed of 200 km/h. The lateral acceleration alter-
nates between approximately ˙0:4g. Figure 2.4 shows the results for the vehicle
sideslip angle, friction parameter, and bank angle. The bank angle is estimated
at approximately 2:2ı, whereas the actual bank angle is approximately 1:5ı, the
difference being attributable to sensor bias. The resulting estimate of the vehicle
sideslip angle is accurate to within approximately 0:3ı. The friction estimation is
activated briefly at each step, but is otherwise inactive.

The second example is an ISO-standard double lane-change maneuver, carried
out at approximately 120 km/h, on a surface with a slight bank angle of approxi-
mately 0:5ı. The car reaches a lateral acceleration of!0:90g during the maneuver.
Figure 2.5 shows the vehicle sideslip angle and the friction parameter. During this
maneuver, the tires are brought well into the nonlinear region. Even though the
lane change is carried out on a high-friction surface, the friction parameter is es-
timated far below its default value ## D 1, suggesting that there are significant
inaccuracies in the friction model during this maneuver. A sideslip estimation er-
ror of approximately 1:4ı is briefly reached.
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In general, for dynamic maneuvers on high-friction surfaces, the high degree
of excitation means that inaccuracies in the friction model can to some extent be
compensated by the friction parameter, as happens in the lane-change example.

2.9.3 Steady-State Maneuvers on High-Friction Surfaces

We now consider two examples of a steady-state circle maneuver on dry asphalt.
In the first example, 18-inch summer tires are used; in the second example, 17-inch
winter tires are used. The tests are otherwise the same. The car is driven coun-
terclockwise along a circle with a 40-m radius, while the longitudinal velocity is
slowly increased until the circle can no longer be maintained because of severe
understeer. The maximum lateral accelerations reached toward the end of the ma-
neuvers are 0:93g and 0:84g, respectively. Figure 2.6 shows the vehicle sideslip
angle for both maneuvers. The estimated vehicle sideslip angle is more accurate
in the upper plot than in the lower one, where the sideslip estimation error reaches
approximately 1:4ı toward the end. This result indicates that the friction model
more accurately matches the tires used for the first example than for the second.
Because of the low level of excitation, the friction parameter cannot be used to
compensate for errors in the friction model.

The EKF performs poorly for the circle maneuvers, mainly because it brings the
estimated friction coefficient slightly below the initial value early in the maneuver,
whereas the NVSO estimates friction only at the very end. The difference in results
therefore has more to do with implementation details and tuning than with the
fundamental properties of each method. Nevertheless, the examples illustrate the
sensitivity of friction-based estimation designs to errors in the friction model for
low-excitation maneuvers of this kind.

2.9.4 Low-Friction Surfaces

We now look at two examples from low-friction surfaces. In the first example,
the car is driven around a circle on a lake covered with ice and snow. Figure
2.7 shows the longitudinal velocity, vehicle sideslip angle, and friction parameter.
The car exhibits very large vehicle sideslip angles at several points, and the sideslip
estimation error remains smaller than 3ı for most of the test. A notable exception is
the period between 140 s and 160 s, when a large vehicle sideslip angle is sustained
for a long time. Reduced excitation results in inaccurate estimation of the vehicle
sideslip angle in this situation.

The final example is carried out on snow-covered mountain roads. Figure 2.8
shows the vehicle sideslip angle, inclination angle, and bank angle. In contrast to
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Figure 2.4: Experimental results for periodic steps in the steering angle at 200 km/h.
The uppermost plot shows the actual vehicle sideslip angle (blue) and the vehicle sideslip
angles estimated by the EKF (green) and the NVSO (red). The middle plot shows the
friction coefficient estimated by the EKF (green) and the friction parameter estimated by
the NVSO (red). The lowest plot shows the bank angles estimated by the EKF (green) and
the NVSO (red).

the lake example, large inclination and bank angles occur in this example. We do
not know the true values of the inclination and bank angles, but the magnitudes
of the estimates are plausible. The vehicle sideslip angle reaches approximately
!14ı, and the estimation error remains smaller than 1:5ı. In this example, esti-
mating the bank angle at the same time as the friction parameter is necessary to
avoid deterioration of the sideslip estimate.

62



2.10. CONCLUDING REMARKS

Time (s)

Si
de
sl
ip

an
gl
e
(d
eg
)

0 1 2 3 4 5 6 7 8 9
!6

!4

!2

0

2

4

6

Time (s)

Fr
ic
tio

n
pa
ra
m
et
er

0 1 2 3 4 5 6 7 8 9
0

0:2

0:4

0:6

0:8

1

Figure 2.5: Experimental results for an ISO-standard double lane-change maneuver at
120 km/h. The upper plot shows the actual vehicle sideslip angle (blue) and the vehicle
sideslip angles estimated by the EKF (green) and the NVSO (red). The lower plot shows
the friction coefficient estimated by the EKF (green) and the friction parameter estimated
by the NVSO (red).

2.10 Concluding Remarks

Based on extensive experimental tests we conclude that, overall, the NVSO per-
forms as well as the EKF, while achieving a significant reduction in execution time.
The reduction is likely to be even more significant on production hardware with
a fixed-point microprocessor, since the computations largely consist of floating-
point operations. The NVSO is based on nonlinear analysis, which contributes
toward understanding the strengths and limitations of the observer, the EKF, and
alternative designs with similar sensor configurations. The number of observer
gains in the NVSO is smaller than the number of tunable elements in the EKF. Nev-
ertheless, because of the switching between different operating regimes and the
various thresholds involved in the switching logic, tuning the NVSO is nontrivial.

The observer estimates are typically of high quality. As illustrated by the ex-
amples, however, the design is sensitive to errors in the friction model, in particular
during steady-state maneuvers, and the accuracy of the friction model depends to
some extent on the tires. A full, systematic analysis of the response of the observer
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Figure 2.6: Experimental results for circle maneuvers with a 40-m radius and different
tires. Each plot shows the actual vehicle sideslip angle (blue) and the vehicle sideslip
angles estimated by the EKF (green) and the NVSO (red). In the upper plot, 18-inch
summer tires are used. In the lower plot, 17-inch winter tires are used.

to various model uncertainties and sensor inaccuracies is a formidable task that is
yet to be carried out.

Furthermore, problems remain in some situations involving low-friction sur-
faces. These problems can largely be attributed to the difficulty of distinguishing
a nonzero bank angle from low friction. The NVSO’s method of combining fric-
tion estimation and bank-angle estimation is a weakness in the present design, and
the ad hoc approach of selectively reducing the bank-angle gain based on vari-
ous criteria is likely to need revision and improvement before the NVSO can reach
production quality. The EKF is in general better at automatically distinguishing the
influences of low friction and a nonzero bank angle, giving it an advantage in some
situations, and suggesting that there is still room for improving the NVSO.

A central strategy in the NVSO design is to estimate the total force acting in the
lateral direction of the car by using a friction model, and to subtract this estimate
from the total force measured through the lateral acceleration. The resulting dif-
ference produces the quantity Qay.t; Qx; Q#/ when divided by the mass. By using the
yaw acceleration R it is possible to separate between the lateral friction forces on
the front and rear axles. We can then produce two quantities similar to Qay.t; Qx; Q#/,
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Figure 2.7: Experimental results for driving on an ice- and snow-covered lake. The up-
permost plot shows the actual longitudinal velocity (blue) and the longitudinal velocities
estimated by the EKF (green) and the NVSO (red). The middle plot shows the actual ve-
hicle sideslip angle (blue) and the vehicle sideslip angles estimated by the EKF (green)
and the NVSO (red). The lowest plot shows the friction coefficient estimated by the EKF
(green) and the friction parameter estimated by the NVSO (red).

one for the front axle and one for the rear axle. The NVSO design can be carried
out in the same way using these two quantities, resulting in two injection terms in
the derivatives of the lateral-velocity and bank-angle estimates. We can further-
more use separate friction parameters for the front and rear axles. This strategy
shows some promise with respect to improving the separation between nonzero
bank angles and low-friction surfaces. Since we have not obtained a consistent
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Figure 2.8: Experimental results for driving on snow-covered mountain roads. The up-
permost plot shows the actual vehicle sideslip angle (blue) and the vehicle sideslip angles
estimated by the EKF (green) and the NVSO (red). The middle plot shows the inclination
angles estimated by the EKF (green) and the NVSO (red). The lowest plot shows the bank
angles estimated by the EKF (green) and the NVSO (red).

improvement in quality, however, we have not used this type of design for the
experimental results presented in this article.

A limitation imposed by the sensor configuration is that derivative information
about the inclination and bank angles is not available in the form of roll- and pitch-
rate measurements. The estimates of the inclination and bank angles are therefore
produced by a form of integral action, which, in the case of the bank-angle estima-
tion, depends on the friction model. With this solution, the inclination- and bank-

66



BIBLIOGRAPHY

angle estimates tend to capture low-frequency disturbances, which also includes
sensor bias. The estimates have a limited ability to respond to rapid changes,
which is is underscored by upper limits on the allowable gains K"i and K"b . Pre-
liminary results indicate that significant improvement can be obtained in this re-
spect if derivative information is made available by using a six-degree-of-freedom
sensor cluster.

Fundamentally, the level of accuracy that can consistently be achieved with any
estimation strategy depends on the sensor configuration. As discussed at several
points, the achievable performance is dictated by the sensor specifications in situ-
ations where the vehicle model provides no useful information. It is our opinion
that, to achieve a consistent vehicle sideslip error of less than 1ı, it is necessary to
improve on the standard ESC-type sensor configuration considered in this article.
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Chapter 3

Nonlinear Vehicle Side-Slip

Estimation with Friction

Adaptation

Abstract: A nonlinear observer for estimation of the longitudinal velocity,

lateral velocity, and yaw rate of a vehicle, designed for the purpose of ve-

hicle side-slip estimation, is modified and extended in order to work for dif-

ferent road surface conditions. The observer relies on a road-tire friction

model and is therefore sensitive to changes in the adhesion characteristics

of the road surface. The friction model is parametrized with a single fric-

tion parameter, and an update law is designed. The adaptive observer is

proven to be uniformly globally asymptotically stable and uniformly locally

exponentially stable under a persistency-of-excitation condition and a set

of technical assumptions, using results related to Matrosov’s theorem. The

observer is tested on recorded data from two test vehicles and shows good

results on a range of road surfaces.

3.1 Introduction

A current focus of the automotive industry is the development of active safety
systems, which assist the driver in order to avoid dangerous situations. As such
systems become more advanced, they depend to an increasing extent on accurate
information about the state of the vehicle and its surroundings. Much of this infor-
mation can be obtained by direct measurement, but the appropriate sensors may be
unreliable, inaccurate, or prohibitively expensive. Observers are therefore used to
provide accurate and reliable estimates of important states.
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Observers that estimate vehicle velocity usually rely on road-tire friction mod-
els, which model the friction forces between the tires of the vehicle and the road
surface. As the adhesion characteristics between the tires and the road depend on
the road surface, knowledge about the current road surface conditions is important
for this type of observer to work properly.

Several different methods for obtaining information about road surface condi-
tions have previously been studied. In Ono et al. (2003), a least-squares method
is used on measurements of wheel angular velocity to estimate the slope of the
friction force versus the tire slip. An observer for lateral velocity in Fukada (1999)
includes a filtering scheme for estimating the maximum road-tire friction coeffi-
cient, based primarily on using the lateral acceleration measurement during times
when this provides a good measurement of the coefficient. A similar approach is
taken in Hac and Simpson (2000). In Gustafsson (1997), a Kalman filter is used
to classify road surface conditions, by inspecting the ratio between slip values of
the driven wheels and the normalized friction force, obtained using wheel angu-
lar velocities and engine torque. In Ray (1997), an extended Kalman filter (EKF)
is combined with statistical methods in order to estimate the maximum road-tire
friction coefficient, using measurements of the yaw and roll rates, wheel angular
velocities, and longitudinal and lateral accelerations, as well as knowledge of the
steering angle and total brake line pressure. Other examples of EKFs are presented
in Suissa, Zomotor, and Böttiger (1994) and Best, Gordon, and Dixon (2000). In
Nishira, Kawabe, and Shin (1999), wheel angular velocity, longitudinal tire slip,
and wheel torque is used to generate an estimate of the wheel angular velocity and
for adaptation of a friction parameter. Wheel angular velocity and torque is used in
Canudas-de-Wit, Petersen, and Shiriaev (2003) for estimation of the longitudinal
velocity and wheel angular velocity, and adaptation of a friction parameter. In both
Nishira et al. (1999) and Canudas-de-Wit et al. (2003), convergence of the adapted
friction parameters under conditions of nonzero longitudinal tire slip is studied.

In addition to accuracy and reliability, production cost is an important matter
in vehicle serial production. To reduce cost, observer designs should be com-
putationally efficient and be based on cheap sensor configurations. In Imsland,
Johansen, Fossen, Grip, Kalkkuhl, and Suissa (2006a), a nonlinear observer for
vehicle velocity is presented with stability guarantees. The observer is compu-
tationally efficient and is based on measurements commonly available in modern
cars. A significant weakness of the observer is that it relies on a friction model
that must be tuned to the current road surface conditions. In Grip, Imsland, Jo-
hansen, Fossen, Kalkkuhl, and Suissa (2006), the authors addressed this issue for
a reduced-order observer for lateral velocity by presenting a method for adaptation
of the friction model to different road surface conditions. In the current paper, an
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improved version of this adaptive observer is presented, and in Section 3.5, it is
extended to include longitudinal velocity and yaw rate. The observer retains the
advantage of being less computationally expensive than an EKF. The ultimate goal
of the observer design is accurate estimation of the vehicle side-slip angle.

The stability analysis presented in this paper relies crucially on the concept
of persistency of excitation (PE), introduced by Åström and Bohlin (1965). This
concept has been developed in various directions to deal with situations where re-
gressors are dependent not only on external, time-varying signals, but on the states
of the system, which is the case for the system considered in this paper. One ap-
proach to dealing with state-dependent regressors is to consider a PE condition
along the trajectories of the states. The drawback of this approach is that, in gen-
eral, the trajectories of the states must be known in advance. Another approach is
to consider the states a parameter, and to evaluate a PE condition over all values of
this parameter. This idea is combined with a generalization of Matrosov’s theorem
in Loría, Panteley, Popović, and Teel (2005), the results of which are used in this
paper. Although the specific trajectories of the states need not be known, the PE

conditions resulting from this approach are in general difficult to verify. In the
present case, we nevertheless offer a natural and intuitively reasonable interpreta-
tion of the PE condition, which is directly related to driving patterns and supported
by experimental results.

Systems similar to the one considered in this paper have previously been in-
vestigated under PE conditions (Ortega and Fradkov, 1993; Zhang, Ioannou, and
Chien, 1996; Panteley, Loría, and Teel, 2001). Another example of observer de-
sign with analysis similar to what is presented here can be found in Loría and
de León Morales (2003).

3.1.1 Notation

Conventional notation is used for denoting estimated variables and error variables,
meaning that for some variable ´, Ó denotes its estimate and Q́ D ´ ! Ó . When
considering error dynamics, a function depending on an estimated variable Ó may
be written as a function of the error variable Q́ and t , by noting that Ó D ´ ! Q́
and considering ´ a time-varying signal. For a vector ´, ´fi;j g denotes the vector
obtained by stacking elements i and j of ´. The norm operator k'k denotes the
Euclidean norm. The closed ball with center 0 and radius r is denoted B.r/ D
f´ j k´k & rg. The minimum eigenvalue of a matrix A is denoted %min.A/. The
positive real numbers are denoted R>0.
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Fx;1

Fy;1

ı1

v1

˛1

ˇ

vx

vy

v

r

Rdyn

Figure 3.1: Schematic overview of vehicle

3.2 Vehicle Model and Preliminaries

The vehicle is illustrated in Figure 3.1. Of primary interest is the side-slip angle
ˇ, which is the angle between the longitudinal direction of the vehicle and the
direction of travel at the center of gravity (CG). To obtain the side-slip angle, we
shall estimate the longitudinal velocity vx and the lateral velocity vy at the CG,
from which ˇ D ! arctan.vy=vx/ can be calculated.

The vehicle is assumed to be moving on a flat, horizontal surface. In general,
there are environmental forces, such as wind forces and air resistance, acting on
the vehicle. In our model, these are disregarded; we assume that only road-tire
friction forces act on the vehicle.

3.2.1 Friction Modeling

Several semi-empirical models for road-tire friction exist, the most well-known
of which is the Magic Formula (Pacejka, 2006). This paper is not based on a
particular friction model; instead, it is assumed that the friction model adheres
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to certain assumptions, which will be formally stated later. Thus, the design is
not bound to a particular friction model, but instead allows for a range of friction
models to be used.

Road-tire friction forces are usually calculated based on the normal force be-
tween a tire and the road, and tire slip values. The tire slip values are measures of
the relative difference between the vehicle velocity and the circumferential veloc-
ity of the tire in its longitudinal and lateral directions. Exact definitions of tire slips
vary, but one possible definition, used for the experimental results in this paper, is

%x;i D
!iRdyn ! kvik cos˛i

kvik
; %y;i D sin˛i ;

where %x;i and %y;i are the longitudinal and lateral slips of wheel number i ; Rdyn
is the dynamic radius of the tire; !i is the angular velocity of the wheel; vi is the
velocity vector of the vehicle above the wheel center; and ˛i is the angle between
the longitudinal direction of the wheel and the vector vi (see illustration of front-
left wheel in Figure 3.1).

It is common to define the friction coefficient - D F=F´, where F is the
magnitude of the road-tire friction force and F´ is the magnitude of the vertical
normal force. Everything else being the same, - is in general lower on more
slippery surfaces. The value - is, however, not constant for a particular surface.
The road surface conditions are therefore more suitably described by the maximum
value of - for a particular surface. Throughout this paper, -H is used to denote
some parameter used in the friction model to characterize the road-tire friction
properties, usually the maximum road-tire friction coefficient.

In the following, we denote by d a vector containing all time-varying signals
used in the friction model, except the lateral velocity vy and the coefficient -H .
The contents of d may be different depending on the friction model used, but we
assume availability of certain measurements to be included in d :

$ the longitudinal acceleration (ax)

$ the lateral acceleration (ay)

$ the yaw rate (r)

$ the wheel angular velocities (!i , i D 1; : : : ; 4)

$ the wheel angles (ıi , i D 1; : : : ; 4)

The wheel angles ıi are in practice calculated from the measured steering wheel
angle ı. Because estimation of the longitudinal velocity vx is not considered until
Section 3.5, it is at this point assumed available as a measurement and included in
d . We denote the friction forces by vector-valued functions Fi .d; vy ;-H /.
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3.2.2 Vehicle Model

The vehicle is modeled as a rigid body and is studied in a body-fixed coordinate
system with the origin located at the CG. The friction forces Fi .d; vy ;-H / are
calculated in wheel-fixed coordinate systems, rotated by angles ıi with respect to
the body-fixed one. The resultant force acting on the vehicle in the lateral direction
is denoted

fy.d; vy ;-H / D
4
X

iD1

Œ0 1*R.ıi /Fi .d; vy ;-H /;

where R.ıi / are rotational matrices between the wheel-fixed coordinate systems
and the body-fixed one. Using Newton’s second law, we may write may D
fy.d; vy ;-H /, where m is the mass of the vehicle. The equation of motion in
the lateral direction is (see, e.g., Kiencke and Nielsen, 2000)

Pvy D ay ! rvx : (3.1)

3.3 Adaptive Observer

In Imsland et al. (2006a), the lateral velocity part of the observer includes a sta-
bilizing injection term that relies on the friction model. The friction model is
assumed to be tuned to the current road surface conditions. This assumption is
now removed, and a method is developed for adaptation of the friction model to
different road surface conditions.

3.3.1 Friction Model Parametrization

It is necessary to identify one or more parameters that characterize different road
surface conditions and tire properties, and which are suitable for adaptation. One
possibility is to use-H for adaptation, as is done in Grip et al. (2006). In this paper,
a closely related parameter, which is easier to deal with and results in slightly better
performance, is chosen. We may write

fy.d; vy ;-H / D #f #
y .d; vy/; (3.2)

where # is the parameter to be adapted. The function f #
y is defined as

f #
y .d; vy/ D

1

-#
H

4
X

iD1

Œ0 1*R.ıi /Fi .d; vy ;-
#
H /;

where -#
H is some fixed nominal value of -H .
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(b) Longitudinal slip set to 0:05

Figure 3.2: Friction curves for different friction parameters (dashed) and -H (solid)

Assumption 3.1. The friction parameter # is constant and strictly positive, with

known upper and lower bounds, such that P# D 0 and 0 < #min & # & #max.

Compared to using -H for adaptation, choosing # as described above offers
certain benefits, because the parameter enters linearly into (3.2). The drawback of
the chosen parametrization is that Assumption 3.1 is less realistic, since # cannot
be expected to be completely time-invariant even if the road surface conditions
remain unchanged. In order to compare the two parameters -H and # , Figure 3.2
shows the magnitude of the calculated friction force in the lateral direction of a
single wheel, normalized by division with the normal force F´. The solid curves
are generated using different values of -H in the friction model, while the dashed
curves are generated by using a nominal coefficient -#

H D 0:6 and varying # .1

The difference seen in Figure 3.2 may result in rapid variations in the friction
parameter when the driving pattern is highly varied. This is illustrated in Figure
3.3, where # is plotted for simulated maneuvers with increasingly rapid variations
on a high-friction (-H D 1:0) and a low-friction (-H D 0:3) surface. Assump-
tion 3.1 must be seen as a necessary design assumption, which is known to be an
imprecise description of the true physical system. While a varied driving pattern
causes variation in # , it also results in greater robustness of the observer to be pre-
sented, as will be shown in Section 3.4. Moreover, experimental results indicate
that the observer is indeed robust with respect to the error made in making this
assumption.

1The comparison in Figure 3.2 is for a single wheel. In most practical situations, the friction
forces for each wheel are different, and some of the difference in parametrization will average out in
the resultant force.
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Figure 3.3: Friction parameter for maneuver on high-friction (solid) and low-friction
(dashed) surface

Using a single parameter to describe different road surfaces is a simplification
of the true physical system. Such a parametrization cannot, for example, describe
situations where the surface is different below each wheel. For the lateral veloc-
ity estimation in this paper it is, however, enough to identify the effect of surface
changes on the resultant lateral force, without regard to how this manifests itself
physically (this is no longer true when yaw rate estimation is added, but given that
feedback from the yaw rate measurement is available, this does not present signif-
icant problems). While a design could be based on a richer parametrization, for
example by using one parameter per wheel, separate ones for the lateral resultant
force and yaw moment, or by expressing the friction model in terms of several ba-
sis functions, the added complexity does not seem warranted in light of the good
results obtained using the simple one-parameter scheme.

3.3.2 Observer and Stability Results

Before proposing an observer and presenting stability results, some extra assump-
tions are needed. We define the vector x D Œvy ; #*

T of states to be estimated.

Assumption 3.2. There exist compact setsDd ( Rm andDvy ( R such that

$ .d; vy/ 2 Dd #Dvy ;

$ d and vy are uniformly continuous in t on R; and

$ Fi .d; vy ;-#
H / and Œ@Fi=@vy *.d; vy ;-

#
H / are continuous onDd#R#f-#

H g.
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Assumption 3.3. There exists a known function !WDd#R2 ! R such that !.d; Ox/
and Œ@!=@ Ox*.d; Ox/ are continuous onDd #R2 and

f #
y .d; vy/ ! f

#
y .d; Ovy/ D !.d; Ox/.vy ! Ovy/: (3.3)

Remark 3.1. According to the mean value theorem, there always exists a value
such that (3.3) holds if !.d; Ox/ is given that value. In general it is, however, not
possible to obtain this exact value without knowing vy . Fortunately, it is not diffi-
cult to obtain a sufficiently good approximation of the value, as will be discussed
in Section 3.6.

For presentation of the error dynamics, we define the function

Qay.t; Qx/ D ay !
1

m
O#f #
y .d; Ovy/:

This represents the difference between the actual lateral acceleration and an es-
timate obtained using the friction model. The notation Of #

y D f #
y .d; Ovy/, ! D

!.d; Ox/, and Qay D Qay.t; Qx/ is used for the sake of brevity.
The following observer is proposed:

POvy D ay ! rvx CKvyƒ!
%

may ! O# Of #
y

&

; (3.4a)

PO# D )Kvyƒ
Of #
y

%

may ! O# Of #
y

&

; (3.4b)

where Kvy and ) are positive gains and ƒ D ƒ.d; Ox/ refers to some choice
function ƒWDd # R2 ! Œƒmin; ƒmax* ( R>0, defined such that ƒ.d; Ox/ and
Œ@ƒ=@ Ox*.d; Ox/ are continuous on Dd # R2. This function is used to scale the
observer equations for numerical reasons, and its exact shape is not important for
the stability analysis. Subtracting (3.4a) from (3.1) we obtain the following error
dynamics:

PQvy D !Kvymƒ! Qay ; (3.5a)
PQ# D !)Kvymƒ Of #

y Qay : (3.5b)

Assumptions 3.1–3.3 imply that the right-hand side of (3.5) is continuous in t and
locally Lipschitz continuous in Qx, uniformly in t .

Lemma 3.1. If Assumptions 3.1–3.3 hold, then the origin of the error dynamics

(3.5) is uniformly globally stable (UGS).

Proof. We define a Lyapunov function candidate (LFC)

V. Qx/ D
1

2m2

%

#) Qv2y C Q#2
&

;
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which is positive definite and radially unbounded. Its time derivative along the
trajectories of (3.5) is

PV .t; Qx/ D !
1

m
)Kvyƒ Qay

%

#! Qvy C Of #
y

Q#
&

:

We may write

m Qay D #
%

f #
y .d; vy/ ! Of #

y

&

C Of #
y

Q# D #! Qvy C Of #
y

Q# :

Using this for substitution yields

PV .t; Qx/ D !)Kvyƒ Qa2y & !)Kvyƒmin Qa2y :

It follows that the origin of (3.5) is UGS (see, e.g., Loría et al., 2005, Def. 1).

Building on Lemma 3.1, uniform global asymptotic stability (UGAS) of the
origin of the error dynamics (3.5) is proven in the following theorem, subject to an
excitation condition that will be extensively discussed. We define the functions

.vy .t; Qvy/ D

˚
1
m#

f !
y .d;vy/"f

!
y .d; Ovy/

Qvy
; Qvy ¤ 0I

1
m#

@f !
y

@vy
.d; vy/; Qvy D 0;

(3.6)

." .t; Qvy/ D
1

m
f #
y .d; Ovy/: (3.7)

Using these functions, we may write

Qay D .vy .t; Qvy/ Qvy C ." .t; Qvy/ Q# : (3.8)

Hence, .vy .t; Qvy/ and ." .t; Qvy/ are measures of the influence of Qvy and Q# on Qay .

Theorem 3.1 (UGAS of lateral velocity observer). Suppose that for each Qvy 2 R,

there exist T > 0 and " > 0 such that for all t 2 R,

Z tCT

t
.2vy .+; Qvy/ d+

Z tCT

t
.2" .+; Qvy/ d+

!

 

Z tCT

t
.vy .+; Qvy/." .+; Qvy/ d+

!2

> ": (3.9)

If Assumptions 3.1–3.3 hold, then the origin of the error dynamics (3.5) is UGAS.
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Remark 3.2. The condition expressed by (3.9) concerns the relationship between
the two signals .vy .'; Qvy/ and ." .'; Qvy/. To see this, it is useful to note that accord-
ing to the Cauchy-Schwartz inequality, the left-hand side is always non-negative,
and it is positive if and only if the continuous signals .vy .'; Qvy/ and ." .'; Qvy/ are
linearly independent on Œt; t C T * (see, e.g., Young, 1988, Theorem 1.9). Loosely
speaking, the condition can be fulfilled by guaranteeing that the signals vary in a
sufficiently independent manner within such time windows. In practical terms, this
amounts to requiring that the driving pattern is somewhat varied, not consisting of
indefinitely long periods of driving along a straight path or in a circle at constant
speed.2 This is discussed in detail in Section 3.7.

Proof (Theorem 3.1). From Lemma 3.1, we know that the origin of the error dy-
namics is UGS. We may therefore use Loría et al. (2005, Theorem 4). The function
Qay is locally Lipschitz continuous in Qx, uniformly in t . Hence, for each / > 0,
there exists a - > 0 such that for all .t; Qx/ 2 R # B.//, max

˚

jV. Qx/j; j Qay j
'

& -,
where V is the Lyapunov function from the proof of Lemma 3.1. We define
Y W R2 #R ! R as

Y.´;  / D !)Kvyƒmin 
2:

We have that PV .t; Qx/ & Y. Qx; Qay/, Y.´;  / & 0, and Y.´;  / D 0 H)  D 0.
We may write

Z tCT

t
Qa2y.+; Qx/ d+ D QxTW.t; Qvy/ Qx;

where

W.t; Qvy/ D
Z tCT

t

!

.2vy .+; Qvy/ .vy .+; Qvy/." .+; Qvy/
.vy .+; Qvy/." .+; Qvy/ .2

"
.+; Qvy/

"

d+:

Note that for each Qvy , .vy .+; Qvy/ and ." .+; Qvy/ are uniformly bounded. The
second-order leading principal minor (or determinant) ofW.t; Qvy/ is

Z tCT

t
.2vy .+; Qvy/ d+

Z tCT

t
.2" .+; Qvy/ d+ !

 

Z tCT

t
.vy .+; Qvy/." .+; Qvy/ d+

!2

:

From (3.9), this expression evaluates to some value greater than ". The first-order
leading principal minor ofW.t; Qvy/ is

R tCT
t .2vy .+; Qvy/ d+ , which is obviously non-

negative. It is also nonzero because the determinant would otherwise be zero.
Hence, for each Qvy , W.t; Qvy/ is positive definite with a uniformly lower bounded

2It is important to note (i) that Qvy D 0 does not imply that either signal is zero, and (ii) that the
condition may hold even if one or both of the signals are zero for limited periods of time.
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determinant and upper bounded eigenvalues, which means that %min.W.t; Qvy// >
"0 > 0 for some "0. Therefore, for all t 2 R,

R tCT
t Qa2y.+; Qx/ d+ " "0k Qxk2. Bound-

edness of the integrand for each Qx in turn implies that for each Qx ¤ 0, there exist
"# > 0 and T > 0 such that for all t 2 R;

R tCT
t j Qay.+; Qx/j d+ " "#. This means

that Qay is uniformly ı-persistently exciting (Uı-PE) with respect to Qx by Loría et al.
(2005, Lemma 1), and it is also zero for Qx D 0.

The right-hand sides of (3.5a) and (3.5b) consist of Qay multiplied by factors
that are bounded for all .t; Qx/ 2 R # B.//. Hence, there exists a constant K1.//
such that for all .t; Qx/ 2 R#B.//, kg.t; Qx/k & K1.//j Qay j, where g.t; Qx/ denotes
the right-hand side of (3.5).

The observer (3.4) allows the estimated friction parameter O# to take on any
value, but from physical considerations, we know that # is confined to a small
region, as reflected by Assumption 3.1. We may use this extra knowledge by
implementing a parameter projection (see, e.g., Ioannou and Sun, 1996), while
preserving the stability properties of the error dynamics. Doing so, we may ensure
that for all t " t0, #min ! #" & O# & #max C #" (where #" > 0 is some arbitrarily
small constant), as long as O# is within those bounds at t D t0 (see Grip et al.,
2006).

3.4 Robustness

Equilibrium points with the UGAS property are locally input-to-state stable and
therefore robust to small perturbations, as mentioned in Loría et al. (2005). By
using a different LFC, which includes a term similar to one of the auxiliary func-
tions used in the proof of Loría et al. (2005, Theorem 4), we obtain a stronger local
stability result. The approach is similar to the proof of Loría, Panteley, Popović,
and Teel (2006, Propositions 3 and 4), where uniform local exponential stability
(ULES) is proven for a particular class of systems.

Theorem 3.2 (ULES of lateral velocity observer). Suppose that Assumptions 3.1–
3.3 and the condition expressed by (3.9) hold. Then the origin of the error dynam-
ics (3.5) is ULES.

Proof. We define the LFC

VPE.t; Qx/ D V. Qx/ ! '

Z 1

t
et"# Qa2y.+; Qx/ d+;

where ' > 0 is a constant and V is the Lyapunov function from the proof of
Lemma 3.1. In the remainder of the proof, it is assumed that Qx 2 B.// for some
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arbitrary / > 0. Because Qay is locally Lipschitz continuous in Qx, uniformly in
t , and zero for Qx D 0, there exists a K2.// such that j Qay j & K2.//k Qxk. We
therefore have

VPE.t; Qx/ "
1

2m2

%

#) Qv2y C Q#2
&

! 'K22 .//k Qxk2
Z 1

t
et"# d+

"
#

1

2m2
minf1; #)g ! 'K22 .//

$

k Qxk2:

Choosing ' < minf1; #)g=.2m2K22 ./// ensures that VPE is positive definite and
bounded:

#

1

2m2
minf1; #)g ! 'K22 .//

$

k Qxk2 & VPE.t; Qx/

&
1

2m2
maxf1; #)gk Qxk2:

(3.10)

For the time derivative along the trajectories of (3.5), we have

PVPE.t; Qx/ & !
(

)Kvyƒmin ! '
)

Qa2y ! '

Z 1

t
et"# Qa2y.+; Qx/ d+

! 2'
Z 1

t
et"# Qay.+; Qx/

@ Qay
@ Qx

.+; Qx/ d+ g.t; Qx/;

where g.t; Qx/ denotes the right-hand side of (3.5). The continuity properties of
the friction model imply that kŒ@ Qay=@ Qx*.t; Qx/k & K3.//. It can be shown that
the left-hand side of (3.9) is continuous in Qvy , uniformly in t , which means that
Œ!/;/* is covered by open neighborhoods around each Qvy for which (3.9) holds
with the same T and ". Since Œ!/;/* is compact, this cover has finite subcover,
and hence we may choose T$ > 0 and "$ > 0 such that (3.9) holds uniformly for
all .t; Qx/ 2 R # B.// with T D T$ and " D "$. Defining W as in the proof of
Theorem 3.1 with T D T$ and using the boundedness property of the elements of
W.t; Qvy/ on R # B.//, we may define "0

$ accordingly, such that

Z tCT!

t
Qa2y.+; Qx/ d+ D QxTW.t; Qvy/ Qx " "0

$k Qxk2:

From this, we may write

PVPE.t; Qx/ & ! .)Kvyƒmin ! '/ Qa2y ! '"0
$e

"T!k Qxk2

C 2'K1.//K2.//K3.//k Qxkj Qay j;
(3.11)
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where K1.// is defined in the proof of Theorem 3.1. Selecting

' <
)Kvyƒmin

1CK21 .//K
2
2 .//K

2
3 .//"

0"1
$ eT!

ensures that PVPE.t; Qx/ is negative definite and bounded by

PVPE.t; Qx/ & !c
(

k Qxk2 C jQay j2
)

;

for some c > 0. This can be seen by writing (3.11) in quadratic, symmetric matrix
form and investigating the leading principal minors. According to Khalil (2002,
Theorem 4.10), the origin of (3.5) is therefore ULES.

The combination of UGAS and ULES implies that the system is uniformly ex-
ponentially stable within any compact neighborhood of the origin, and hence it is
unnecessary to investigate the region of attraction in Theorem 3.2. The proof indi-
cates that the stability margin depends on the amount of excitation in the system.

3.5 Extension to Longitudinal Velocity and Yaw Rate

The adaptive observer design is now extended to include estimation of longitudinal
velocity and yaw rate. The vector d is redefined to exclude the values vx and r ,
and these values are instead used as explicit arguments to Fi . The vehicle model
for the longitudinal velocity and yaw rate can be written as

Pvx D ax C rvy ;

Pr D
1

J
fr.d; vx; vy ; r;-H /;

where J is the vehicle moment of inertia around the vertical axis through the CG.
The function fr represents the yaw moment, and we assume that it can be ex-
pressed as fr.d; vx; vy ; r;-H / D #f #

r .d; vx; vy ; r/, where

f #
r .d; vx; vy ; r/ D

1

-#
H

4
X

iD1

gT
i R.ıi /Fi .d; vx; vy ; r;-

#
H /:

The vectors gi are geometry vectors defined for convenience (see Imsland et al.,
2006a).

Remark 3.3. Using the same type of parametrization, and the same parameter, for
calculation of the yaw moment as for the lateral acceleration is a significant sim-
plification, because different tire slip values for the front and rear wheels will give
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3.5. EXTENSION TO LONGITUDINAL VELOCITY AND YAW RATE

the difference seen in Figure 3.2 much more impact. In normal driving situations
without large tire slip values, one may therefore expect large inaccuracies. Essen-
tially the same design as the one given in this paper can, however, be implemented
with adaptation of -H instead, albeit at the cost of making other assumptions (see
Imsland, Grip, Johansen, Fossen, Kalkkuhl, and Suissa, 2007). The choice of the
best parametrization for a final implementation is a topic of current research.

We now write

f #
y .d; vx; vy ; r/ D

1

-#
H

4
X

iD1

Œ0 1*R.ıi /Fi .d; vx; vy ; r;-
#
H /:

The vector x is defined as x D Œvx; vy ; r; #*
T and Assumptions 3.2 and 3.3 now

take the following form:

Assumption 3.20. There exist compact sets Dd ( Rm, Dvx ( R, Dvy ( R and

Dr ( R such that

$ .d; vx; vy ; r/ 2 Dd #Dvx #Dvy #Dr ;

$ d , vx , vy , and r are uniformly continuous in t on R;

$ Fi .d; vx; vy ; r;-#
H / and their partial derivatives with respect to vx , vy , and

r are continuous onDd #R #R #R # f-#
H g; and

$ Œ@Fi=@vx*.d; vx; vy ; r;-#
H / and Œ@Fi=@r *.d; vx; vy ; r;-

#
H / are uniformly

bounded onDd #R #Dvy #R # f-#
H g.

Assumption 3.30. There exist known functions !WDd # R4 ! R and "WDd #
R4 ! R such that !.d; Ox/, ".d; Ox/, Œ@!=@ Ox*.d; Ox/, and Œ@"=@ Ox*.d; Ox/ are contin-
uous onDd #R4 and

f #
y .d; Ovx; vy ; Or/ ! f #

y .d; Ovx; Ovy ; Or/ D !.d; Ox/.vy ! Ovy/; (3.12)

f #
r .d; Ovx; vy ; Or/ ! f #

r .d; Ovx; Ovy ; Or/ D ".d; Ox/.vy ! Ovy/: (3.13)

We redefine Qay.t; Qx/ D ay ! .1=m/ O#f #
y .d; Ovx; Ovy ; Or/. The functions .vy and

." remain the same as before; that is, they are functions of vx and r , and not of
the estimates Ovx and Or .3 The notation ƒ D ƒ.d; Ox/, Of #

y D f #
y .d; Ovx; Ovy ; Or/,

Of #
r D f #

r .d; Ovx; Ovy ; Or/, ! D !.d; Ox/, " D ".d; Ox/, and Qay D Qay.t; Qx/ is used for
the sake of brevity.

3Note that (3.8) does not hold with the new definition of Qay .
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The following observer is proposed:

POvx D ax C r Ovy C
4
X

iD1

Ki .t/
(

vx;i ! Ovx
)

; (3.14a)

POvy D ay ! r Ovx CKvyƒ!
%

may ! O# Of #
y

&

C
)2

)1
" .r ! Or/ ; (3.14b)

POr D
1

J
O# Of #
r CKr .r ! Or/ ; (3.14c)

PO# D )1Kvyƒ
Of #
y

%

may ! O# Of #
y

&

C )2 Of #
r .r ! Or/ ; (3.14d)

where Kr , )1, and )2 are positive gains. The values Ki .t/ are continuously cho-
sen, time-varying gains, and vx;i are longitudinal velocities calculated from the
individual wheel angular velocities and the yaw rate. For the stability proofs, the
weighted average

P4
iD1Ki .t/vx;i=

P4
iD1Ki .t/ is assumed to be an exact mea-

surement of vx (see Imsland et al. (2006a) for a detailed discussion of the longitu-
dinal velocity estimation).

Theorem 3.3 (UGAS of full observer). Suppose that Assumptions 3.1, 3.20, and

3.30 and the condition expressed by (3.9) hold. Then there exist constants C1 > 0
and C2 > 0 such that if the gains are chosen according to

P4
iD1Ki .t/ > C1 and

Kr > C2, then the origin of the error dynamics corresponding to the observer

(3.14) is UGAS.

Proof (Outline). We define the LFC

V. Qx/ D
1

2
.)1# Qv2x C )1# Qv2y C )2J Qr2 C Q#2/:

Using the assumptions, it can be shown that with the proper selection of gains,

PV .t; Qx/ & !c
(

Qv2x C Qr2 C Qa2y
)

;

where c is some positive constant. We define

$.t; Qx/ D ay ! .1=m/ O#f #
y .d; vx; Ovy ; r/:

It can be shown that for .t; Qx/ 2 R#B.//, there exists aK.// such that defining
Y W R4 #R ! R as

Y.´;  / D !c.k´f1;3gk2 C maxf 2 !K.//j jk´f1;3gk; 0g/

yields PV .t; Qx/ & Y. Qx;$.t; Qx//, Y.´;  / & 0, and Y.´;  / D 0 H) ´f1;3g D 0,
 D 0. The rest of the proof follows along the same lines as the proof of Theorem
3.1 with the Uı-PE condition imposed on the function $ instead of Qay .
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Theorem 3.4 (ULES of full observer). Suppose that Assumptions 3.1, 3.20, and

3.30 and the condition expressed by (3.9) hold. Then there exist constants C1 > 0
and C2 > 0 such that if the gains are chosen according to

P4
iD1Ki .t/ > C1 and

Kr > C2, then the origin of the error dynamics corresponding to the observer

(3.14) is ULES.

Proof (Outline). The proof follows along the same lines as the proof of Theorem
3.2, using the LFC

VPE.t; Qx/ D V. Qx/ ! '

Z 1

t
et"#$2.+; Qx/ d+;

where V and $ are defined in the proof of Theorem 3.3.

Remark 3.4. The constants C1 and C2 in Theorems 3.3 and 3.4 depend on Kvy ,
)1, and )2, which must be chosen first.

3.6 Approximation of ! and "

In Assumption 3.30, it is assumed that we can obtain values !.d; Ox/ such that (3.12)
holds exactly. The challenge is to find the gradient of the line connecting the val-
ues f #

y .d; Ovx; vy ; Or/ and f #
y .d; Ovx; Ovy ; Or/. In general, the exact values cannot be

found, because vy is unavailable, but the shape of this function makes the task of
approximating the value appealing. In Imsland et al. (2006a, Assumption 2), it is
assumed that the friction model fulfills the condition Œ@f #

y =@vy *.d; vx; vy ; r/ &
c < 0 within a region. For the purpose of estimating !, we instead make the as-
sumption that for all .d; vx; vy ; r/ 2 Dd#R#R#R, Œ@f #

y =@vy *.d; vy ; vx; r/ & 0.
According to this, ! is always non-positive, and hence one possible approximation
is a negative constant. Although extremely crude, this approximation is surpris-
ingly effective. It is also a safe choice in the sense that it limits errors by ensur-
ing that the feedback from Qay in the lateral velocity estimation never disappears.
A somewhat better solution is to use a truncated Taylor series expansion around
some nominal value v#

y or around the estimate Ovy . In the latter case, the ULES

property of the origin of the error dynamics is guaranteed to be preserved (even
without the above assumption). One may also use considerations of convexity and
concavity to identify situations in which any error from the Taylor series expan-
sion actually improves stability (see Annaswamy, Skantze, and Loh, 1998), and
use this information to create an estimation scheme based on a combination of the
above approaches. Experimental results indicate that errors in the approximation
have little effect on performance as long as it is ensured that ! is not close to zero
for long periods of time. This is largely because any error in the approximation
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becomes a potential problem only if there is variation in the lateral velocity, which
also when the robustness of the observer is greatest.

For approximating ", a Taylor series expansion around Ovy is a good enough
approximation, because the gain Kr can be used to suppress the error. Moreover,
the actual values of " are small, so the term where this value enters in (3.14b), al-
though necessary for the technical proofs, has a negligible impact on the estimates
when the observer is properly tuned.

3.7 Excitation Condition

The excitation condition given by (3.9) is essential for the stability results pre-
sented in this paper, and despite its technical nature, it has an intuitively appealing
interpretation. As explained in Remark 3.2, it concerns the relationship between
two signals, .vy .'; Qvy/ and ." .'; Qvy/. If Qvy is fixed at a specific value, then, es-
sentially, the remaining time-varying signals affecting .vy and ." should cause
.vy .t; Qvy/ and ." .t; Qvy/ to vary independently within any time period of a certain
length.

The functions .vy and ." depend nonlinearly on many different time-varying
signals, which cause them to behave differently. In particular, the inequality

Œ@f #
y =@vy *.d; vx; vy ; r/ & 0

implies that .vy .t; Qvy/ is non-positive at all times. By contrast, ." .t; Qvy/ varies
much in the same way as the lateral acceleration, and is likely to frequently switch
signs, at least for moderate values of Qvy . Furthermore, we note that .vy and ." are
essentially measures of the influence of Qvy and Q# on Qay . The plots in Section 3.3.1
clearly indicate that the relation between these varies along the slip curves.

This translates into a requirement that the driving pattern should be somewhat
varied; in particular, the condition will be satisfied if there is variation in the lateral
velocity and acceleration. A certain amount of steering, acceleration, or braking in
order to cause variation in the lateral tire slips is required. It is not necessary that
this happen all the time, but by choosing a large enough T , it must be possible to
guarantee some variation within any time interval of that length.

The intuitive appeal of this condition is clear: it is impossible to tell anything
about the road surface conditions based on the lateral movement of the vehicle,
unless there is actually some variation in that movement. With this condition is
mind, it is natural to distinguish between three general driving patterns.
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3.7.1 Varied Lateral Velocity

If there is variation in the lateral velocity, the excitation condition will be fulfilled,
and hence Theorems 3.3 and 3.4 apply. We may therefore expect convergence of
all estimates.

3.7.2 Straight-Path Driving

If the vehicle is driven along a straight path for an indefinitely long time, the exci-
tation condition will not be fulfilled. We state a separate result for this case.

Theorem 3.5 (Convergence during straight-path driving). Suppose that Assump-

tions 3.1, 3.20, and 3.30 hold and that for each "1 > 0, there exists an "2 > 0
such that j Ovy j > "1, r D 0, ı D 0 H) jf #

y .d; vx; Ovy ; 0/j > "2. If for

all t " t0, ay D 0, vy D 0, r D 0, ı D 0, and O# " #min ! #" > 0, then
limt!1. Qvx; Qvy ; Qr/ D 0.

Proof (Outline). Using the Lyapunov function V from Theorem 3.3, Barbălat’s
lemma (Barbălat, 1959) can be used to conclude that limt!1. Qvx; Qr; Qay/ D 0.
Using the extra condition in Theorem 3.5 and the continuity properties of f #

y , it
can be shown that this implies limt!1 Ovy D 0.

Remark 3.5. In practical terms, the extra condition in Theorem 3.5 means that
if the steering wheel angle is zero and the vehicle is not rotating, any nonzero
lateral velocity will generate a nonzero lateral acceleration. This is reasonable
from a physical point of view and is likely to hold for most friction models. The
condition that O# " #min ! #" is ensured by parameter projection, as discussed in
Section 3.3.2.

3.7.3 Sustained Circle Maneuver

In a practical implementation, the estimates may begin to drift during particularly
long-lasting circle maneuvers with little excitation. This type of situation can be
detected, and a proper response can be built in. When the goal is estimation of
vehicle side-slip, using an estimated friction parameter that is too high is far safer
than using one that is too low, as explained by Fukada (1999). The response is
therefore to let O# be drawn toward a high value.

3.8 Experimental Validation

In this section, some results from practical testing of the observer in one passenger
car with rear-wheel drive (Vehicle A) and one larger vehicle with four wheel drive
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(Vehicle B), are presented. For a detailed comparison between an EKF and an
observer implementation similar to the one presented in this paper, see Imsland
et al. (2007).

3.8.1 Practical Implementation

A discrete version of the observer is implemented using the forward Euler integra-
tion method with step size 0:01 s. The gains Ki .t/ for estimation of the longitudi-
nal velocity are updated at each time step.4 The measurements of longitudinal and
lateral acceleration, yaw rate, steering wheel angle, and wheel angular velocities
are provided by production-type sensors; and, for the purpose of observer valida-
tion, the longitudinal and lateral velocities are measured using optical correlation
sensors. The nominal value of -H is set to -#

H D 1:0, and the friction parameter
bounds are chosen as #min D 0:1 and #max D 1:0.

Friction Model

The friction model used is a proprietary one of similar complexity to the Magic
Formula, and it has not been modified for use in the observer. It has the desirable
property that the slip curves, plotted in Figure 3.2, flatten out rather than descend
for large slip values. This helps to ensure that the inequality

Œ@f #
y =@vy *.d; vx; vy ; r/ & 0

from Section 3.6 always holds for the model. This is desirable even if this in-
equality can be broken in the real system for brief periods of time, resulting in
a limited model error. With the exception of wheel radius, the friction model is
tuned with identical tire parameters for both vehicles, even though the actual tires
used are different. The accelerations ax and ay are used in order to estimate the
load distribution, and thereby the vertical normal force F´ for each wheel.

A relatively simple method based loosely on the discussion in Section 3.6
is chosen for approximation of !. Most of the time, ! D Œ@ Of #

y =@ Ovy * and the
scaling ƒ is set to 1=kŒ!; Of #

y *k. But in certain cases, if jmay j < j O# Of #
y j and

Œ@ Of #
y =@ Ovy * > !j Of #

y j, then ! D !j Of #
y j andƒ D 1=.2j Of #

y j/. The reason for not us-
ing the partial derivative at all times is a practical one, to ensure that enough weight
is given to the feedback in the lateral velocity part of the observer (compared to
the friction adaptation part), in situations where this has proven to be important
through experimental results. The scaling ƒ is saturated at ƒmin D 10"6 and
ƒmax D 106.

4For a description of how these are chosen, see Imsland, Johansen, Fossen, Kalkkuhl, and Suissa
(2006b).
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Monitoring of Excitation Condition

As discussed in Section 3.7.3, it is sensible to let the friction parameter be drawn
toward a high value whenever there is insufficient excitation for estimation of the
friction parameter. To approximately monitor the excitation condition, we look
at variation in the value Of #

y =kŒ!; Of #
y *k. The value is high-pass filtered, squared,

and then low-pass filtered. If the output is below a threshold value, the friction
coefficient is drawn exponentially toward the value 1.

Signal Processing in Update Law

Slow drift and bias in the lateral acceleration measurement influence the value Qay
in the observer error dynamics and has an adverse effect on performance. Because
it is the dynamic behavior of Qay that is useful for adaptation of the friction parame-
ter, Qay is high-pass filtered in the parameter update law, using the transfer function
s=.s C 0:25/.

3.8.2 Experimental Results, Vehicle A

The observer for Vehicle A is implemented using the gainsKvy D 1=m,Kr D 40,
)1 D 4, and )2 D 0:1=J . Results from the first test with Vehicle A are shown
in Figure 3.4. The vehicle is driven on ice, mostly along a straight path with a
few sharp turns. The adapted friction parameter varies largely in stages, changing
quickly during turns and little between turns.

The second test represents a circle maneuver on asphalt, and the results can be
seen in Figure 3.5. Throughout the first half of the test, the modification for han-
dling low excitation is active, and hence the friction parameter remains constant.
It then starts varying, but remains high.

3.8.3 Experimental Results, Vehicle B

The four-wheel drive complicates estimation of the longitudinal velocity for Vehi-
cle B. For simplicity, the longitudinal velocity measurement provided by the op-
tical correlation sensor is therefore used in the tests presented here. The observer
for Vehicle B is implemented with the gains Kvy D 1=m, Kr D 40, )1 D 5,
and )2 D 1=J . The first test is a slalom-like maneuver on a snow surface, with
the results shown in Figure 3.6. For about 20 s, the vehicle is accelerated from
about 1 m=s to approximately 21 m=s. Throughout the rest of the test, it mostly
decelerates, to about 12 m=s at the end of the test. For the first part of the test,
the low-excitation modification is active, but when the vehicle starts turning, the
friction parameter starts quickly changing.
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Figure 3.4: Results for Vehicle A on ice
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Figure 3.5: Results for Vehicle A on asphalt
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(b) Estimated friction parameter

Figure 3.6: Results for Vehicle B on snow

The final test is a slalom-like maneuver on asphalt, with the results shown in
Figure 3.7. The longitudinal velocity varies relatively slowly in the range 21–
30 m=s during the test. For this test, the initial value of the friction parameter is
set much too low, at 0:1, which causes an initial inaccuracy.

The estimated friction parameter varies much more for Vehicle B than for Ve-
hicle A. This indicates that the parameters used in the friction model are a better
match for the tires on Vehicle A. The results for Vehicle B also indicate robustness
with respect to errors in the friction model.

3.9 Concluding Remarks

In this paper, the results from Imsland et al. (2006a) are extended to create a nonlin-
ear vehicle velocity observer with adaptation to different road surface conditions,
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Figure 3.7: Results for Vehicle B on asphalt

and the stability properties of this observer are analyzed. Experimental results con-
firm that the method has merit and can function in real, non-ideal circumstances.
The results also support the excitation condition found in the theoretical analysis
and the practical interpretation of it.

The model used in this paper does not include the effect of any nonzero road
bank angle, which will induce additional lateral forces on the vehicle and therefore
have an adverse effect on estimation. In a final implementation, this should prefer-
ably be addressed through additional estimation of the road bank angle. Some
discussion on this topic and on how it may be handled can be found in Imsland
et al. (2007).
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Chapter 4

Estimation of Road Inclination

and Bank Angle in Automotive

Vehicles

Abstract: We extend an observer design for estimation of the vehicle sideslip

angle on horizontal surfaces to include estimation of the road inclination an-

gle and the road bank angle. The design makes use of a nonlinear road-tire

friction model, and the nonlinearity of the road-tire friction forces are taken

into account in the theoretical analysis of the design. Using an absolute-

stability argument we show that, under a set of technical assumptions, the

origin of the observer error dynamics is globally exponentially stable. Tak-

ing unknown road-surface conditions into account, we discuss simultaneous

estimation of the road bank angle and a road-tire friction parameter, which

is complicated by the dependence of the friction-parameter estimation on

lateral excitation of the vehicle. To improve performance on low-friction

surfaces, we modulate the observer gains based on a set of practical con-

ditions. Using experimental data from a passenger car, we investigate the

performance of the approach.

4.1 Introduction

For implementation of automotive control algorithms, accurate information about
the state of the vehicle and its surroundings is important. Whereas some quantities
can be obtained by direct measurement, others are difficult to measure because of
high cost or impracticality. Among the quantities that are not measured in produc-
tion vehicles is the angle between the heading of the vehicle and the direction of
travel, known as the vehicle sideslip angle. To estimate the vehicle sideslip an-
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gle, it is common to estimate the longitudinal and lateral velocities of the vehicle,
denoted vx and vy , and to calculate the sideslip angle as arctan.vy=vx/.

The longitudinal and lateral velocities are influenced by gravity components
due to slanting of the road surface. For velocity observers that rely on the vehicle’s
dynamic equations of motion, knowledge about the slanting of the road surface is
therefore important. Nevertheless, sideslip estimation designs often assume that
the road surface is flat and horizontal. Designs that take the slanting of the road
surface into account include Suissa, Zomotor, and Böttiger (1994); Fukada (1999);
Klier, Reim, and Stapel (2008).

Knowledge about the slanting of the road surface is of interest for purposes
other than sideslip estimation, and several designs focus specifically on estimation
of the road bank angle. These include Tseng (2001), which is based on transfer
functions from the steering angle and road bank angle to the yaw rate and lat-
eral acceleration, and Sentouh, Sebsadji, Mammar, and Glaser (2007); Sebsadji,
Glaser, Mammar, and Netto (2008), which use an extended Kalman filter (EKF)
to estimate the sideslip angle, which is in turn used in a linear unknown-input ob-
server to estimate the road bank angle. Several GPS-based designs, such as Bevly
(2004); Ryu and Gerdes (2004), estimate the road inclination or bank angle. In
this paper, we do not assume availability of GPS measurements.

4.1.1 Contributions of This Paper

Sideslip estimation designs found in literature are usually based on linear or quasi-
linear techniques. Most commonly, an EKF is employed. Although often effective,
the EKF is difficult to analyze because the algorithm is derived through lineariza-
tion of the prediction error (Brown and Hwang, 1997). Other potential disadvan-
tages associated with the EKF are high computational complexity—due to the need
to solve the Riccati equation at each time step—and a large number of tuning pa-
rameters.

In Imsland, Johansen, Fossen, Grip, Kalkkuhl, and Suissa (2006); Grip, Ims-
land, Johansen, Fossen, Kalkkuhl, and Suissa (2008), the authors presented a non-
linear vehicle sideslip observer for a vehicle traveling on a flat, horizontal surface.
The main features of this observer are a reduction in computational complexity and
in the number of tuning parameters compared to an EKF. In addition, analysis of
stability and robustness in Imsland et al. (2006); Grip et al. (2008) is carried out in
a nonlinear setting. Inspired by the theory of nonlinear unknown-input observers,
an extension of Imsland et al. (2006) for estimating the bank angle is developed
in Imsland, Johansen, Grip, and Fossen (2007); however, the nature of the dis-
turbance introduced by road surface slanting suggests that something similar to
regular integral action is appropriate. In this paper, we present such a solution,
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Fx;1

Fy;1

v1

˛1
vx

vy

v

P 

Figure 4.1: Illustration of the car

extending the design from Imsland et al. (2006); Grip et al. (2008) to include es-
timation of the road inclination and bank angles. We analyze the stability of the
design, taking the nonlinearity of the road-tire friction forces into account.

4.1.2 Sensor Configuration

In our design, we assume that measurements of the longitudinal and lateral accel-
erations, wheel speeds, steering wheel angle, and yaw rate are available. These
measurements can be considered standard in modern passenger cars with an elec-
tronic stability control system (ESC).

4.2 Road-Tire Friction

When a car turns, the tires become misaligned with the direction of travel. The
angle between the direction the tire is pointing in and the velocity vector of the
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vehicle above the center of the tire is called the tire slip angle. Figure 4.1 illustrates
the tire slip angle ˛1 for the front-left wheel. A nonzero tire slip angle gives rise
to friction forces in the lateral direction of the tire, illustrated by Fy;1 in Figure
4.1. The longitudinal tire slip, defined as a normalized difference between the
circumferential velocity of the tire and the velocity of the tire center, gives rise to
longitudinal friction forces, illustrated by Fx;1 in Figure 4.1. Collectively, we refer
to the longitudinal tire slip and lateral tire slip angle as the tire slips.

During normal driving the road-tire friction forces are approximately linear
with respect to the tire slips. When the tire slips become large, however, the road-
tire friction forces saturate, meaning that an increase in the tire slips does not result
in a corresponding increase in friction forces.

A key component of the design presented in this paper is a road-tire friction
model. The road-tire friction model takes measurements and observer estimates
as inputs, and returns estimates of the road-tire friction forces. To account for the
nonlinearity of the road-tire friction forces for large tire slips, a fully nonlinear
model is needed. A widely used example of a nonlinear tire model is the magic

formula (Pacejka, 2006).
The observer presented in this paper is not designed with a particular road-tire

friction model in mind. Instead, we assume that a nonlinear friction model satis-
fying some physically reasonable properties is used, and we base the design and
analysis on these properties. The experiments are carried out using a proprietary
road-tire friction model of a complexity comparable to the magic formula.

4.2.1 Monotonicity

According to Newton’s second law, the vehicle’s acceleration in a particular di-
rection is equal to the sum of the forces acting in that direction, divided by the
mass. For a vehicle traveling on a horizontal surface, the most significant forces
acting in the road-surface plane are the road-tire friction forces, and we ignore
smaller influences such as wind forces and air resistance. The road-tire friction
forces are functions of the tire slips, which in turn are functions of the vehicle ve-
locities. Consequently, the measurements of the vehicle accelerations are indirect
measurements of the vehicle velocities.

To see how the connection between the accelerations and the velocities can be
exploited, we consider what happens if we change the lateral velocity vy while
keeping everything else constant. When the lateral velocity increases, it causes the
tire slip angles to decrease. At each wheel, the decrease in the tire slip angle gen-
erally leads to a decrease in the lateral road-tire friction force. As a net result, the
acceleration ay decreases when the lateral velocity vy increases, meaning that the
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relationship between ay and vy can be modeled as monotonic.1 It is demonstrated
in Imsland et al. (2006) that, except in some particular cases, the partial deriva-
tive @ay=@vy is smaller than some negative number. In Imsland et al. (2006), the
monotonicity property is exploited to make ay an indirect measurement of vy .

When the vehicle is moving on a slanted surface, gravity components influence
the velocity of the vehicle, in addition to the road-tire friction forces. Nevertheless,
because the accelerometers are influenced by the same gravity forces as the vehi-
cle itself, the measured accelerations still correspond to the sum of the road-tire
friction forces divided by the mass. This means that, even on a slanted surface, we
can still exploit the monotonicity property of the measured lateral acceleration as
an indirect measurement of vy .

4.3 Velocity Estimation on Horizontal Surface

Before introducing the design for estimation of the inclination and bank angles, we
briefly review the design from Imsland et al. (2006). For a vehicle traveling on a
horizontal surface, the vehicle velocities are governed by the equations of motion
(Kiencke and Nielsen, 2000)

Pvx D ax C P vy ; (4.1a)

Pvy D ay ! P vx; (4.1b)

where vx and vy are the longitudinal and lateral velocities, ax and ay are the
longitudinal and lateral accelerations, and P is the yaw rate. Throughout the rest of
this paper, a hat indicates an estimated quantity, and a tilde indicates an estimation
error, meaning that Ovx is an estimate of vx , and Qvx ´ vx ! Ovx . We discuss the
longitudinal-velocity estimate Ovx and the lateral-velocity estimate Ovy separately,
ignoring at first the interconnections between the two estimates.

4.3.1 Longitudinal-Velocity Estimation

The longitudinal-velocity estimate is given by

POvx D ax C P Ovy CKvx .t/.vx;ref ! Ovx/; (4.2)

where Kvx .t/ " Kvx ;min > 0 is a time-varying gain, and vx;ref is a reference
velocity calculated from the wheel speeds.

To calculate the reference velocity, we use the four wheel speeds, the steering
wheel angle, and the yaw rate to obtain four separate estimates of the longitudi-
nal velocity. The reference velocity is calculated as a weighted average of these

1See Section 4.6 for further remarks on this topic.
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four velocity estimates, and the gain Kvx .t/ is made to reflect the quality of the
reference velocity. When the quality of the reference velocity is deemed to be
low, the gain is reduced, making the observer less reliant on the reference veloc-
ity, and more reliant on integration of the system equations. The primary factor in
determining the quality of the reference velocity is the spread in the four velocity
estimates from the wheel speeds.

Ignoring the lateral-velocity error Qvy , global exponential stability of the longi-
tudinal-velocity error is easily proven when we assume that vx;ref represents the
true longitudinal velocity.

4.3.2 Lateral-Velocity Estimation

For the lateral velocity, we start by introducing Oay.t; Ovx; Ovy/, which denotes an
estimate of the lateral acceleration ay . The estimate Oay.t; Ovx; Ovy/ is formed by
using the nonlinear friction model for each wheel, where the measurements of
the steering wheel angle, yaw rate, and wheel speeds, as well as the estimated
velocities Ovx and Ovy , are used as inputs. The friction forces modeled for each
wheel are added up in the lateral direction of the vehicle and divided by the mass,
resulting in the lateral-acceleration estimate Oay.t; Ovx; Ovy/. The t in Oay.t; Ovx; Ovy/
denotes the dependence of Oay on time-varying signals such as the steering wheel
angle. We also write Qay.t; Qvx; Qvy/ ´ ay ! Oay.t; Ovx; Ovy/.

The lateral-velocity estimate is given by

POvy D ay ! P Ovx !Kvy .ay ! Oay.t; Ovx; Ovy//; (4.3)

where Kvy is a positive gain. Analysis of (4.3) is based on the following assump-
tion:

Assumption 4.1. There exists a continuous function ı.t; Qvy/ " ımin > 0 such that,
if Qvx D 0, then

Qay.t; 0; Qvy/ D !ı.t; Qvy/ Qvy : (4.4)

Assumption 4.1 is justified by the previous discussion of the monotonic rela-
tionship between ay and vy , by using the mean value theorem. Using Assumption
4.1, global exponential stability of the lateral-velocity error is easily verified when
the longitudinal-velocity error Qvx is ignored.

4.3.3 Combined Longitudinal- and Lateral-Velocity Estimation

When we take the interconnections between the two observer equations (4.2), (4.3)
into account, we require an additional assumption:
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Assumption 4.2. There exists a continuous, uniformly bounded function

1.t; Qvx; Qvy/

such that

Oay.t; vx; Ovy/ ! Oay.t; Ovx; Ovy/ D 1.t; Qvx; Qvy/ Qvx :

Using Assumption 4.2, we can verify that the origin of the error dynamics
for the observer (4.2), (4.3) is globally exponentially stable, provided Kvx ;min is
chosen large enough to dominate the cross-terms that occur because of the inter-
connections. The observer is also input-to-state stable with respect to errors in the
reference velocity vx;ref. For more details, we refer to Imsland et al. (2006).

4.4 Inclination and Bank Angle

We now consider the presence of nonzero inclination and bank angles. To define
these angles precisely, we say that the orientation of the road surface is obtained
from the horizontal position by a rotation around the vehicle’s y-axis equal to the
inclination angle ‚, and a subsequent rotation around the x-axis equal to the bank
angle ˆ. The inclination and bank angles cause gravity components to appear in
the equations of motion, and we rewrite (4.1) as (Klier et al., 2008)

Pvx D ax C P vy C g sin.‚/; (4.5a)

Pvy D ay ! P vx ! g cos.‚/ sin.ˆ/; (4.5b)

where g is the acceleration of gravity. It is important to note that in (4.5), ax and
ay denote the accelerations measured by the accelerometers. We assume that the
inclination and bank angles vary slowly enough compared to the dynamics of the
system to be modeled as constants.

4.4.1 Inclination Angle

We define #i D sin.‚/, and introduce an estimate O#i of #i. Although we can solve
for the inclination angle by writing ‚ D arcsin.#i), typical inclination angles are
small enough that ‚ % #i. The estimate O#i is therefore considered an estimate of
the inclination angle. We use O#i to compensate for the disturbance, by letting

POvx D ax C P Ovy C g O#i CKvx .t/.vx;ref ! Ovx/; (4.6)

where O#i is given by
PO#i D K"iKvx .t/.vx;ref ! Ovx/; (4.7)
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with K"i a positive gain. If the gain in (4.7) were constant, the inclination-angle
estimation would be recognized as regular integral action. Instead, we let the gain
in (4.7) vary in direct proportion to Kvx .t/. The reason for using a time-varying
gain is the same as in the longitudinal-velocity estimation itself, namely that we
wish to rely less on the reference velocity vx;ref whenever it is of poor quality.

To justify this approach, we use the theory of absolute stability (Khalil, 2002,
Ch. 7.1). We split the gain Kvx .t/ into a constant and a time-varying part by
writing Kvx .t/ D a C .Kvx .t/ ! a/, where 0 < a < Kvx ;min. Ignoring for the
moment the lateral-velocity error Qvy , and assuming that vx;ref represents the true
longitudinal velocity, we write the error dynamics of the longitudinal-velocity and
inclination-angle estimates as the interconnection of the linear time-invariant (LTI)
system

PQvx D !a Qvx C g Q#i C u; (4.8a)
PQ#i D !K"ia Qvx CK"iu (4.8b)

with the time-varying sector function u D !.Kvx .t/ ! a/ Qvx .

Lemma 4.1. If the gainK"i is chosen such that 0 < K"i < a=g, then the origin of
(4.8) is globally exponentially stable.

Proof. The function $x.t; Qvx/ D .Kvx .t/ ! a/ Qvx belongs to the sector Œ0;1*,
because $x.t; Qvx/ Qvx " 0 (Khalil, 2002, Def. 6.2). The transfer function from u to
Qvx is given by

G.s/ D
s C gK"i

s2 C as C gK"ia
:

According to Khalil (2002, Th. 7.1), we only have to show thatG.s/ is strictly posi-
tive real to demonstrate that the interconnection is absolutely stable and that (4.8) is
globally exponentially stable. We use Khalil (2002, Lemma 6.1) to show thatG.s/
is strictly positive real. The poles of G.s/ are given by .!a˙

p

a2 ! 4gK"ia/=2.
For any K"i > 0, Re.

p

a2 ! 4gK"ia/ < a; hence, G.s/ is Hurwitz. We find
Re.G.j!//:

Re.G.j!// D
.a ! gK"i/!

2 C g2K2
"i
a

.gK"ia ! !2/2 C a2!2
:

If K"i < a=g, then a ! gK"i > 0, and hence Re.G.j!// > 0 for all ! 2
R. We have that G.1/ D lims!1G.s/ D 0. Hence, we must prove that
lim!!1 !2Re.G.j!// > 0. We have

!2Re.G.j!// D
.a ! gK"i/!

4 C g2K2
"i
a!2

!4 ! 2gK"ia!
2 C g2K2

"i
a2 C a2!2
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Hence lim!!1 !2Re.G.j!// D a!gK"i > 0, which proves thatG.s/ is strictly
positive real, provided K"i < a=g.

4.4.2 Bank Angle

We handle the bank angle in roughly the same way as the inclination angle. We
define #b D cos.‚/ sin.ˆ/ and introduce an estimate O#b of #b. Typical bank and
inclination angles are small enough that ˆ % #b, and O#b is therefore considered an
estimate of the bank angle. Using O#b for compensation in the observer (4.3), we
obtain

POvy D ay ! P Ovx ! g O#b !Kvy .ay ! Oay.t; Ovx; Ovy//: (4.9)

We again use the lateral acceleration as an indirect measurement of the lateral
velocity, letting

PO#b D K"b.ay ! Oay.t; Ovx; Ovy//; (4.10)

where K"b is a positive gain.
Ignoring the effect of the longitudinal-velocity error Qvx , we write the error

dynamics of the lateral-velocity and bank-angle estimates as the interconnection
of the LTI system

PQvy D !Kvyımin Qvy ! g Q#b CKvyu; (4.11a)
PQ#b D K"bımin Qvy !K"bu (4.11b)

with the time-varying sector nonlinearity u D !.ı.t; Qvy/ ! ımin/ Qvy .

Lemma 4.2. If the gain K"i is chosen such that 0 < K"i < K2vyımin=g, then the

origin of (4.11) is globally exponentially stable.

Proof (Outline). The function $y.t; Qvy/ D .ı.t; Qvy/!ımin/ Qvy belongs to the sector
Œ0;1*, because $y.t; Qvy/ Qvy " 0. The proof proceeds as the proof of Lemma 4.1,
with the transfer function

G.s/ D
Kvy s C gK"b

s2 CKvyımins C gK"bımin
:

The resulting gain requirement is K"b < K
2
vy
ımin=g.

4.4.3 Combined Analysis

We have so far ignored the interconnections between the . Qvx; Q#i/-subsystem and
the . Qvy ; Q#b/-subsystem. With the help of Lemmas 4.1 and 4.2, we can now state a
theorem for the combined system, taking the interconnections into account.
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Theorem 4.1. There exists a constant C > 0 such that if the gains K"i , K"b ,

and Kvx .t/ are chosen such that 0 < K"i < a=g, 0 < K"b < K2vyımin=g, and
Kvx ;min > C , then the origin of the error dynamics for the observer (4.6), (4.7),
(4.9), (4.10) is globally exponentially stable.

Proof. From the proof of Khalil (2002, Th. 7.1) there is a Lyapunov function V1 D
1
2x

T
1P1x1, where x1 ´ Œ Qvx; Q#i*T, such that, along the trajectories of (4.8),

PV1 & !"1xT
1P1x1 ! Qvx$x.t; Qvx/ & !"1xT

1P1x1 ! .Kvx ;min ! a/ Qv2x;

for some "1 > 0. There is a also a Lyapunov function V2 D 1
2x

T
2P2x2, where

x2 ´ Œ Qvy ; Q#b*T, such that, along the trajectories of (4.11), PV2 & !"2xT
2P2x2, for

some "2 > 0.
If we include the effect of Qvy on the x1-subsystem, we get an extra perturbation

Œ P Qvy ; 0*T on the right-hand side in (4.8). If we include the effect of Qvx on the x2-
subsystem, we get an extra perturbation

Œ! P Qvx CKvy1.t; Qvx; Qvy/ Qvx;!K"b1.t; Qvx; Qvy/ Qvx*T

on the right-hand side in (4.11), where 1.t; Qvx; Qvy/ comes from Assumption 4.2,
by writing Qay.t; Qvx; Qvy/ D ay ! Oay.t; vx; Ovy/ C Oay.t; vx; Ovy/ ! Oay.t; Ovx; Ovy/ D
!ı.t; Qvy/ Qvy C1.t; Qvx; Qvy/ Qvx . Using the Lyapunov function V D V1CcV2, where
c > 0 is yet to be determined, we have

PV & !"1%min.P1/kx1k2 Cm P kP1kkx1kkx2k

C cmkP2kkx2kj Qvxj ! .Kvx ;min ! a/ Qv2x ! c"2%min.P2/kx2k2;

where m P is a bound on j P j, m is a bound on

kŒ! P CKvy1.t; Qvx; Qvy/;!K"b1.t; Qvx; Qvy/*k;

and %min.Pi /, i D 1; 2, denotes the minimum eigenvalue of Pi . We can split the
right-hand side of the inequality by writing PV & !W1 !W2, where

W1 D
*

kx1k kx2k
+

"

"1%min.P1/ !m P 

2 kP1k
!m P 

2 kP1k c"2
2 %min.P2/

#

!

kx1k
kx2k

"

;

and

W2 D
*

kx2k j Qvxj
+

!c"2
2 %min.P2/ !12cmkP2k
!12cmkP2k Kvx ;min ! a

" !

kx2k
j Qvxj

"

:

The first-order principal minor of the 2 # 2 matrix in the W1 expression is

"1%min.P1/ > 0:

108



4.5. UNKNOWN ROAD-SURFACE CONDITIONS

The second-order principal minor is

1

2
c"1"2%min.P1/%min.P2/ !

1

4
m2P kP1k2;

which is made positive by letting

c > m2P kP1k2=.2"1"2%min.P1/%min.P2//:

Hence, the matrix is positive definite. The first-order principal minor of the 2 # 2
matrix in the W2 expression is 12c"2%min.P2/ > 0. The second-order principal
minor is 12c"2%min.P2/.Kvx ;min ! a/ ! 1

4c
2m2kP2k2, which is made positive by

letting Kvx ;min > C ´ a C cm2kP2k2=.2"2%min.P2// Hence, both matrices are
positive definite, meaning that PV is negative definite.

Summing up the results of the stability analysis, global exponential stability
of the observer error is guaranteed if the gains K"i , K"b are chosen sufficiently
low, and the minimum value Kvx ;min of Kvx .t/ is chosen sufficiently high. Even
though there is no upper limit onKvx .t/, it is of obvious interest to limit this gain,
to avoid direct propagation of vx;ref to the estimate Ovx .

4.5 Unknown Road-Surface Conditions

The observer (4.6), (4.7), (4.9), (4.10) depends on the construction of a lateral-
acceleration estimate Oay.t; Ovx; Ovy/ as a function of measured signals and velocity
estimates. This approach assumes that there is no uncertainty in the friction model
with respect to the road-surface conditions. In reality, however, the friction model
is sensitive to changes in the road-surface conditions for large tire slips. In Grip
et al. (2008), the design from Imsland et al. (2006) is altered to take unknown
road-surface conditions into account, by estimating a friction parameter # along
with the velocities.

The longitudinal-velocity and inclination-angle estimates do not depend on the
friction model; hence, no changes are necessary to (4.6), (4.7). We focus on the
lateral-velocity and friction-parameter estimation from Grip et al. (2008), given by

POvy D ay ! P Ovx CKvyƒ.t; Ovx; Ovy/!.t; Ovx; Ovy/.ay ! Oay.t; Ovx; Ovy ; O#//; (4.12a)
PO# D K"ƒ.t; Ovx; Ovy/ Oa#

y .t; Ovx; Ovy/.ay ! Oay.t; Ovx; Ovy ; O#//: (4.12b)

Here Oay has been redefined as

Oay.t; Ovx; Ovy ; O#/ D O# Oa#
y .t; Ovx; Ovy/;
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where Oa#
y .t; Ovx; Ovy/ is the lateral-acceleration estimate from the friction model,

obtained using a nominal parameterization corresponding to a high-friction sur-
face. The estimated friction parameter O# scales the output of the friction model
to adapt to different road-surface conditions. The value !.t; Ovx; Ovy/ is the ap-
proximated slope of the line between . Ovy ; Oa#

y .t; Ovx; Ovy// and .vy ; Oa#
y .t; Ovx; vy//,

which is negative according to Assumption 4.1. The function ƒ.t; Ovx; Ovy/ is a
freely chosen, strictly positive scaling function, which we define asƒ.t; Ovx; Ovy/ D
.!2.t; Ovx; Ovy/ C Oa#

y
2
.t; Ovx; Ovy//"1=2 to give the observer good numerical proper-

ties. Under the assumptions in Grip et al. (2008), the estimation error for (4.12)
is uniformly globally asymptotically stable and locally exponentially stable. For
details, we refer to Grip et al. (2008).

A central assumption in Grip et al. (2008) concerns the lateral excitation of the
vehicle. In order to simultaneously estimate the lateral velocity and the friction
parameter, there needs to be variation in the vehicle’s lateral movement. During
stationary maneuvers, such as straight driving, we cannot estimate the friction pa-
rameter along with the lateral velocity, and the friction estimation therefore has to
be turned off.

4.5.1 When to Estimate Friction

Because lateral excitation is needed for the friction estimation, and because esti-
mation of the friction parameter is unnecessary during normal driving with small
tire slips, we leave the friction estimation off most of the time, and only turn it on
in certain cases. When to turn the friction estimation on is determined in a manner
similar to that of an ESC system and alternative approaches found in literature (for
example, Fukada, 1999; Hac and Simpson, 2000). Using a linear reference model
for the yaw rate, we determine when the car becomes over- or understeered. We
also estimate Pvy , according to (4.1b), by ay ! P Ovx , highpass-filtered with a 10-s
time constant. When Pvy is high, it indicates a fast-changing sideslip angle, which
in turn indicates a high level of excitation and that some of the tires might be in
the nonlinear region. When the estimate of Pvy is high, and the reference yaw rate
is above a threshold value, we therefore turn the friction estimation on. We also
turn the friction estimation on when the car is oversteered; and when the vehicle’s
ESC system is active, but not due to stationary understeer. A small delay in turning
friction estimation off reduces chattering in the friction estimation condition.
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4.5.2 Combining Friction Estimation with Bank-Angle Estimation

We can modify (4.12a) to take the bank angle into account, by redefining

POvy D ay ! P Ovx ! g O#i
CKvyƒ.t; Ovx; Ovy/!.t; Ovx; Ovy/.ay ! Oay.t; Ovx; Ovy ; O#//: (4.13)

Because the lateral-velocity estimation in (4.13) is different from (4.9), we also
alter the bank-angle estimation to make it fit within the absolute-stability frame-
work:

PO#b D !K"bƒ.t; Ovx; Ovy/!.t; Ovx; Ovy/.ay ! Oay.t; Ovx; Ovy ; O#//: (4.14)

In the previous Lyapunov analysis, we have used tunable gains to dominate cross-
terms that appear in the time derivative of the Lyapunov function. A Lyapunov
function is available from Grip et al. (2008) to prove exponential stability of the
lateral-velocity and friction-parameter error, within an arbitrarily large region of
attraction around the origin. This Lyapunov function can be combined with the
Lyapunov function for the bank-angle estimation error. However, the stability
margin from Grip et al. (2008) depends on the level of excitation, which cannot
be changed by increasing the gains, and the conditions for asymptotic stability are
therefore difficult or impossible to verify. We therefore cannot find a particular
set of observer gains to guarantee asymptotic stability when friction estimation is
combined with bank-angle estimation.

From a practical point of view, it is often difficult to distinguish the effect of
low friction and a nonzero bank angle in experimental data, something that is also
noted in van Zanten (2000). This observation suggests that the difficulties we en-
counter in analyzing the combined approach reflects a genuine observability prob-
lem. How to combine friction estimation and bank-angle estimation is therefore a
matter of practical consideration.

The simplest strategy would be to turn the bank-angle estimation off when-
ever friction estimation is turned on. With this strategy, however, it is possible to
provoke problems when driving on slippery surfaces in hilly terrains, where com-
binations of large vehicle sideslip angles and large bank angles may occur. For
this reason, we leave the bank-angle estimation on when estimating friction, albeit
with the gain set lower whenever one of three conditions hold. The first condition
is that jay ! Oay.t; Ovx; Ovy ; O#/j > c1 for some c1 > 0. The second condition is that

j R ! OR .t; Ovx; Ovy ; O#/j > c2 for some c2 > 0, where R is the yaw acceleration found

by numerical differentiation of the yaw rate, and OR .t; Ovx; Ovy ; O#/ is calculated using
the friction model in the same way as Oay.t; Ovx; Ovy ; O#/, with the forces scaled by
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O# . The third condition is that sign. P ref/ D sign. P / and .j P refj ! j P j/ Ovx > c3
for some c3 > 0, where P ref is the reference yaw rate used in the friction esti-
mation conditions described in Section 4.5.1. From experimental data, these con-
ditions are found to reduce the negative interference of the bank-angle estimation
on low-friction surfaces. We emphasize, however, that these conditions are purely
practical and that alternative conditions may be equally good or better.

4.5.3 Final Observer

The final observer that we end up with has two modes, without friction estimation
and with friction estimation. Without friction estimation we use equations (4.6),
(4.7), (4.9), (4.10), where Oay.t; Ovx; Ovy/ is replaced by the friction-parameter de-
pendent Oay.t; Ovx; Ovy ; O#/, and the friction parameter is attracted to a high default

value: PO# D Ke.#
# ! O#/. With friction estimation we use (4.6), (4.7), (4.13),

(4.12b), (4.14).
In both modes, K"b is reduced according to the practical conditions described

above. Based on experimental results, we also choose to set the gain K"i for the
inclination-angle estimation lower for the second mode than for the first.

4.6 Some Remarks about Road-Tire Friction

Throughout this paper, we assume a strictly monotonic relationship between the
lateral acceleration and the lateral velocity. For large tire slip angles, however, the
road-tire friction forces saturate completely, and may decrease slightly. In certain
extreme situations with large tire slips for all tires, the monotonicity assumption
may therefore fail to hold. Reflecting this possibility, the stability results in Im-
sland et al. (2006) are stated as regional rather than global. We have chosen to
simplify the analysis by operating in the global domain. In the friction model used
in the experiments, the friction forces saturate for large tire slip angles, but do not
decrease. This helps ensure stability of the observer equations.

4.7 Implementation and Experimental Results

The observer is discretized using the forward-Euler method with a 10-ms sample
time. The measurements are taken from production-type sensors, and are filtered
with a 15-Hz lowpass filter, without any correction for sensor bias. Some notable
implementation details are the following:
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$ The wheel loads are calculated using the acceleration measurements, as in
Kiencke and Nielsen (2000, Ch. 7.4).

$ Tire relaxation dynamics are approximated in a manner similar to Pacejka
(2006, Ch. 1), by filtering the output of the friction model with a transfer
function 1=.T s C 1/, where T D Te C le= Ovx .

$ The front-axle steering angles are calculated using the measured steering
wheel angle and a lookup table based on a steering transmission curve.
The effect of caster is included by making the steering angles dependent
on the estimated lateral road-tire friction forces for the front axle, according
to Pacejka (2006, Ch. 1).

$ The effect of vehicle roll on the lateral-acceleration measurement is com-
pensated by multiplying the measured lateral acceleration with 1=.1Cpgg/,
where pg is the roll-angle gradient.

$ As in Grip et al. (2008), the range of possible friction parameters is limited.
The estimated friction parameter must belong to Œ0:05; 1:1* and, in addi-
tion, we ensure that 1:2g O# " .a2x C a2y/

1=2. We do so because 1:2 O#g is
the approximate maximum acceleration achievable from the friction model
when multiplied by the friction parameter, and this maximum should never
be smaller than the actual acceleration of the vehicle.

The first experiment is a circle maneuver with a 40-m radius, carried out on dry as-
phalt. The longitudinal velocity is slowly increased from about 10 km=h to about
65 km=h, when the circle can no longer be maintained because of severe under-
steer. The area on which the circle maneuver takes place has a constant slope of
0:5ı; hence, both the inclination angle and the bank angle oscillate between ˙0:5ı

as the maneuver takes place. The results are shown in Figure 4.2. Until approxi-
mately 88 s into the test, the bank angle follows the reference well, albeit with a
phase lag. The phase lag can be made smaller by increasing the gain, but this is not
desirable for the sideslip angle estimate. After 88 s, the bank-angle estimate reacts
slowly to changes, because the gain is then reduced according to the practical con-
ditions in Section 4.5.2. There is also a small offset in the bank angle, attributable
to offsets in the measurements of the steering wheel angle, lateral acceleration, and
yaw rate. For the inclination angle there is a significant offset, caused by an offset
in the longitudinal-acceleration sensor. Nevertheless, the estimated sideslip angle
is accurate.

The second experiment consists of driving downhill from a mountain top on
snow-covered roads. In this experiment, we have no reference for the inclination
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Figure 4.2: Experimental results for circle maneuver

and bank angles; hence we have to evaluate the estimates based on plausibility
and on the quality of the estimated sideslip angle. The results are shown in Figure
4.3. Qualitatively, the estimates match well with the terrain, indicating a varying
but steep descent, and significant road bank angles. The resulting sideslip angle
estimate is accurate.

It is evident from Figure 4.2 that offsets found in production-type sensors have
a significant impact on the achievable accuracy of the inclination- and bank-angle
estimation. Correction for inertial sensor offsets is a fundamental, challenging
problem that lies outside the scope of this paper.
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Figure 4.3: Experimental results for mountain driving
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4.8 Concluding Remarks

The primary reason for estimating the road inclination and bank angle is to improve
estimation of the sideslip angle on slanted road surfaces. In this respect, experi-
mental results are mostly good; in most situations, the estimates of the sideslip
angle are of high quality. Problems persist, however, in some situations on low-
friction surfaces. The problems can largely be attributed to the difficulty of dis-
tinguishing a nonzero bank angle from low friction. The method of combining
friction estimation and bank-angle estimation is a weakness of the present design,
which limits the achievable performance. The ad-hoc approach of selectively re-
ducing the bank angle gain based on various criteria is likely to need revision
and improvement for the observer to reach production quality. Preliminary results
indicate that eventual availability of six-degree-of-freedom inertial sensors in pro-
duction vehicles is likely to help, by making estimation of the bank angle less
dependent on the friction model.

With respect to providing accurate estimates of the inclination and bank angle,
the approach gives plausible estimates in most normal driving situations, but sensor
offsets and other slowly-varying errors propagate to the inclination- and bank-
angle estimates. In extreme situations with large tire slip angles, the estimates
often become temporarily implausible, due primarily to inaccuracies in the friction
model.
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Chapter 5

Parameter Estimation and

Compensation in Systems with

Nonlinearly Parameterized

Perturbations

Abstract: We consider a class of systems influenced by perturbations that

are nonlinearly parameterized by unknown constant parameters, and de-

velop a method for estimating the unknown parameters. The method applies

to systems where the states are available for measurement, and perturba-

tions with the property that an exponentially stable estimate of the unknown

parameters can be obtained if the whole perturbation is known. The main

contribution is to introduce a conceptually simple, modular design that gives

freedom to the designer in accomplishing the main task, which is to construct

an update law to asymptotically invert a nonlinear equation. Compensation

for the perturbations in the system equations is considered for a class of

systems with uniformly globally bounded solutions, for which the origin is

uniformly globally asymptotically stable when no perturbations are present.

We also consider the case when the parameters can only be estimated when

the controlled state is bounded away from the origin, and show that we may

still be able to achieve convergence of the controlled state. We illustrate the

method through examples, and apply it to the problem of downhole pressure

estimation during oil well drilling.
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5.1 Introduction

An important issue in model-based control is the handling of unknown perturba-
tions to system equations. Such perturbations can be the result of external dis-
turbances or internal plant changes, such as a configuration change, system fault,
or changes in physical plant characteristics. Frequently, the perturbations can be
characterized in terms of a vector of unknown, constant parameters.

Adaptive control techniques counteract such perturbations by using estimates
of the unknown parameters that are updated online. When the perturbations are
linear with respect to the unknown parameters, adaptive control design is often
straightforward, and techniques for handling such cases are well developed (see,
e.g., Krstić, Kanellakopoulos, and Kokotović, 1995; Ioannou and Sun, 1996). In
the nonlinear case the range of available design techniques is more limited. One
approach is to use a gradient algorithm, as in linearly parameterized systems,
which may yield poor results or unstable behavior for nonlinear parameterizations
(see discussion in Annaswamy, Skantze, and Loh, 1998). Another common strat-
egy is implementing an extended Kalman filter (EKF) for estimation of the un-
known parameters. Although this often yields good results, analysis of the stabil-
ity properties of an EKF is difficult (see, e.g., Reif, Günther, Yaz, and Unbehauen,
1999). Introducing extra parameters to obtain a linear expression is sometimes
possible, but doing so may increase the complexity and affect the performance by
reducing the convergence rate of the parameter estimates or introducing stricter
persistency-of-excitation conditions.

Some techniques that do not resort to approximations are found in the litera-
ture. In Fomin, Fradkov, and Yakubovich (1981); Ortega (1996), the stability and
convergence of the controlled state are proven for a gradient-type approach for
nonlinear parameterizations with a convexity property. Annaswamy et al. (1998)
exploit the convexity or concavity of some parameterizations by introducing a tun-
ing function and adaptation based on a min-max optimization strategy, achieving
arbitrarily accurate tracking of the controlled states. This approach is extended to
general nonlinear parameterizations in Loh, Annaswamy, and Skantze (1999), and
parameter convergence is studied in Cao, Annaswamy, and Kojić (2003). Other
results, such as Bošković (1995, 1998); Zhang, Ge, Hang, and Chai (2000), focus
on first-order systems with certain fractional parameterizations, proving conver-
gence of the controlled state. In Qu (2003), an approach is introduced for a class
of higher-order systems with matrix fractional parameterizations, which achieves
global boundedness and ultimate boundedness with a desired precision. Here, an
auxiliary estimate of the full perturbation is used in the estimation of the unknown
parameters, the same principle upon which the results in this paper are based. In
Qu, Hull, and Wang (2006), an approach for more general nonlinear parameteriza-
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tions is presented, where the parameter estimate used in the control law is biased
by an appropriately chosen vector function.

Another way of dealing with undesired perturbations is found in Chakrabortty
and Arcak (2009), where a high-gain approach is used to produce an estimate of the
perturbation, which is then used for control. By increasing the gain, the estimate is
made to converge arbitrarily fast, and the transient performance of the unperturbed
system can therefore be recovered. The approach considered in this paper has sim-
ilarities to Chakrabortty and Arcak (2009), but it also exploits available structural
information by estimating an unknown parameter vector in addition to the full per-
turbation. The parameter estimate is produced by a parameter estimation module
that is designed as if the perturbation were known. In the actual implementation,
however, the estimate of the perturbation is used. This idea is similar to the ideas
in Tyukin (2003), where adaptive update laws of a certain structure, called virtual

algorithms, are designed as if time derivatives of the measurements were avail-
able, before being transformed into realizable form without explicit differentiation
of the measurements. In Tyukin, Prokhorov, and van Leeuwen (2007), this princi-
ple is used to design a family of adaptation laws for monotonically parameterized
perturbations in the first derivatives.

The main contribution of this paper is a nonlinear parameter estimation design
with a clear modular structure. The design is split into two modules: a perturbation
estimator, and a parameter estimator constructed by the designer to asymptotically
invert a nonlinear equation. The modular structure is conceptually simple, and
it isolates the task of inverting the nonlinear equation, giving the designer free-
dom in how to best accomplish this task. Through a series of propositions, we
provide guidelines for how to construct the parameter estimator, and we obtain
explicit Lyapunov functions that prove exponential convergence of the parameter
estimates. One of the main advantages of the modular structure is extensibility.
In particular, it is demonstrated in Grip, Saberi, and Johansen (2009) that the per-
turbation estimator can be extended to handle systems with partial state measure-
ment, where the perturbation appears in higher-order derivatives of the output. The
method can often be used to provide fast parameter estimates, which may be use-
ful not only for direct compensation, but as part of other control schemes where
fast parameter estimates are required, for example, traditional adaptive approaches
combined with parameter resetting (see, e.g., Bakkeheim, Johansen, Smogeli, and
Sørensen, 2008).

5.1.1 Preliminaries

We use conventional notation to denote estimates and error variables. For a vector
´, Ó represents its estimate and Q́ D ´ ! Ó is an error variable. We denote by
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´i the i’th element of ´, when this is clear from the context. The norm operator
k ' k denotes the Euclidean norm for vectors and the induced Euclidean norm for
matrices. For a symmetric, positive-definite matrix P and a vector ´, we write
k´kP D .´TP´/1=2. The maximum and minimum eigenvalues of a symmetric
matrix P are denoted %max.P / and %min.P /. The open and closed balls around
the origin with radius " are denoted B."/ and B."/, respectively. We denote by
R!0 and R>0 the non-negative and the positive real numbers. For a set E ( Rn,
we write .E ! E/ WD f´1 ! ´2 2 Rn j ´1; ´2 2 Eg. Throughout this paper,
when considering systems of the form Ṕ D F.t; ´/, we implicitly assume that
F W R!0#Rn ! Rn is piecewise continuous in t and locally Lipschitz continuous
in ´, uniformly in t , on R!0 #Rn. The solution of this system, initialized at time
t0 " 0 with initial condition ´.t0/, is denoted ´.t/. The continuity assumptions on
F allow us to conclude that ´.t/ is uniquely defined for all t " t0 if it is known
not to escape from some compact subset of the state space (see Khalil, 2002, Ch.
3).

5.2 Problem Formulation

We consider systems that, by the appropriate state transformations and choice of
control law, can be expressed in the following form:

Px D f .t; x/C B.t; x/ .g.t; x; #/C v.t; x// ; (5.1)

where x 2 Rn is a measured state vector and # 2 Rp is a vector of unknown,
constant parameters. The functions f W R!0 #Rn ! Rn, BW R!0 #Rn ! Rn$m

and vW R!0 # Rn ! Rm can be evaluated from available measurements, and
gW R!0 #Rn #Rp ! Rm can be evaluated if # is known.

In most practical circumstances, it is known from physical considerations that
# is restricted to some bounded set of values. This is a significant advantage when
it comes to satisfying the assumptions made later in this paper. To simplify the
exposition, we therefore assume that the set of possible parameters is bounded. In
designing update laws for parameter estimates, we also assume that a parameter
projection can be implemented as described in Krstić et al. (1995), restricting the
parameter estimates to a compact, convex set‚ ( Rp, defined slightly larger than
the set of possible parameter values. The parameter projection is denoted Proj.'/,
and is described in Appendix 5.A.

All functions on the right-hand side of (5.1) are well defined and bounded for
each bounded .t; x; #/ 2 R!0#Rn#‚. We assume that g.t; x; #/ is continuously
differentiable with respect to # for all # 2 ‚. As we construct an estimator,
additional smoothness requirements may be needed for f , B , g, and v, as well
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as other functions, to guarantee that the piecewise continuity and local Lipschitz
conditions in Section 5.1.1 hold for all systems involved. It is left to the designer
to check these requirements.

5.3 Parameter Estimation

In this section, we present a method for estimating the unknown parameter vector
# when x.t/ is bounded. Let $ WD B.t; x/g.t; x; #/ represent the full unknown
perturbation in (5.1). The idea behind the estimation scheme is as follows. We
first design an update law that exponentially estimates # based on the quantity $,
as though $ were known. We then produce an estimate of $ and implement the
update law based on this estimate instead of the real perturbation.

5.3.1 Estimation of # from $

We denote by O$ the estimate of the perturbation $. We shall later explain how to
construct this estimate; for now, we concentrate on how to find # in the hypotheti-
cal case of a perfect perturbation estimate. For this to work, there needs to exist an
update law

PO# D u" .t; x; O$; O#/; (5.2)

which, if O$ D $, would provide an unbiased asymptotic estimate of # . This
is the subject of the following assumption on the dynamics of the error variable
Q# WD # ! O# .

Assumption 5.1. For each compact set K ( Rn, there exist a differentiable func-

tion VuW R!0 # .‚ !‚/ ! R!0; positive constants a1, a2 and a4; and a contin-

uous function a3W Rn ! R!0 that is positive outside the origin, such that, for all

.t; x;$; O#/ 2 R!0 #K #Rn #‚,

a1k Q#k2 & Vu.t; Q#/ & a2k Q#k2; (5.3)
@Vu

@t
.t; Q#/ !

@Vu

@ Q#
.t; Q#/u" .t; x;$; O#/ & !a3.x/k Q#k2; (5.4)

,

,

,

,

@Vu

@ Q#
.t; Q#/

,

,

,

,

& a4k Q#k: (5.5)

Furthermore, the update law (5.2) ensures that, if O#.t0/ 2 ‚, then, for all t " t0,
O#.t/ 2 ‚.

Satisfying Assumption 5.1 constitutes the greatest challenge in applying the
method in this paper, and this is therefore discussed in detail in the next section.
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5.3.2 Satisfying Assumption 5.1

We shall focus mostly on the case when Assumption 5.1 can be satisfied with
a3.x/ " a#

3 > 0. This guarantees that the origin of the error dynamics PQ# D
!u" .t; x;$; # ! Q#/, which occurs if O$ D $, is uniformly exponentially stable with
.‚ !‚/ contained in the region of attraction. Essentially this amounts to asymp-
totically solving the inversion problem of finding # given $ D B.t; x/g.t; x; #/.
In the following, we shall discuss some possibilities for how to satisfy Assump-
tion 5.1. As a useful reference, we point to Nicosia, Tornambè, and Valigi (1994),
which deals with the use of state observers for inversion of nonlinear maps.

The most obvious way to satisfy Assumption 5.1 is to invert the equality $ D
B.t; x/g.t; x; #/ algebraically, and to let O# be attracted to this solution.

Proposition 5.1. Suppose that, for all .t; x/ 2 R!0 # Rn, we can find a unique

solution for # from the equation $ D B.t; x/g.t; x; #/. Then Assumption 5.1
is satisfied with a3.x/ " a#

3 > 0 by using the update law u" .t; x; O$; O#/ D
Proj.).##.t; x; O$/ ! O#//, where ##.t; x; O$/ denotes the solution of the inversion

problem found from O$, and ) is a symmetric positive-definite gain matrix.

Proof. The proof follows from using the function Vu.t; Q#/ D 1
2

Q#T)"1 Q# when
O$ D $, and the property (Krstić et al., 1995, Lemma E.1) that ! Q#T)"1Proj.+/ &
! Q#T)"1+ . From the proof of Krstić et al. (1995, Lemma E.1), we find that, if
O#.t0/ 2 ‚, then the solution O#.t/ remains in ‚.

Example 5.1. Consider the perturbation B.t; x/g.t; x; #/ D h..2 C sin.t//#/,
where h is some explicitly invertible, nonlinear mapping. For each t 2 R!0, we
can solve the inversion problem and find ##.t; x; O$/ D h"1. O$/=.2C sin.t//.

Often it is only possible to invert the equation $ D B.t; x/g.t; x; #/ part of the
time. In this case, Assumption 5.1 may still be satisfied if solutions are available
with a certain regularity. The following proposition deals with this case.

Proposition 5.2. Suppose that there exists a known, piecewise continuous function

l W R!0 # Rn ! Œ0; 1*,1 and that, for all .t; x/ 2 R!0 # Rn, l.t; x/ > 0 implies
that we can find a unique solution for # from the equation $ D B.t; x/g.t; x; #/.
Suppose furthermore that there exist T > 0 and " > 0 such that, for all t 2 R!0,
R tCT
t l.+; x.+// d+ " ". Then Assumption 5.1 is satisfied with a3.x/ " a#

3 > 0

1Remark added after publication: The concept of piecewise continuity is not precisely defined
for functions on multivariable domains. For technical correctness, it should instead be understood
that the function t 7! l.t; x.t// is piecewise continuous. See also footnote in the proof in Appendix
5.B.
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by using the update law u" .t; x; O$; O#/ D Proj.l.t; x/).##.t; x; O$/ ! O#//, where
##.t; x; O$/ denotes the solution of the inversion problem found from O$ whenever

l.t; x/ > 0, and ) is a symmetric positive-definite gain matrix.

Proof. See Appendix 5.B.

Example 5.2. Consider the perturbation B.t; x/g.t; x; #/ D h.sin.t/#/, where h
is some explicitly invertible, nonlinear mapping. The inversion problem is poorly
conditioned when sin.t/ is close to zero, and unsolvable for sin.t/ D 0. Proposi-
tion 5.2 nevertheless applies by letting, for example, l.t; x/ D 0 when j sin.t/j < "
and l.t; x/ D 1 when j sin.t/j " ", where 0 < " < 1.

When it is not possible or desirable to solve the inversion problem explicitly,
it is often possible to implement the update function as a numerical search for the
solutions.

Proposition 5.3. Suppose that there exist a symmetric positive-definite matrix P
and a functionM W R!0 #Rn #‚ ! Rp$n such that, for all .t; x/ 2 R!0 #Rn,

and for all pairs #1; #2 2 ‚,

M.t; x; #1/B.t; x/
@g

@#
.t; x; #2/C

@g

@#

T

.t; x; #2/B
T.t; x/M T.t; x; #1/ " 2P: (5.6)

Then Assumption 5.1 is satisfied with a3.x/ " a#
3 > 0 by using the update law

u" .t; x; O$; O#/ D Proj.)M.t; x; O#/. O$!B.t; x/g.t; x; O#///, where ) is a symmetric

positive-definite gain matrix.

Proof. See Appendix 5.B.

Example 5.3. Consider the perturbation B.t; x/g.t; x; #/ D g.#/ D Œ#1; #
2
1 C

#2*
T. SelectingM.t; x; O#/ D M D diag.KM ; 1/ yields

M
@g

@#
.#/C

@g

@#

T

.#/M T D 2

!

KM #1
#1 1

"

:

Using the fact that #1 is bounded within ‚, it is easily confirmed that, if KM is
chosen sufficiently large, thenMŒ@g=@#*.#/C Œ@g=@#*T.#/M T " 2P , where P
is symmetric positive definite.

Proposition 5.3 applies to certain monotonic perturbations for which a solu-
tion can be found arbitrarily fast by increasing the gain ) . In many cases, this
is not possible, because the inversion problem is singular the whole time or part
of the time. The following proposition applies to cases where a solution is only
available by using data over longer periods of time, by incorporating a persistency-
of-excitation condition.
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Proposition 5.4. Suppose that there exist a piecewise continuous function

S W R!0 #R
n ! SpC;

where SpC is the cone of p # p symmetric positive-semidefinite matrices,2 and a

functionM W R!0 #Rn #‚ ! Rp$n, both bounded for bounded x, such that, for
all .t; x/ 2 R!0 #Rn, and for all pairs #1; #2 2 ‚,

M.t; x; #1/B.t; x/
@g

@#
.t; x; #2/

C
@g

@#

T

.t; x; #2/B
T.t; x/M T.t; x; #1/ " 2S.t; x/: (5.7)

Suppose furthermore that there exist numbers T > 0 and " > 0 such that, for all

t 2 R!0,
R tCT
t S.+; x.+// d+ " "I , and that, for all .t; x; O#/ 2 R!0 # Rn #

‚, kB.t; x/.g.t; x; #/ ! g.t; x; O#//k & Lg. Q#TS.t; x/ Q#/1=2, for some Lg > 0.
Then Assumption 5.1 is satisfied with a3.x/ " a#

3 > 0 by using the update law

u" .t; x; O$; O#/ D Proj.)M.t; x; O#/. O$!B.t; x/g.t; x; O#///, where ) is a symmetric

positive-definite gain matrix.

Proof. See Appendix 5.B.

Example 5.4. Consider the perturbation from Example 5.3 multiplied by sin.t/;
that is, B.t; x/g.t; x; #/ D g.t; #/ D sin.t/Œ#1; #21 C #2*

T. Using the same argu-
ment as in Example 5.3, we may chooseM.t; x; O#/ D M.t/ D sin.t/diag.KM ; 1/
to satisfy (5.7). We then have S.t; x/ D S.t/ D sin2.t/P , where P is the
positive-definite matrix from Example 5.3. For any T > 0 there is an " > 0

such that
R tCT
t P sin2.+/ d+ " "I for all t 2 R!0, which means that the integral

condition in Proposition 5.4 is satisfied. Finally, we have kg.t; #/ ! g.t; O#/k &
Lg. Q#TS.t/ Q#/1=2, where

Lg D max
.t;"/2R"0$‚

kŒ@g=@#*.t; #/k=%min.P /
1=2:

Hence, Proposition 5.4 applies.

Remark 5.1. When looking for the functionM , a good starting point is

M.t; x; O#/ D
@g

@#

T

.t; x; O#/BT.t; x/:

2Remark added after publication: Similar to the footnote on page 126, it should here be under-
stood that each scalar element of the function t 7! S.t; x.t// is piecewise continuous.
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This choice makes the parameter update law into a gradient search in the direction
of steepest descent for the function kB.t; x/.g.t; x; #/ ! g.t; x; O#//k2, scaled by
the gain ) . Indeed, this choice of M often works even if it fails to satisfy either
of Propositions 5.3 or 5.4. In the special case where the perturbation is linear in
the unknown parameters, this choice ofM always satisfies (5.7), and the remaining
conditions in Proposition 5.4 coincide with standard persistency-of-excitation con-
ditions for parameter identification in linear adaptive theory (see, e.g., Marino and
Tomei, 1995, Ch. 5). Future research will include investigation of more systematic
ways of finding the functionM for nonlinear parameterizations.

We end this section with an example illustrating that the above approaches may
be combined.

Example 5.5. Consider the perturbation

B.t; x/g.t; x; #/ D

"

#
1=3
1

sin.#1a.t//#2

#

with # known to be bounded and #1 known to be bounded away from zero, and
where a.t/ is some persistently excited signal with a bounded derivative. Clearly,
we can find #1 by inversion, simply taking ##

1 .
O$/ D O$31 . Hence, #1 is handled

according to Proposition 5.1. When #1 is known, we can find #2 by numerical
search according to Proposition 5.4. We therefore implement the second part of
the update law according to Proposition 5.4, substituting #1 with O$3, which results
in u" .t; x; O$; O#/ D Proj.)Œ O$31 ! O#1; sin. O$31a.t//. O$2 ! sin. O$31a.t// O#2/*T/.

5.3.3 Estimator

We now introduce the full estimator:

Ṕ D !K!

(

f .t; x/C B.t; x/v.t; x/C O$
)

(5.8a)

! B.t; x/
@g

@#
.t; x; O#/u" .t; x; O$; O#/; (5.8b)

O$ D ´CK!x C B.t; x/g.t; x; O#/; (5.8c)
PO# D u" .t; x; O$; O#/; (5.8d)

where K! is a symmetric positive-definite gain matrix. The full estimator consists
of two parts: an estimator for $, described by (5.8b), (5.8c), and the update law
from Section 5.3.1. To study the properties of the estimator, we consider the dy-
namics of the errors Q$ and Q# . Taking the time derivative of Q$ D $ ! O$, we may
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write

PQ$ D K!

(

f .t; x/C B.t; x/v.t; x/C O$
)

C B.t; x/
@g

@#
.t; x; O#/u" .t; x; O$; O#/ !K! Px

! B.t; x/
@g

@#
.t; x; O#/u" .t; x; O$; O#/C d.t; x; Q#/;

(5.9)

where

d.t; x; Q#/ WD
@

@t

(

B.t; x/.g.t; x; #/ ! g.t; x; O#//
)

C
@

@x

(

B.t; x/.g.t; x; #/ ! g.t; x; O#//
)

Px:
(5.10)

The function d.t; x; Q#/ can be seen as the time derivative of B.t; x/.g.t; x; #/ !
g.t; x; O#// when O# is kept constant. Using the expression

Px ! f .t; x/ ! B.t; x/v.t; x/ D $;

we may rewrite the above expression and write the error dynamics of the estimator
as

PQ$ D !K! Q$ C d.t; x; Q#/; (5.11a)
PQ# D !u" .t; x;$; O#/C

(

u" .t; x;$; O#/ ! u" .t; x; O$; O#/
)

: (5.11b)

For convenience, we define the error variable ! WD Œ Q$T; Q#T*T and the set „ WD
Rn # .‚ !‚/.

Assumption 5.2. For all .t; x; Q#/ 2 R!0 #Rn # .‚!‚/, the function d.t; x; Q#/
is well defined; for each compact set K ( Rn, there exist continuous functions

L1.x/ > 0 and L2.x/ > 0 such that, for all .t; x; Q#/ 2 R!0 # K # .‚ ! ‚/,
kd.t; x; Q#/k & L1.x/k Q#k; and for all .t; x;$; O$; O#/ 2 R!0 #K #Rn #Rn #‚,

ku" .t; x;$; O#/ ! u" .t; x; O$; O#/k & L2.x/k Q$k.

Remark 5.2. When checking the condition ku" .t; x;$; O#/ ! u" .t; x; O$; O#/k &
L2.x/k Q$k, the projection in the update law can be disregarded, because the prop-
erty is retained under projection (see Appendix 5.A.1).

The Lipschitz-type conditions in Assumption 5.2 may appear difficult to sat-
isfy. Note, however, that Q# 2 .‚ ! ‚/, which means that we are dealing with a
local Lipschitz condition for d . For u" , we need to satisfy a global condition in
the sense that $ and O$ are not presumed bounded. Indeed, such a condition may
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often fail to hold, as demonstrated by Example 5.5, where the term O$31 is used.
In most cases, however, the perturbation $ depends on physical quantities with
known bounds, and from these a bound on $ can often be found. It is then possible
to modify u" to include a saturation of O$, thereby reducing the requirement to a lo-
cal condition that is much more easily satisfied. With the inclusion of a saturation,
Example 5.5 does satisfy Assumption 5.2. If a particular update law is modified
by including a saturation, it does not affect the validity of conditions (5.3)–(5.5) in
Assumption 5.1, since the saturation has no effect when O$ D $.

Theorem 5.1. Suppose that Assumptions 5.1 and 5.2 hold with a3.x/ " a#
3 > 0

and that, for all t 2 R!0, kx.t/k is uniformly bounded. Then there exists k! > 0
such that, if K! is chosen such that %min.K!/ > k! , then the origin of (5.11) is
uniformly exponentially stable with „ contained in the region of attraction.

Proof. By assumption, x.t/ 2 K, where K ( Rn is a compact set. We can
therefore make use of Assumptions 5.1 and 5.2 for this particularK. Boundedness
of x ensures that $ is well defined for all times. By Assumption 5.1, O#.t0/ 2
‚ implies that the solution O#.t/ cannot escape ‚, and hence Q#.t/ cannot escape
.‚ ! ‚/. From (5.11a) and the expression kd.t; x; Q#/k & L#

1k Q#k, where L#
1 is a

bound on L1.x/ on K, it is therefore easily seen that Q$ remains bounded. Thus, if
!.t0/ 2 „, then, for all t " t0, !.t/ is uniquely defined and remains in a compact
subset of „. We define the function Vp.t; !/ D Vu.t; Q#/ C 1

2
Q$T Q$ and investigate

its time derivative on the set „ along the trajectories of (5.11):

PVp.t; !/ D
@Vu

@t
.t; Q#/ !

@Vu

@ Q#
.t; Q#/u" .t; x;$; O#/

C
@Vu

@ Q#
.t; Q#/

(

u" .t; x;$; O#/ ! u" .t; x; O$; O#/
)

! Q$TK! Q$ C Q$Td.t; x; Q#/:

(5.12)

From the inequalities in Assumptions 5.1 and 5.2,

PVp.t; !/ & !a3.x/k Q#k2 ! %min.K!/k Q$k2 C k Q$kkd.t; x; Q#/k

C
,

,

,

,

@Vu

@ Q#
.t; Q#/

,

,

,

,

ku" .t; x;$; O#/ ! u" .t; x; O$; O#/k:
(5.13)

This expression can be rewritten as PVp.t; !/ & !"TQ.x/", where " D Œk Q$k; k Q#k*T
and

Q.x/ D
!

%min.K"/ " 12 .a4L2.x/CL1.x//

" 12 .a4L2.x/CL1.x// a3.x/

"

: (5.14)

To check for positive-definiteness of Q.x/, we note that its first-order leading
principal minor is %min.K!/ > 0. The second-order leading principal minor
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is a3.x/%min.K!/ ! 1
4.a4L2.x/ C L1.x//

2, which is positive if %min.K!/ >
k! WD .a4L

#
2 C L#

1/
2=.4a#

3/, where L
#
2 is a bound on L2.x/ on K. Hence,

we have on „ that PVp.t; !.t// & !%min.Q.x//k!.t/k2. Moreover, we have that
Vp.t; !/ & maxfa2; 12gk!k2. From the preceding two expressions, we have that
PVp.t; !.t// & !2%Vp.t; !.t//, where % WD minx2K %min.Q.x//=maxf2a2; 1g. By
the comparison lemma (Khalil, 2002, Lemma 3.4), we therefore have Vp.t; !.t// &
Vp.t0; !.t0//exp.!2%.t ! t0//. This leads to k!.t/k & kek!.t0/kexp.!%.t ! t0//,
where ke D .maxfa2; 12g=minfa1; 12g/1=2.

Remark 5.3. We assume in Theorem 5.1 that the state x is uniformly bounded. In
pure estimation problems, where no control is implemented based on the parameter
estimates, this is usually a reasonable assumption, because the states involved are
typically derived from bounded physical quantities.

5.4 Closed-Loop Compensation

We now consider how the parameter estimates can be used to compensate for the
perturbation in (5.1). Suppose that the control inputs available in the original sys-
tem can be chosen to yield a system on the following form:

Px D f .t; x/C B.t; x/
(

g.t; x; #/ ! g.t; x; O#/
)

: (5.15)

Here, v.t; x/ in (5.1) has been substituted with the control !g.t; x; O#/.

Assumption 5.3. The function f .t; x/ is continuously differentiable on R!0#Rn;

the origin of the nominal system Px D f .t; x/ is uniformly globally asymptotically
stable (UGAS); for any trajectory O#.t/ 2 ‚, the solutions x.t/ of the perturbed

system (5.15) are uniformly globally bounded (UGB); and for each compact set

K ( Rn there exists a classK function ' such that, for all .t; x; O#/ 2 R!0#K#‚,

kB.t; x/.g.t; x; #/ ! g.t; x; O#//k & '.k Q#k/.

In Assumption 5.3, we assume that f .t; x/ is a stabilizing function that ensures
UGB irrespective of the parameter estimate. In this case, the only control needed
is a term !g.t; x; O#/ to cancel the perturbation, as seen in (5.15). Essentially, the
UGB assumption means that a parameter error confined to .‚ ! ‚/ cannot make
the states of the system arbitrarily large compared to their initial values. In many
cases, this assumption is not automatically satisfied, and one may need to apply
additional control to shape f .t; x/. The assumption is most easily satisfied if the
asymptotic growth rate of f .t; x/ with respect to x is greater than the asymptotic
growth rate of the error term B.t; x/.g.t; x; #/ ! g.t; x; O#//. To ensure this, one
may introduce control in the form of nonlinear damping with a sufficiently high
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growth rate, similar to the technique used in adaptive backstepping (Krstić et al.,
1995). We also refer to Panteley and Loría (2001) for an extensive discussion
on how to ensure UGB. Note that controllability of the system depends on the
properties of f .t; x/ and B.t; x/.

Theorem 5.2. Suppose that Assumptions 5.1–5.3 hold such that a3.x/ " a#
3 > 0.

Then for each compact neighborhood K 0 ( R2n of the origin, there exists k! > 0
such that, if K! is chosen such that %min.K!/ > k! , then the origin of (5.15),
(5.11) is uniformly asymptotically stable withK 0#.‚!‚/ contained in the region
of attraction.

Proof. This proof is based on the proof of Panteley and Loría (2001, Lemma 2).
The UGAS property of the unperturbed system, together with the fact that f .t; x/ is
locally Lipschitz continuous in x, uniformly in t , and continuously differentiable
on R!0 # Rn, implies by Panteley and Loría (2001, Prop. 1) the existence of
a Lyapunov function Vx.t; x/; class K1 functions ˛1 and ˛2; and a class K

function ˛4 such that, for all .t; x/ 2 R!0 #Rn,

˛1.kxk/ & Vx.t; x/ & ˛2.kxk/; (5.16)
@Vx

@t
.t; x/C

@Vx

@x
.t; x/f .t; x/ & !Vx.t; x/; (5.17)

,

,

,

,

@Vx

@x
.t; x/

,

,

,

,

& ˛4.kxk/: (5.18)

As before, we know that O#.t0/ 2 ‚ implies that O#.t/ remains in ‚. Let R > 0
be chosen large enough that 2 WD f.x; !/ j k.x; !/k & Rg ) K 0 # .‚ ! ‚/.
For any 0 < r & R, we know that if k.x.t0/; !.t0//k & r , then kx.t0/k &
r , which by the UGB property from Assumption 5.3 implies that there exists a
cx.r/ > 0 such that, for all t " t0, kx.t/k & cx.r/. It follows that, for all
.x.t0/; !.t0// 2 2 such that !.t0/ 2 „, x.t/ is restricted to some compact set K.
Let therefore %min.K!/ be chosen large enough to ensure exponential stability of
the estimator according to Theorem 5.1 based on the set K. Then we know that
k!.t/k & kek!.t0/kexp.!%.t ! t0//. This implies that, if k.x.t0/; !.t0//k & r
and !.t0/ 2 „, then k.x.t/; !.t//k & c.r/, where c.r/ WD .c2x.r/C .ker/

2/1=2.
Define vx.t/ D Vx.t; x.t//. We then have Pvx.t/ & !vx.t/C˛4.c.r//ˇ.r; t !

t0/, where ˇ.r; t ! t0/ WD '.kerexp.!%.t ! t0/// is a class KL function by Khalil
(2002, Lemma 4.2). Let +0 " t0. Multiplying by exp.t ! +0/ on both sides and
rearranging, we have, for all t " +0, d

dt .vx.t/exp.t ! +0// & ˛4.c.r//ˇ.r; t !
t0/exp.t!+0/. Integrating from +0 to t on both sides and multiplying by exp.!.t!
+0//, we have vx.t/ & vx.+0/exp.!.t ! +0//C˛4.c.r//

R t
#0
exp.!.t ! s//ˇ.r; s!

t0/ ds, which means that replacing +0 with t0 in the above expression yields, for
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all t " t0, vx.t/ & vx.t0/exp.!.t ! t0//C ˛4.c.r//ˇ.r; 0/
R t
t0
exp.!.t ! s// ds &

vx.t0/ C ˛4.c.r//ˇ.r; 0/.1 ! exp.!.t ! t0/// & ' 0.r/, where ' 0.r/ WD ˛2.r/ C
˛4.c.r//ˇ.r; 0/. Hence, kx.t/k & ˛"1

1 .' 0.r//, and ˛"1
1 ı ' 0 is a class K1 func-

tion by Khalil (2002, Lemma 4.2). Furthermore, we have, for k.x.t0/; !.t0//k & r
and !.t0/ 2 „, k.x.t/; !.t//k & ' 00.r/, where ' 00.r/ WD ..˛"1

1 .' 0.r///2 C
.ker/

2/1=2 is a class K1 function. Let c & R be sufficiently small such that
k!k & c H) ! 2 „. By the above, we have that, for all k.x.t0/; !.t0//k & r < c
and for all t " t0, k.x.t/; !.t//k & ' 00.r/, which means that the origin of (5.15),
(5.11) is uniformly stable.

For some "1 > 0, define T1 large enough that ˛4.c.r//ˇ.r; T1/ & 1
2"1. Substi-

tuting +0 D t0 C T1 into the earlier bound on vx.t/, we obtain that, 8t " t0 C T1,

vx.t/ & vx.t0 C T1/e".t"t0"T1/

C ˛4.c.r//

Z t

t0CT1

ˇ.r; s ! t0/e".t"s/ ds

& ' 0.r/e".t"t0"T1/ C
"1

2
:

(5.19)

Now let T2 " T1 be chosen large enough that ' 0.r/exp.!.T2!T1// & 1
2"1. Then

we have, for all t " t0 C T2, vx.t/ & ' 0.r/exp.!.T2 ! T1//C 1
2"1 & "1. Hence,

for all t " t0 C T2, kx.t/k & ˛"1
1 ."1/. Define " such that "1 D ˛1."=

p
2/ and

let T " T2 be large enough that kerexp.!%T / & "=
p
2. Then 8t " t0 C T ,

k.x.t/; !.t//k & .12"
2 C 1

2"
2/1=2 D ". Since " can be chosen arbitrarily small,

and the above holds for all initial conditions such that .x.t0/; !.t0// 2 2 and
!.t0/ 2 „, it follows that the whole system (5.15), (5.11) is uniformly asymptoti-
cally stable with K 0 # .‚ !‚/ contained in the region of attraction.

Remark 5.4. Theorems 5.1 and 5.2 are intended to show that particular stability
properties are guaranteed by choosing the gain K! sufficiently high; they are not
intended as a practical guide to tuning the estimator gains. Attempting to find a nu-
merical value for k! , the lower bound on the eigenvalues ofK! , is likely to be com-
plicated and of little practical use, owing to the conservative nature of Lyapunov-
type analysis. In practical implementations, the gains are normally found through
a tuning procedure involving simulations or tests with the actual system.

5.4.1 Vanishing Excitation at x D 0

So far we have only considered perturbations that are persistently excited in the
sense that # can always be estimated from $ with exponential convergence rate.
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This strict requirement excludes a class of perturbations where we have persis-
tent excitations as long as the controlled state x is bounded away from the ori-
gin, but where the excitation is lost at the origin. Most importantly, this includes
all perturbations that vanish for x D 0. As an example, consider the system
Px D !x C arctan.#x/ ! arctan. O#x/. In the following theorem, we show that,
under certain conditions, convergence of the controlled state to the origin is guar-
anteed even when excitation is lost at the origin.

Theorem 5.3. Suppose that Assumptions 5.1–5.3 hold such that

.L1.x/C L2.x//
2 & (a3.x/

for some number ( > 0, locally around the origin. Then, for each compact neigh-

borhood K 0 ( R2n of the origin, there exists k! > 0 such that, if K! is cho-

sen such that %min.K!/ > k! and the trajectory of (5.15), (5.11) originates in
K 0 # .‚ !‚/, then limt!1 x.t/ D 0 and !.t/ is bounded.

Proof. As in the proof of Theorem 5.2, the UGB condition in Assumption 5.3 en-
sures that, for trajectories originating in K 0 # .‚!‚/, the state x.t/ remains in a
compact set K. To investigate what happens to the estimator, we follow the proof
of Theorem 5.1, where we find that we have the requirement a3.x/%min.K!/ >
1
4.a4L2.x/ C L1.x//

2. Because L1.x/ and L2.x/ are bounded on any compact
set, and due to the local condition around x D 0 in Theorem 5.3, the inequal-
ity can be satisfied outside the origin for %min.K!/ > k! , for some k! > 0.
This results in PVp.t; !/ & !"TQ.x/", where " D Œk Q$k; k Q#k*T, and where Q.x/
is positive definite for each x ¤ 0, and positive semidefinite for x D 0. De-
fine U.x/ D %min.Q.x//=maxf2a2; 1g, which is a continuous positive-definite
function (due to continuity of the eigenvalues and of a3.x/, L1.x/ and L2.x/).
Following the same argument as in the proof of Theorem 5.1, we can then write
k!.t/k & ˇ.t/ WD kek!.t0/kexp.!

R t
t0
U.x.+// d+/. Hence, ˇ is a monotonically

non-increasing function.
For the sake of establishing a contradiction, suppose that x.t/ does not con-

verge to the origin. Then there exists a ı > 0 such that, for all t " t0, there
exist + " t such that kx.+/k " 2ı. From Assumption 5.3, kB.t; x/.g.t; x; #/ !
g.t; x; O#//k is uniformly bounded when kx.t/k 2 Œı; 2ı*, and the same holds for
kf .t; x/k, because f .t; x/ is locally Lipschitz continuous in x, uniformly in t ,
and f .t; 0/ D 0. Hence, the right-hand side of (5.15) is uniformly bounded for
kx.t/k 2 Œı; 2ı*, and it follows that there exists T > 0 such that on each inter-
val Œ+ ! T; + C T *, kx.t/k " ı. On every such interval there is a decrease in
the bounding function ˇ; in particular, ˇ.+ C T / & ˇ.+ ! T /exp.!2 N%T /, where
N% D minx2KnB.ı/ U.x/ is a positive number. Moreover, for any integer n > 0,
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there exists a t1 > t0 such that Œt0; t1* contains at least n disjoint time intervals
of length 2T with kx.t/k " ı. The UGAS and UGB properties of the unperturbed
system Px D f .t; x/ imply that if '.k Q#.t/k/ is sufficiently small for all t " t1,
where t1 " t0 is arbitrary, then kx.t/k is globally ultimately bounded by ı. Let
therefore " be chosen small enough that, if for all t " t1, k!.t/k & ", then kx.t/k
is globally ultimately bounded by ı. Let n " 0 be an integer chosen large enough
that ˇ.t0/exp.!2n N%T / & ", and let t1 be large enough that there are at least n
disjoint intervals of length 2T in Œt0; t1* with kx.t/k " ı. This implies that, for all
t " t1, k!.t/k & ". This, in turn, implies by the ultimate boundedness property
that there exists a t2 " t1 such that, for all t " t2, kx.t/k & ı. But this contradicts
our assumption that there exist arbitrarily large values + such that kx.+/k " 2ı.
Hence, x.t/ does converge to the origin.

The functions L1.x/ and L2.x/ represent Lipschitz-like bounds that are typ-
ically not derived explicitly in the design process. The condition in Theorem 5.3
concerns the growth rates of these functions as x ! 0, which can often be deter-
mined without developing explicit expressions for the functions.

5.5 Simulation Example

In the next example, we demonstrate the method on a first-order system with a
nonlinear and time-varying perturbation.

Example 5.6. Consider the system

Px D !x C esin.t/" C u; (5.20)

where # 2 Œ#min; #max* D Œ!5; 5*. Here f .t; x/ D f .x/ D !x, B.t; x/ D
1, and g.t; x; #/ D g.t; #/ D exp.sin.t/#/. We wish to use u to cancel the
perturbation, and we therefore let u D !exp.sin.t/ O#/. The first step is to de-
sign an update law to estimate # from the full perturbation. We first note that
Œ@g=@#*.t; #/ D sin.t/exp.sin.t/#/, and hence (5.7) in Proposition 5.4 is satisfied
by selectingM.t; x; O#/ D M.t/ D sin.t/with S.t; x/ D S.t/ D sin2.t/exp.!# 0/,
where # 0 WD max"2‚ j# j. The remaining requirements in Proposition 5.4 can
be confirmed in the same way as in Example 5.4. We now check that the con-
ditions of Assumption 5.2 hold. We have that d.t; x; Q#/ D .#exp.sin.t/#/ !
O#exp.sin.t/ O#// cos.t/. Using the mean value theorem, we find that jd.t; x; Q#/j &
.1C # 0/exp.# 0/j Q# j. We also see that

ju" .t; x;$; O#/ ! u" .t; x; O$; O#/j D )j sin.t/ Q$j & )j Q$j:3

3We recall from Remark 5.2 that we can disregard the projection when checking this condition.
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Moving to Assumption 5.3, it is straightforward to see that the nominal, unper-
turbed system Px D !x is UGAS and that the perturbed system is UGB when O# is
restricted to ‚. Finally, we use '.s/ D exp.# 0/s to satisfy Assumption 5.3. We
implement the full estimator from (5.8). After canceling terms, we obtain

Ṕ D !K!.K! ! 1/x !K!´ ! sin.t/esin.t/
O"Proj.) sin.t/.´CK!x//; (5.21)

PO# D Proj.) sin.t/.´CK!x//: (5.22)

We simulate the system with K! D 10 and ) D 3, letting # vary in steps between
!2 and 4 to get an impression of the response. The results can be seen in Fig-
ure 5.1, where we have also plotted the response using a gradient-type algorithm
PO# D ) sin.t/exp.sin.t/ O#/x based on linearization around the estimate O# , with gain
) D 1 and with the parameter estimate limited to Œ!5; 5*. Noise has been added
with sample time 0:001 and variance 1 to the measurement of the state x used in
both algorithms. The parameter projection is not active at any point during the
simulation.

5.6 Application: Downhole Pressure Estimation during

Oil Well Drilling

When extracting hydrocarbons from underground geological formations it is usu-
ally necessary to create a well by drilling a wellbore. During drilling, a mud cir-
culation system is used to transport cuttings from the drilling out of the wellbore.
The mud is pumped downhole inside the drill string and through the drill bit, and
returns to the top through the annulus containing the drill string. The downhole
pressure needs to be controlled within its margins: above the reservoir pore pres-
sure and wellbore collapse pressure, but below the wellbore fracture pressure. In
many cases, this margin is quite wide and the pressure can be manually controlled,
but as oil and gas reserves begin to be depleted, reservoirs with narrower margins
are being drilled, demanding automated pressure control (see, e.g., Nygaard and
Nævdal, 2006; Nygaard, Imsland, and Johannessen, 2007). The downhole pressure
is usually measured, but with conventional equipment this measurement has low
bandwidth and is unreliable. Good pressure control therefore demands pressure
estimation based on topside measurements.

5.6.1 Modeling

Complex models of the drilling process exist, for example, in the simulator We-
mod, provided by IRIS (Lage, Frøyen, Sævareid, and Fjelde, 2000). Here we shall

137



PARAMETER ESTIMATION AND COMPENSATION IN SYSTEMS WITH

NONLINEARLY PARAMETERIZED PERTURBATIONS

Time (s)

C
on

tr
ol
le
d
va
ri
ab
le
x

0 5 10 15 20 25 30 35 40
!4

!2

0

2

4

6

8

(a) Controlled variable, nonlinear method (solid), and gradient-type
method (dotted)

Time (s)

Pa
ra
m
et
er

es
tim

at
es

0 5 10 15 20 25 30 35 40
!5

0

5

(b) Unknown parameter (dashed), estimate with nonlinear method
(solid), and estimate with gradient-type method (dotted)

Figure 5.1: Simulation results for Example 5.6

use a low-complexity model for the development of the pressure estimation algo-
rithm (see Stamnes, Zhou, Kaasa, and Aamo, 2008). In particular, we assume that
the drilling process is described by the following dynamic model, derived from
mass balances for the drill string and annulus:

Vd
ˇd

Ppp D qp ! qb; (5.23)

Va

ˇa
Ppc D ! PVa C qb C qr C qa ! qc ; (5.24)

where the states pp and pc are the pressures in the top of the drill string (standpipe
pressure) and the annulus (choke pressure), both of which are measured. Further-
more, Vd and Va denote the volumes of the drill string and the annulus; and ˇd
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and ˇa are the drill string and annulus bulk moduli, all known. The volume flows
are the inflow to the drill string (qp), flow from the back pressure (annulus) pump
(qa), and exit flow from the annulus through the choke (qc), all measured, as well
as the flow through the drill bit (qb) and inflow from the reservoir (qr ). The flow
qb is given by a steady-state momentum balance for the drill string and annulus (in
a slight simplification of the model in Stamnes et al., 2008):

pp ! pc D Fdq
2
b C Fa.qb C qr/

2 ! s.t/: (5.25)

The friction parameter Fd in the drill string is assumed known, as is the function
s.t/ D .(d .t/ ! (a.t//ghb.t/, which describes the difference in drill string and
annulus downhole static head. We shall estimate the two remaining parameters, the
friction coefficient Fa and the reservoir inflow qr , which will allow us to calculate
the downhole pressure pb using a steady-state momentum balance for the annulus
as pb D pc C Fa.qb C qr/

2 C (a.t/ghb . We assume that the parameters to be
estimated are constant, and that .qb C qr/

2 > ˛ for some ˛ > 0, which implies
that we have flow into the annulus. In order to put the system in the form used
in this paper, we write x D ŒVd=ˇdpp; Va=ˇapc*

T, # D Œqr ; Fa*
T, f .t; x/ D

Œqp; .x2=Va ! 1/ PVa C qa ! qc*T, B.t; x/ D
*

"1 0
1 1

+

, and g.t; x; #/ D Œqb; qr *
T.

5.6.2 Estimator Design

As before, we start by designing an update law for estimating Fa and qr as if
$1 D !qb and $2 D qb C qr were known. We see that we can use a simple
inversion according to Proposition 5.1 to create an update law for qr :

POqr D )1. O$1 C O$2 ! Oqr/; (5.26)

where )1 > 0 is a scalar gain. (For simplicity, we omit the projection in discussing
this example.) For Fa, the approach is slightly more complicated. According to
(5.25), we may define an estimated flow Oqb through the bit, by the equation pp !
pc D Fd Oq2

b
C OFa. Oqb C Oqr/2 ! s.t/. Subtracting this from (5.25) and rearranging

yields the relation!Fd .q2b! Oq2
b
/! OFa

(

.qb C qr/
2 ! . Oqb C Oqr/2

)

D QFa.qbCqr/2.
Define the update law

POFa D )2Œ!Fd . O$21 ! Oq2b/ ! OFa. O$22 ! . Oqb C Oqr/2/*: (5.27)

For O$ D $, we then have PQFa D !)2 QFa.qb C qr/
2. It is then straightforward to

prove that Assumption 5.1 holds with Vu. Q#/ D 1
2

Q#T)"1 Q# , where ) is the gain ma-
trix composed of )1 and )2. Implementation of the update law requires calculation
of Oqb . We find Oqb by taking the positive root of the second-order equation defining
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the estimated flow through the bit, which we assume is always real. This solution
is in turn used to find the partial derivative Œ@g=@#*.t; x; O#/, which is needed in
the complete implementation of the system. Due to the quadratic terms in $1 and
$2 in the update law for Fa, the Lipschitz condition on u" does not hold globally.
This problem can easily be fixed by modifying the update law with a saturation, as
described in Section 5.3.3.

5.6.3 Experimental Results

The estimator has been tested using the simulator Wemod (Lage et al., 2000),
yielding very accurate results, and on real measurement data from drilling at the
Grane field in the North Sea. The results for the real drilling data can be seen in
Figure 5.2. The tuning used is )1 D 0:005, )2 D 2 and K! D 10I . It should be
noted that, although it is common to measure the flow qc , no such measurement
is available in the data set used, and qc is therefore estimated from a choke model
and the available choke opening. Given the large uncertainties in this application,
the downhole pressure estimate is considered good.

5.7 Concluding Remarks

We have introduced a modular design method for estimating unknown parameters
in systems with nonlinearly parameterized perturbations, where the main design
task is to construct an update law to asymptotically invert a nonlinear equation. As
mentioned in the introduction, the modular structure allows for the perturbation es-
timator to be extended beyond what is presented in this paper. In Grip et al. (2009),
it is extended to facilitate observer design for the case of partial state measurement,
by using techniques from high-gain observer theory. We note that, for the results
presented in this paper, we can write (5.8) in terms of a variable Ox D !K"1

! ´
rather than ´. It is then easy to see that Ox represents an estimate of the state x.
It can furthermore be confirmed that, for linearly parameterized perturbations, the
design closely resembles a standard linear observer with adaptation, if the update
law is chosen as suggested in Remark 5.1.
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Figure 5.2: Results for drilling application using real drilling data

5.A Parameter Projection

Let the set of possible parameters be defined by … WD f O# 2 Rp j P . O#/ & 0g,
where P W Rp ! R is a smooth, convex function. Let …0 denote the interior
of …, and let ‚ be defined by ‚ D f O# 2 Rp j P . O#/ & "g, where " is a
small positive number, making ‚ a slightly larger superset of …. Consider the
update function u" .t; x; O$; O#/ D Proj.+.t; x; O$; O#//, where Proj.'/ is the projec-
tion from Krstić et al. (1995, Appendix E). Proj is defined as Proj.+.t; x; O$; O#// D
p.t; x; O$; O#/+.t; x; O$; O#/, with p.t; x; O$; O#/ given by

$ p.t; x; O$; O#/ D I if O# 2 …0 or r O"
P T+.t; x; O$; O#/ & 0,

$ p.t; x; O$; O#/ D
%

I ! c. O#/)r O"
P r O"

P T=kr O"
P k2&

&

if O# 2 ‚ n …0 and

r O"
P T+.t; x; O$; O#/ > 0,
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where ) is a symmetric positive-definite matrix corresponding to the gain matrix
in the update law; r O"

P T is the gradient of P . O#/ with respect to O# ; and c. O#/ D
minf1;P . O#/="g.

5.A.1 Lipschitz Continuity

We wish to show that, if, for each compact set K 2 Rn, + has the property that,
for all .t; x;$; O$; O#/ 2 R!0 #K #Rn #Rn #‚, k+.t; x;$; O#/! +.t; x; O$; O#/k &
L2.x/k Q$k, then we also have ku" .t; x;$; O#/ ! u" .t; x; O$; O#/k & L0

2.x/k Q$k, for
some continuous function L0

2.x/ > 0. In the following, we shall outline the
proof of this assertion. To do this, we have to look at two distinct cases: when
the parameter projection is either active or inactive for both u" .t; x;$; O#/ and
u" .t; x; O$; O#/ (Case I); and when the parameter projection is active for one of
u" .t; x;$; O#/ or u" .t; x; O$; O#/, but not the other (Case II). In the following, we
shall write u" .$/ D u" .t; x;$; O#/, u" . O$/ D u" .t; x; O$; O#/, and similarly for + .

In Case I, p.t; x;$; O#/ D p.t; x; O$; O#/. The property therefore follows from
uniform boundedness of kp.t; x;$; O#/k. Case II occurs if O# 2 ‚ n …0, and
r O"

P T+.$/ and r O"
P T+. O$/ do not have the same sign. Without loss of generality,

we assume that r O"
P T+.$/ & 0 and r O"

P T+. O$/ > 0. In this case, we have u" .$/!
u" . O$/ D +.$/ ! .I ! c. O#/)r O"

P r O"
P T=kr O"

P k2&/+. O$/. Expanding this expres-
sion, we have, after some calculation, ku" .$/!u" . O$/k2

&$1 D k+.$/!+. O$/k2
&$1C

c. O#/=kr O"
P k2&

*

c. O#/jr O"
P T+. O$/j2 C 2+. O$/Tr O"

P r O"
P T.+.$/ ! +. O$//

+

. We now
make the observation that, because r O"

P T+.$/ and r O"
P T+. O$/ do not have the

same sign, jr O"
P T+. O$/j & jr O"

P T.+.$/ ! +. O$//j. Using this for substitution
where r O"

P T+. O$/ occurs alone, we obtain that ku" .$/ ! u" . O$/k2
&$1 & k+.$/ !

+. O$/k2
&$1 C .c2. O#/C 2c. O#//=kr O"

P k2&kr O"
P k2k+.$/! +. O$/k2. Using the prop-

erty that for P D P T > 0, %min.P /k"k2 & k"k2P & %max.P /k"k2, we find that
ku" .$/ ! u" . O$/k & ˛k+.$/ ! +. O$/k & ˛L2.x/k Q$k, where

˛ D
#

%max.)
"1/%min.)/C 3

%min.)"1/%min.)/

$

1
2

:

5.B Proofs of Propositions 5.2–5.4

Proof of Proposition 5.2. Inspired by Loría, Panteley, Popović, and Teel (2005),
we use the function Vu.t; Q#/ D 1

2
Q#T

(

)"1 ! -
R1
t exp.t ! +/I l.+; x.+// d+

) Q# ,
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where - > 0 is a constant yet to be specified.4 We first note that

1

2
Q#T

(

)"1 ! -I
) Q# & Vu.t; Q#/ &

1

2
Q#T)"1 Q# :

Hence, Vu is positive definite provided that - < %min.)
"1/. With O$ D $, we get

PQ# D !Proj.l.t; x/) Q#/. Using the property (Krstić et al., 1995, Lemma E.1) that
! Q#T)"1Proj.+/ & ! Q#T)"1+ , we have

PVu.t; Q#/ D ! Q#T

#

)"1 ! -

Z 1

t
et"#I l.+; x.+//d+

$

' Proj.l.t; x/) Q#/C
1

2
- Q#TI l.t; x/ Q#

!
1

2
- Q#T

Z 1

t
et"#I l.+; x.+//d+ Q#

& !.1 !
1

2
-/l.t; x/ Q#T Q# !

1

2
-"e"T Q#T Q#

C -k Q#k
,

,

,

,

Z 1

t
et"#I l.+; x.+//d+

,

,

,

,

,

,

,
Proj.l.t; x/) Q#/

,

,

,

& !.1 !
1

2
- ! -

p
1k)k/l.t; x/k Q#k2 !

1

2
-"e"T k Q#k2; (5.28)

where 1 is the ratio of the largest to the smallest eigenvalue of )"1. Above, we
have used the property (Krstić et al., 1995, Lemma E.1) that

Proj.+/T)"1Proj.+/ & +T)"1+;

which implies that kProj.+/k &
p
1k+k. We have also used that

Z 1

t
et"# l.+; x.+// d+ "

Z tCT

t
et"# l.+; x.+// d+

" e"T
Z tCT

t
l.+; x.+// d+

" e"T ":

4Remark added after publiction: The function t 7! l.t; x.t// may be chosen to contain isolated
discontinuities, in which case a minor technical modification of the integrand in Vu.t; Q#/ (namely, a
continuous approximation of l.+; x.+// from below) is needed to make Vu differentiable everywhere.
This modification is easily constructed without interfering with the negative-definiteness property of
PVu.t; Q#/. Alternatively, differentiability with respect to t may be interpreted as having a well-defined
upper right-hand Dini derivative (see, e.g., Khalil, 2002, App. C.2), which is sufficient for use with
the comparison lemma.
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From the calculation above, we see that the time derivative is negative definite
provided that - < 1=.12 C

p
1k)k/.

Proof of Proposition 5.3. For the sake of brevity, we write M D M.t; x; O#/ and
B D B.t; x/. With O$ D $, we get PQ# D !Proj.)MB.g.t; x; #/ ! g.t; x; O#///.
We use the function Vu.t; Q#/ D 1

2
Q#T)"1 Q# . Using the property (Krstić et al., 1995,

Lemma E.1) that ! Q#T)"1Proj.+/ & ! Q#T)"1+ , we have

PVu.t; Q#/ & !
1

2
Q#TMB.g.t; x; #/!g.t; x; O#//!

1

2
.g.t; x; #/!g.t; x; O#//TBTM T Q# :

Since g.t; x; #/ is continuously differentiable with respect to # , we may write, ac-
cording to Taylor’s theorem (see, e.g., Nocedal and Wright, 1999, Theorem 11.1),
g.t; x; #/ ! g.t; x; O#/ D

R 1
0 Œ@g=@#*.t; x;

O# C p Q#/ Q# dp. Hence, we have

PVu.t; Q#/ & !
1

2

Z 1

0

Q#T.MB
@g

@#
.t; x; O# C p Q#/C

@g

@#

T

.t; x; O# C p Q#/BTM T/ Q# dp

& !
Z 1

0

Q#TP Q# dp

D ! Q#TP Q# ;

which proves that Assumption 5.1 holds.

Proof of Proposition 5.4. We use the function

Vu.t; Q#/ D
1

2
Q#T

#

)"1 ! -

Z 1

t
exp.t ! +/S.+; x.+//d+

$

Q# ;

where - > 0 is a constant yet to be specified.5 First, we confirm that the func-
tion Vu is positive definite. We have 1

2.%min.)
"1/ ! -%0

S /k Q#k2 & Vu.t; Q#/ &
1
2%min.)

"1/k Q#k2, where %0
S D sup.t;x/2R"0$K %max.S.t; x//. It follows from

this that Vu is positive definite provided that %min.)
"1/!-%0

S > 0, which is guar-
anteed if - < %min.)

"1/=%0
S . When we insert O$ D $, we get the same error

dynamics as in the proof of Proposition 5.3. Following a calculation similar to the
proof of Proposition 5.2, we get

PVu.t; Q#/ & !
#

1 !
1

2
-

$

Q#TS.t; x/ Q# !
1

2
-"e"T k Q#k2

C -
p
1MSk)kMMLgk Q#k. Q#TS.t; x/ Q#/1=2;

5Remark added after publication: A remark similar to the footnote on page 143 also applies to
this proof.
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where MS and MM are bounds on kS.t; x/k and kM.t; x; O#/k respectively, and
1 is the ratio of the largest to the smallest eigenvalue of )"1. We may write this
as a quadratic expression with respect to Œ. Q#TS.t; x/ Q#/1=2; k Q#k*T. It is then easily
confirmed that the expression is negative definite if

- <
2

1C 1M 2
Sk)k2M 2

ML
2
g"

"1eT
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Chapter 6

Observer Design and Parameter

Estimation for Linear Systems

with Nonlinearly Parameterized

Perturbations

Abstract: We consider systems that can be described by a linear part with

a nonlinear perturbation, where the perturbation is parameterized by a vec-

tor of unknown, constant parameters. Under a set of technical assumptions

about the perturbation and its relationship to the outputs, we present a mod-

ular observer design technique. The observers produced by this design tech-

nique consist of a modified high-gain observer that estimates the states of the

system together with the full perturbation, and a parameter estimator. The

parameter estimator is constructed by the designer to identify the unknown

parameters by dynamically inverting a nonlinear equation. We illustrate the

design technique by constructing an observer for a DC motor with friction

modeled by the dynamic LuGre friction model.

6.1 Introduction

A common problem in model-based estimation and control is the handling of un-
known or partially unknown perturbations to system equations. Such perturbations
can be the result of external disturbances or internal plant changes, such as a con-
figuration change, system fault, or changes in physical plant characteristics. In
this paper, we consider observer design for systems that can be described by a
linear part with a nonlinear, time-varying perturbation that is parameterized by a
vector of unknown, constant parameters. Our design extends the results of Grip,
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Johansen, and Imsland (2008); Grip, Johansen, Imsland, and Kaasa (2010), where
parameter identification for systems with full-state measurement was considered.

In the literature, many of the results that deal with the handling of unknown or
partially unknown perturbations are based either on high-gain designs, where the
perturbations are suppressed by using a sufficiently high gain, or adaptive designs,
where online estimates of unknown parameters are used to cancel the perturba-
tions. Many of the results on high-gain observer design for nonlinear systems,
for example Khalil and Esfandiari (1993); Teel and Praly (1994), rely on plac-
ing the system in some variation of the normal form, where it is represented as a
chain of integrators from the nonlinearities to the outputs, possibly with a separate
subsystem representing the zero dynamics. An alternative to the normal form is
the special coordinate basis (SCB) introduced in Sannuti and Saberi (1987), where
the system is divided into subsystems that reflect its zero structure and invertibil-
ity properties. While high-gain designs based on the normal form are limited to
systems that are square-invertible, minimum-phase, and of uniform relative de-
gree with respect to the nonlinearities, Saberi and Sannuti (1990) shows that high-
gain observers can be designed based on the SCB for more general multiple-input
multiple-output (MIMO) systems that are left-invertible and minimum-phase with
respect to the nonlinearities.

In the presence of an unknown perturbation, high-gain observer designs can
be extended to estimate the perturbation as well, by considering the perturbation
as an additional state. The perturbation estimate can be used for control, for ex-
ample, to cancel the actual perturbation. This type of approach has been adopted
recently in the context of performance recovery, in Chakrabortty and Arcak (2009),
where the perturbation appears in the first derivatives, and in Freidovich and Khalil
(2008), where it appears at the end of an integrator chain in a single-input single-
output (SISO) system, and is estimated by an extended high-gain observer. When
extending the state to include the perturbation, Lipschitz-like conditions must be
imposed on the derivative of the perturbation. A strength of the high-gain de-
signs mentioned above is that little structural information about the perturbation
is needed for implementation. Conversely, however, these methods do not fully
exploit structural information about uncertainties in the perturbation, even when
such information is available.

Adaptive techniques are based on online estimation of unknown parameters
that can be considered constant or slowly varying. Most of the adaptive literature
deals with systems that are linear with respect to the unknown parameters (see, e.g.,
Krstić, Kanellakopoulos, and Kokotović, 1995). Ways of handling nonlinear pa-
rameterizations include the extended Kalman filter (see Brown and Hwang, 1997),
various methods for handling nonlinearities with convex or concave parameteri-
zations (e.g., Fomin, Fradkov, and Yakubovich, 1981; Annaswamy, Skantze, and
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System
Modified
high-gain
observer

Parameter
estimator

u

y .y; Ox; O!/

O"

Figure 6.1: System structure

Loh, 1998), and methods for first-order systems with fractional parameterizations
(e.g., Bošković, 1998; Zhang, Ge, Hang, and Chai, 2000). Adaptive techniques re-
lated to our work include Qu (2003); Tyukin, Prokhorov, and van Leeuwen (2007);
Khalil (1996). In Qu (2003), perturbations with matrix fractional parameteriza-
tions are considered, by introducing an auxiliary estimate of the full perturbation
that is used in estimation of the unknown parameters. In Tyukin et al. (2007), adap-
tive update laws for a class of nonlinearly parameterized perturbations in the first
derivatives of the outputs are designed, by first creating virtual algorithms based on
information from the derivatives, and then transforming these into implementable
form without explicit differentiation. In Khalil (1996), adaptive control for lin-
ear parameterizations is designed for the case of full-state measurement, and then
extended to the case of partial-state measurement by using high-gain estimates of
output derivatives.

In this paper we introduce a modular design consisting of two separate but con-
nected modules. The first module is a modified high-gain observer that estimates
the states of the system and the unknown perturbation. The modified high-gain
observer is closely related to the extended high-gain observer for SISO systems
in Freidovich and Khalil (2008). The second module is a parameter estimator

that uses the state and perturbation estimates to produce estimates of the unknown
parameters, which are in turn fed back to the modified high-gain observer as il-
lustrated in Figure 6.1. This approach allows us to exploit structural information
about the perturbation instead of suppressing all uncertainties using high gain. The
price we pay is that the method is restricted to a limited class of perturbations that
satisfy persistency-of-excitation requirements allowing for exponentially stable es-
timation of the unknown parameters. We base our design on the SCB and the theory
from Saberi and Sannuti (1990), enabling us to deal comfortably with a large class
of MIMO systems.
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6.1.1 Preliminaries

For a set of vectors ´1; : : : ; ´n, we denote by col.´1; : : : ; ´n/ the column vector
obtained by stacking the elements of ´1; : : : ; ´n. The operator k ' k denotes the
Euclidean norm for vectors and the induced Euclidean norm for matrices. For a
symmetric positive-semidefinite matrix P , the maximum and minimum eigenval-
ues are denoted %max.P / and %min.P /. For a set E ( Rn, we write .E ! E/ WD
f´1!´2 2 Rn j ´1; ´2 2 Eg. When considering systems of the form Ṕ D F.t; ´/,
we assume that all functions involved are sufficiently smooth to guarantee that
F W R!0#Rn ! Rn is piecewise continuous in t and locally Lipschitz continuous
in ´, uniformly in t , on R!0 #Rn. The solution of this system, initialized at time
t0 with initial condition ´.t0/ is denoted ´.t/. We shall often simplify notation by
omitting function arguments.

6.2 Problem Formulation

We consider systems of the following type:

Px D Ax C BuCE$; x 2 R
n; u 2 R

m; $ 2 R
k; (6.1a)

y D Cx; y 2 R
r ; (6.1b)

where x is the state; y is the output; $ is a perturbation to the system equa-
tions; and u is a time-varying input that is well-defined for all t 2 R!0 and
may include control inputs, reference signals, measured disturbances, or other
known influences. For ease of notation, we introduce the vector & WD col.u; y/
of known signals. The perturbation is given by the expression $ D g.&; x; #/,
where gW RmCr # Rn # Rp ! Rk is differentiable in & and continuously differ-
entiable in .x; #/, and # 2 Rp is a vector of constant, unknown parameters. As
we construct an estimator, additional smoothness requirements may be needed for
g, as well as other functions, to guarantee that the piecewise continuity and local
Lipschitz conditions in Section 6.1.1 hold for all systems involved. It is left to the
designer to check these requirements.

We shall design an observer to estimate both the state x and the unknown
parameter vector # . The technicalities of this observer design are most easily over-
come if the time derivative Pu is well-defined and piecewise continuous, and x, u,
Pu, and # are known a priori to belong to compact sets. We shall therefore make
this assumption throughout the paper. We note that this assumption also implies
that & and P& belong to compact sets. In most estimation problems, the restriction
of the variables to compact sets is reasonable, because the states and inputs are
typically derived from physical quantities with natural bounds. When designing

152
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update laws for parameter estimates, we also assume that a parameter projection
can be implemented as described in Krstić et al. (1995), restricting the parameter
estimates to a compact, convex set ‚ ( Rp, defined slightly larger than the set of
possible parameter values. The parameter projection is denoted Proj.'/. We denote
by X ( Rn, V ( RmCr , and V 0 ( RmCr the compact sets to which x, &, and P&
belong, and by ˆ the compact image of V #X #‚ under g.

For ease of notation, we define

d.&; P&; x; #;$/ WD
@g

@&
.&; x; #/ P& C

@g

@x
.&; x; #/.Ax C BuCE$/;

representing the time derivative of the perturbation $.

Assumption 6.1. The triple .C;A;E/ is left-invertible and minimum-phase.

Assumption 6.2. There exists a number ˇ > 0 such that for all .&; P&; x; #;$/ 2
V # V 0 # X # ‚ # ˆ and for all . Ox; O# ; O$/ 2 Rn # ‚ # Rk , kd.&; P&; x; #;$/ !
d.&; P&; Ox; O# ; O$/k & ˇkcol.x ! Ox; # ! O# ;$ ! O$/k.

Remark 6.1. In Assumption 6.2, we specify a Lipschitz-like condition on d , which
is global in the sense that there are no bounds on Ox and O$. Although this condition
may appear restrictive, we are free to redefine g.&; x; #/ outside V #X #‚ with-
out altering the accuracy of the system description (6.1). We may, for example,
introduce a smooth saturation on x outside X , in which case the condition can be
satisfied by requiring that g.&; x; #/ is sufficiently smooth.

In the following sections, we shall first present the modified high-gain ob-
server, and then the parameter estimator. While the modified high-gain observer
has a fixed structure, the parameter estimator can be designed in a number of dif-
ferent ways to solve the equation $ D g.&; x; #/ with respect to # . In Section 6.4
we discuss several ways to design the parameter estimator.

6.3 Modified High-Gain Observer

Our goal is to estimate both the state x and the perturbation $. To accomplish this
goal we extend the system by introducing $ as a state. The extended system then
becomes

!

Px
P$

"

D
!

A E
0 0

" !

x
$

"

C
!

B
0

"

uC
!

0
Ik

"

d.&; P&; x; #;$/; (6.2)
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with y D Cx. We shall implement an observer for this system of the following
form:

POx D A Ox C BuCE O$ CKx."/.y ! C Ox/; (6.3a)

Ṕ D !
@g

@#
.&; Ox; O#/ PO# !

@g

@x
.&; Ox; O#/Kx."/.y ! C Ox/CK!."/.y ! C Ox/; (6.3b)

O$ D g.&; Ox; O#/C ´: (6.3c)

where Kx."/ 2 Rn$r and K!."/ 2 Rk$r are gain matrices parameterized by
a number 0 < " & 1 to be specified later. In (6.3), we have made use of a
parameter estimate O# and its time derivative. These values are produced by the
parameter estimation module, which we shall discuss in Section 6.4. The per-
turbation estimate O$ is seen to consist of g.&; Ox; O#/ plus an internal variable ´.
The variable ´ can be viewed as an adjustment made to g.&; Ox; O#/ to produce a
more accurate estimate of the perturbation. Taking the time derivative of O$ yields
PO$ D d.&; P&; Ox; O# ; O$/CK!."/.y!C Ox/. Defining the errors Qx D x! Ox, Q$ D $! O$,
and Qy D y ! C Ox, we may therefore write the error dynamics of the observer as

"

PQx
PQ$

#

D
!

A E
0 0

" !

Qx
Q$

"

C
!

0
Ik

"

Qd !
!

Kx."/
K!."/

"

Qy (6.4)

where Qd WD d.&; P&; x; #;$/ ! d.&; P&; Ox; O# ; O$/. In the error dynamics (6.4), the
term Qd acts as an unknown disturbance, and Qy is an available output. Our goal is
to design a family of gains K."/ WD ŒKT

x."/;K
T
!."/*

T such that, as the number "
becomes small, the modified high-gain observer produces stable estimates with a
diminishing effect from the parameter error Q# WD # ! O# .

Lemma 6.1. The error dynamics (6.4)with input Qd and output Qy, and gainK."/ D
0, is left-invertible and minimum-phase.

Proof. See Appendix 6.A.

6.3.1 SISO Systems

Suppose first that k D r D 1, and consider the error dynamics (6.4) with K."/ D
0. Let na denote the number of invariant zeros in the system, and let nq D n! na
denote the relative degree. Let ƒ1, ƒ2, and ƒ3 denote the nonsingular state,
output, and input transformations that take the system (6.4) with input Qd and output
Qy, and with K."/ D 0, to the SCB. We apply these transformations to the system
(6.4) (without setting K."/ D 0), by writing col. Qx; Q$/ D ƒ1,, Qy D ƒ2' , and
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Qd D ƒ3ı. From Saberi and Sannuti (1990, Theorem 2.2), the transformed state
vector , is partitioned as , D col.,a;,q/, where ,a has dimension na and ,q has
dimension nq , and the resulting system is written as

P,a D Aa,a C Laq' !Ka."/'; (6.5a)

P,q D Aq,q C Bq.ı CDa,a CDq,q/ !Kq."/'; ' D Cq,q; (6.5b)

where

Aq D

2

6

6

6

4

0 1 ' ' ' 0
:::

:::
: : :

:::
0 0 ' ' ' 1
0 0 ' ' ' 0

3

7

7

7

5

; Bq D

2

6

6

6

4

0
:::
0
1

3

7

7

7

5

; Cq D
*

1 0 ' ' ' 0
+

: (6.6)

The matricesKa."/ andKq."/ in (6.5) are observer gains, related to the gainK."/
by K."/ D ƒ1ŒK

T
a."/;K

T
q."/*

Tƒ"1
2 . Once we have chosen Ka."/ and Kq."/, we

can therefore implement the modified high-gain observer (6.3).

SCB Structure

In (6.5), the ,a subsystem represents the zero dynamics of (6.4). In particular,
the eigenvalues of the matrix Aa correspond to the invariant zeros of (6.4). Since
the system is minimum-phase, this implies that Aa is Hurwitz. The ,q subsystem
represents the infinite zero structure of (6.4), and consists of a single chain of
integrators, from the input ı to the output ' , with an interconnection to the zero
dynamics at the lowest level of the integrator chain.

Design of SISO Gains

To design the observer gains, let NKq WD col. NKq1 ; : : : ; NKqnq / be chosen such that
the matrix H WD Aq ! NKqCq is Hurwitz. Because of the special structure of
Aq , this is always possible by using regular pole-placement techniques. Then, let
Ka."/ D Laq and Kq."/ D col. NKq1="; : : : ; NKqnq ="

nq /.

6.3.2 MIMO Systems

Consider again the error dynamics (6.4) with K."/ D 0. Let na and nq denote the
number of invariant zeros and infinite zeros in the system, respectively, and define
nb D n ! na ! nq . Let ƒ1, ƒ2, and ƒ3 denote the nonsingular state, output,
and input transformations that take the system (6.4) with input Qd and output Qy,
and with K."/ D 0, to the SCB. We apply these transformations to the system
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(6.4) (without setting K."/ D 0), by writing col. Qx; Q$/ D ƒ1,, Qy D ƒ2' , and
Qd D ƒ3ı. From Saberi and Sannuti (1990, Th. 2.6), the transformed state , is
partitioned as , D col.,a;,b;,q/, where ,a has dimension na, ,b has dimension
nb , and ,q has dimension nq . The subsystem ,q can be further partitioned as
,q D col.,q1 ; : : : ;,qk /, where each ,qj , j D 1; : : : ; k, has dimension nqj . The
transformed output is partitioned as ' D col.'q; 'b/, where 'q has dimension
k and is further partitioned as 'q D col.'q1 ; : : : ; 'qk /, and 'b has dimension
rb WD r ! k. The transformed input has dimension k and is further partitioned as
ı D col.ı1; : : : ; ık/. The resulting system is written as

P,a D Aa,a C Laq'q C Lab'b !Kaq."/'q !Kab."/'b; (6.7a)

P,b D Ab,b C Lbq'q !Kbq."/'q !Kbb."/'b; (6.7b)

P,qj D Aqj,qj C Lqj q'q !Kqj q."/'q !Kqj b."/'b
C Bqj .ıj CDaj,a CDbj,b CDqj,q/; (6.7c)

'b D Cb,b; 'qj D Cqj,qj ; (6.7d)

whereAqj ,Bqj , andCqj have the same special structure asAq ,Bq , andCq in Sec-
tion 6.3.1, and where .Cb; Ab/ is an observable pair. The gains Kaq."/, Kab."/,
Kbq."/, Kbb."/, Kqj q."/, and Kqj b."/, j D 1; : : : ; k, are related to K."/ by

K."/ D ƒ1

2

4

Kaq."/ Kab."/
Kbq."/ Kbb."/
Kqq."/ Kqb."/

3

5ƒ"1
2 ; (6.8)

where

Kqq."/ D ŒKT
q1q
."/; : : : ; KT

qkq
."/*T and Kqb."/ D ŒKT

q1b
."/; : : : ; KT

qkb
."/*T:

Once we have chosen Kaq."/, Kab."/, Kbq."/, Kbb."/, Kqq."/, and Kqb."/, we
can therefore implement the modified high-gain observer (6.3) with the gains given
by (6.8).

SCB Structure

As in the SISO case, the ,a subsystem in (6.7) represents the zero dynamics of
(6.4), with the eigenvalues of Aa corresponding to the invariant zeros of (6.4).
The system (6.7) has a ,b subsystem that is not present in the SISO case. This
subsystem represents states that are observable from the output 'b , but that are not
directly affected by any inputs. As in the SISO case, the ,q subsystem represents
the infinite zero structure of (6.4). It is divided into k integrator chains, from ıj to
'qj , with interconnections to other subsystems at the lowest level of each integrator
chain.
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Design of MIMO Gains

Let Kbb."/ D Kbb be chosen independently from " such that the matrix Ab !
KbbCb is Hurwitz. This is always possible and can be carried out using standard
pole-placement techniques, since the pair .Cb; Ab/ is observable. For each j 2
1; : : : ; k, select NKqj WD col. NKqj 1; : : : ; NKqjnqj / such that the matrixHj WD Aqj !
NKqjCqj is Hurwitz. Then, let Kaq."/ D Laq , Kab."/ D Lab , Kbq."/ D Lbq ,
Kqb."/ D 0, and let

Kqj q D
!

0nqj $.j"1/ col
#

NKqj 1

"
Nnq$nqj C1 ; : : : ;

NKqj nqj
" Nnq

$

0nqj $.k"j /

"

C Lqj q;

where Nnq WD maxjD1;:::;k nqj .

Lemma 6.2. If the gains are chosen according to Section 6.3.1 (SISO) or Section
6.3.2 (MIMO), then there exists 0 < "# & 1 such that for all 0 < " & "#, the error

dynamics (6.4) is input-to-state stable (ISS) with respect to Q# .

Proof. See Appendix 6.A.

Remark 6.2. By selecting the gains as described above, we place na poles of the
linear part of the observer error dynamics at the locations of the invariant zeros
of (6.4), and we place nb poles freely, as the poles of Ab ! KbbCb . The last
nq poles of the error dynamics are placed far into the left-half complex plane,
asymptotically as " becomes small.

Remark 6.3. Software packages for numeric and symbolic transformations of lin-
ear systems to the SCB are presented in Liu, Chen, and Lin (2005) and Grip and
Saberi (2010).

6.4 Parameter Estimator

As previously mentioned, the goal of the parameter estimation module is to pro-
duce an estimate of # based on the perturbation estimate O$ and the state estimate
Ox. For this to work, we require an update law

PO# D u" .&; Ox; O$; O#/; (6.9)

which, in the hypothetical case of perfect state and perturbation estimates ( O$ D $
and Ox D x), would provide an unbiased asymptotic estimate of # . This require-
ment is formally stated by the following assumption on the dynamics of the error
variable Q# .
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Assumption 6.3. There exist a differentiable function VuW R!0# .‚!‚/ ! R!0

and positive constants a1; : : : ; a4 such that for all .t; Q#/ 2 R!0 # .‚ !‚/,

a1k Q#k2 & Vu.t; Q#/ & a2k Q#k2; (6.10)
@Vu

@t
.t; Q#/ !

@Vu

@ Q#
.t; Q#/u" .&.t/; x.t/;$.t/; O#/ & !a3k Q#k2; (6.11)

,

,

,

,

@Vu

@ Q#
.t; Q#/

,

,

,

,

& a4k Q#k: (6.12)

Furthermore, the update law (6.9) ensures that if O#.t0/ 2 ‚, then for all t " t0,
O#.t/ 2 ‚.

Satisfying Assumption 6.3 constitutes the greatest challenge in applying the
method presented in this paper, and this issue is therefore discussed in the next
section.

6.4.1 Satisfying Assumption 6.3

Assumption 6.3 guarantees that the origin of the error dynamics

PQ# D !u" .&; Ox; O$; # ! Q#/; (6.13)

is uniformly exponentially stable with .‚!‚/ contained in the region of attraction
whenever O$ D $ and Ox D x. Essentially, this amounts to asymptotically solving
the inversion problem of finding # given $ D g.&; x; #/. In the following, we
shall discuss some possibilities for how to satisfy Assumption 6.3. As a useful
reference, we point to Nicosia, Tornambè, and Valigi (1994), which deals with the
use of state observers for inversion of nonlinear maps. The material in this section
is a straightforward adaptation of Grip et al. (2010, Sec. 3.2), which also contains
examples of each of the propositions below applied to particular perturbations.1

The proofs of the propositions are therefore omitted.
The most obvious way to satisfy Assumption 6.3 is to invert the equality $ D

g.&; x; #/ algebraically, and to let O# be attracted to the solution. This may be
possible the whole time (Proposition 6.1), or just part of the time (Proposition
6.2).

Proposition 6.1. Suppose that for all .&; x;$/ 2 V #Rn#Rk , we can find a unique

solution # D ##.&; x;$/ from the equation $ D g.&; x; #/. Then Assumption 6.3
is satisfied with the update law u" .&; Ox; O$; O#/ D Proj.).##.&; Ox; O$/ ! O#//, where
) is a symmetric, positive-definite gain matrix.

1Remark added after submission: See footnotes on pages 126 and 128 of Chapter 5 for a
technical clarification regarding piecewise continuity.
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Proposition 6.2. Suppose that there exists a known, piecewise continuous function

l WV #Rn #Rk ! Œ0; 1*, and that for all .&; x;$/ 2 V #Rn #Rk , l.&; x;$/ > 0
implies that we can find a unique solution # D ##.&; x;$/ from the equation

$ D g.&; x; #/. Suppose furthermore that there exist T > 0 and 0 > 0 such

that for all t 2 R!0,
R tCT
t l.&.+/; x.+/;$.+// d+ " 0 . Then Assumption 6.3 is

satisfied with the update law u" .&; Ox; O$; O#/ D Proj.l.&; Ox; O$/).##.&; Ox; O$/ ! O#//,
where ) is a symmetric, positive-definite gain matrix.

When it is not possible or desirable to solve the inversion problem explicitly,
it is often possible to implement the update function as a numerical search for the
solution.

Proposition 6.3. Suppose that there exist a positive-definite matrix P and a func-

tionM WV #Rn #‚ ! Rp$k such that for all .&; x/ 2 V #Rn, and for all pairs

#1; #2 2 ‚,

M.&; x; #1/
@g

@#
.&; x; #2/C

@g

@#

T

.&; x; #2/M
T.&; x; #1/ " 2P: (6.14)

Then Assumption 6.3 is satisfied with the update law

u" .&; Ox; O$; O#/ D Proj.)M.&; Ox; O#/. O$ ! g.&; Ox; O#///;

where ) is a symmetric, positive-definite gain matrix.

Proposition 6.3 applies to certain monotonic perturbations for which a solution
can be found arbitrarily fast by increasing the gain ) . In many cases this is not pos-
sible, because the inversion problem is singular the whole time or part of the time.
The following proposition applies to cases where a solution is only available by us-
ing data over longer periods of time, by incorporating a persistency-of-excitation
condition.

Proposition 6.4. Suppose that there exist a piecewise continuous function S WV #
Rn ! SpC, where SpC is the cone of p # p positive-semidefinite matrices, and a

functionM WV #Rn #‚ ! Rp$k , both bounded for bounded x, such that for all
.&; x/ 2 V #Rn and for all pairs #1; #2 2 ‚,

M.&; x; #1/
@g

@#
.&; x; #2/C

@g

@#

T

.&; x; #2/M
T.&; x; #1/ " 2S.&; x/: (6.15)

Suppose furthermore that there exist numbers T > 0 and 0 > 0 such that for all

t 2 R!0,
R tCT
t S.&.+/; x.+// d+ " 0Ip , and a number Lg > 0 such that for all
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.&; x; O#/ 2 V # Rn # ‚, kg.&; x; #/ ! g.&; x; O#/k & Lg. Q#TS.&; x/ Q#/1=2. Then
Assumption 6.3 is satisfied with the update law

u" .&; Ox; O$; O#/ D Proj.)M.&; Ox; O#/. O$ ! g.&; Ox; O#///;

where ) is a symmetric, positive-definite gain matrix.

When looking for the functionM , a good starting point is to select

M.&; Ox; O#/ D Œ@g=@#*T.&; Ox; O#/:

This choice makes the parameter update law into a gradient search in the direction
of steepest descent for the function kg.&; x; #/ ! g.&; x; O#/k2, scaled by the gain
) . This choice of M often works even if it fails to satisfy either of Propositions
6.3 and 6.4. In the special case of a linear parameterization, this choice of M
always satisfies (6.15), and the remaining conditions in Proposition 6.4 coincide
with standard persistency-of-excitation conditions for parameter identification in
linear adaptive theory (see, e.g., Marino and Tomei, 1995, Ch. 5).

6.5 Stability of Interconnected System

When connecting the two modules, we need one additional assumption about the
parameter update law.

Assumption 6.4. The parameter update law u" .&; Ox; O$; O#/ is Lipschitz continuous
in . Ox; O$/, uniformly in .&; O#/, on V #Rn #Rk #‚.

Remark 6.4. The Lipschitz condition in Assumption 6.4 is a global one, in the
sense that Ox and O$ are not presumed to be bounded. Such a condition may fail to
hold in many cases. However, if a local Lipschitz condition holds, then the update
law is easily modified to satisfy Assumption 6.4 by introducing a saturation on Ox
and O$ outside X and ˆ. We also remark that when checking Assumption 6.4, the
projection in the update law may be disregarded, since the Lipschitz property is
retained under projection (Grip et al., 2010, App. A).

Theorem 6.1. If the gains are chosen according to Section 6.3.1 (SISO) or Section
6.3.2 (MIMO), then there exists 0 < "# & 1 such that for all 0 < " & "#, the origin

of the error dynamics (6.4), (6.13) is exponentially stable with RnCk # .‚ ! ‚/
contained in the region of attraction.

Proof. See Appendix 6.A.

160



6.6. REDESIGN FOR IMPROVED STATE ESTIMATES

6.6 Redesign for Improved State Estimates

The modified high-gain observer is designed to estimate not only the state vec-
tor x, but also the perturbation $. This configuration may not result in optimal
estimates of x. In many cases, less noisy estimates may be obtained by imple-
menting a second observer that does not include a perturbation estimate. Instead,
this observer has the form POx D A Ox C BuC Eg.&; Ox; O#/CKx."/.y ! C Ox/, with
O# obtained from the first observer. The second observer can be designed using the
same high-gain methodology as the modified high-gain observer, by transforming
the error dynamics PQx D A QxCE Qg!Kx."/ Qy to the form (6.7) and designing gains.
In this case, Qg WD g.&; x; #/ ! g.&; Ox; O#/, rather than Qd , is the input that is trans-
formed to ı, and we need to impose the same Lipschitz-like assumptions on g as
we previously did on d . The resulting ISS property of the second observer with
respect to the parameter error Q# , and the boundedness of Q# , justifies this type of
cascaded design.

6.7 Discussion

The purpose of the modified high-gain observer described in Section 6.3 is to esti-
mate the states and the perturbation with sufficient accuracy to guarantee stability
in closed loop with the parameter estimator. The design methodology in Section
6.3 ensures that this is possible by making the parameter " sufficiently small. As
implied by the name, a high gain may sometimes be required to achieve stability.
Such cases are of little practical interest, because a high gain usually results in un-
acceptable noise amplification. Often, however, only a moderate gain is required.
Since the required gain depends on quantities that are difficult to determine an-
alytically, such as Lipschitz constants, the observer is typically tuned by starting
with " D 1 and decreasing " in small decrements until satisfactory performance is
achieved.

6.7.1 Zero Structure

The zero structure of the system is of vital importance in the design methodol-
ogy presented in this paper, as it is for any design methodology that deals with a
partial-state measurement. This fact is made explicitly clear by the decomposition
of the system into subsystems representing the finite and infinite zero structure.
It is well-known that small perturbations to system matrices can lead to dramatic
changes in a system’s zero structure. This phenomenon is investigated in Sastry,
Hauser, and Kokotović (1989), where it is shown that an arbitrarily small perturba-
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tion can reduce the relative degree of a SISO system, and thereby move some zeros
from infinity to finite locations far into the left- or right-half plane. This leads to
zero dynamics that are singularly perturbed. Such a perturbation reduces the di-
mension of the ,q subsystem and increases the dimension of the ,a subsystem,
and it creates singularities in the elements of the SCB system matrices where the
perturbation is zero. Not surprisingly, this can lead to poorly conditioned system
descriptions, with very large elements in the system matrices. In these situations, it
is often better to design the observer gains with respect to the unperturbed system
matrices, by setting the perturbation to zero before performing the transformation
to the SCB.2 In Section 6.8, we discuss a problem for which this precise situation
is encountered.

6.8 Simulation Example

We consider the example of a DC motor with friction modeled by the LuGre fric-
tion model, borrowed from Canudas de Wit and Lischinsky (1997). The model
is described by P2 D !, J P! D u ! F , where 2 is the measured angular po-
sition, ! is the angular velocity, u is the motor torque, F is the friction torque,
and J is the motor and load inertia. The friction torque is given by the dynamic
LuGre friction model: F D 00. C 01 P. C ˛2!, where the internal friction state
. is given by P. D ! ! 00.j!j=".!/, with ".!/ D ˛0 C ˛1exp.!.!=!0/2/.
The model parameters are listed in Table 6.1. We assume that these parameters
are known, except for the uncertain parameter # WD ˛0, which represents static
Coloumb friction. To indicate that " depends on the unknown parameter, we shall
henceforth write ".!; #/. We assume that # is known a priori to belong to the
range ‚ WD Œ0:05 Nm; 1 Nm*. Following the notation from previous sections, we
write x D col.2; !; ./, y D 2, and & D col.u; y/. Let us define the perturbation
$ D g.&; x; #/ WD 00.j!j=".!; #/. It is straightforward to confirm that the sys-
tem with input $ and output 2 is left-invertible and minimum-phase, as required
by Assumption 6.1. By extending the state space as described in Section 6.3, we
obtain the system P2 D !, J P! D u ! .˛2 C 01/! ! 00. C 01$, P. D ! ! $,
P$ D d.&; x; #;$/.

A technical problem arises due to the presence of j!j in the perturbation, which
causes the Lipschitz-like condition on d in Assumption 6.2 to fail. In the ob-
server we therefore approximate the absolute value function by j!j % a.!/ WD
!2=.21/C 1=2 on the interval Œ!1; 1*, where 1 is a small number that we choose
as 0:1. This approximation is continuously differentiable.

2Note that in this context, we are referring to a perturbation of the system matrices, not to $.
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6.8.1 Observer Design

We start the observer design by creating a modified high-gain observer according
to Section 6.3. We then obtain error dynamics of the form (6.4):

2

6

6

6

4

PQ2
PQ!
PQ.
PQ$

3

7

7

7

5

D

2

6

6

4

0 1 0 0

0 ! 1J .˛2 C 01/ ! 1J 00
1
J 01

0 1 0 !1
0 0 0 0

3

7

7

5

2

6

6

4

Q2
Q!
Q.
Q$

3

7

7

5

C

2

6

6

4

0
0
0
1

3

7

7

5

Qd !
!

Kx."/
K!."/

"

Q2;

(6.16)

where Kx."/ and K!."/ are to be designed. Using the software from Grip and
Saberi (2010) to transform the error dynamics to the SCB, we obtain

P,a D !
00

01
,a !

020 .!01˛2 C J00/

041
' !Ka."/';

P,q1 D ,q2 !Kq1."/'; P,q2 D ,q2 !Kq2."/';

P,q3 D
020 .!01˛2 C J00/

J031
,q1 C

00.01˛2 ! J00/
J021

,q2

C
J00 ! 01˛2 ! 021

01J
,q3 C

00

J
,a C ı !Kq3."/'; ' D ,q1 :

We may now proceed to design the gains according to Section 6.3.1. However, we
quickly discover that the problem is poorly conditioned, and that, consequently, we
require an unacceptably large gain. Some elements of the SCB system matrices are
very large, due to powers of the small constant 01 in the denominators and powers
of the large constant 00 in the numerators. The constant 01 can be viewed as a
small perturbation to the system matrices in (6.16), which fundamentally alters the

Parameter Value Parameter Value

J 0:0023 kgm2 ˛0 0:28 Nm
00 260:0 Nm=rad ˛1 0:05 Nm
01 0:6 Nms=rad ˛2 0:176 Nms=rad
!0 0:01 rad=s

Table 6.1: Numerical values for simulation example
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zero structure of the system by reducing the relative degree. This is indicated by
the zero dynamics subsystem, which is singularly perturbed with respect to 01. As
discussed in Section 6.7.1, it is better to design the gains with respect to the system
obtained by setting 01 D 0. We then obtain the simplified design system

2
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4

PQ2
PQ!
PQ.
PQ$

3

7

7

7

5

D

2
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0 1 0 0

0 ! 1J ˛2 ! 1J 00 0
0 1 0 !1
0 0 0 0

3
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7

5

C

2
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6

4

0
0
0
1

3

7

7

5

Qd !
!

Kx."/
K!."/

"

Q2;

which is transformed to

P,q1 D ,q2 !Kq1."/'; P,q2 D ,q3 !Kq2."/';

P,q3 D ,q4 !Kq3."/'; P,q4 D !
00

J
,q3 !

˛2

J
,q4 C ı !Kq4."/'; ' D ,q1 :

We now design the gains according to Section 6.3.1, placing the poles of H D
Aq ! NKqCq at !1˙ 0:2j and !2˙ 0:2j .

To design the parameter estimator, we note that whenever $ ¤ 0, we have
# D 00.j!j=$ ! ˛1exp.!.!=!0/2/. We may therefore apply Proposition 6.2,

by defining PO# D Proj.l.&; Ox; O$/).##.&; Ox; O#/ ! O#//, where ## represents the al-
gebraic solution ##.&; Ox; O$/ WD 00 O.a. O!/= O$ ! ˛1exp.!. O!=!0/2/; found when-
ever l.&; Ox; O$/ > 0. We define l.&; Ox; O$/ as l.&; Ox; O$/ D 1 when j O$j " 1, and
l.&; Ox; O$/ D 0 otherwise, and choose the gain ) D 1. According to Proposi-
tion 6.2, this approach works, assuming that j$j > 1 is guaranteed to occur some
portion of the time.

Remark 6.5. For simplicity, we have ignored a couple of technicalities in the exam-
ple: we have not used any projections or saturations; and we have defined l.&; Ox; O$/
to be discontinuous in O$, thereby breaking the Lipschitz condition in Assumption
6.4. It is easy to redefine l.&; Ox; O$/ to fix this problem.

6.8.2 Simulation Results

We simulate with the output y corrupted by noise. The noisy output can be seen
together with the actual angular position 2 in Figure 6.2. Using " D 1 gives
stable estimates, which results in the gains K."/ % Œ6; 13; 0; 13*T. To improve
the state estimates, we use the redesign discussed in Section 6.6, by creating a
second observer that uses the parameter estimate O# from the first observer. Since
in this case, Lipschitz-like conditions must only be placed on g, and not on the
derivative d , we can implement g.&; Ox; O#/ in the second observer without using
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Figure 6.2: Angular position 2 (solid) and noisy measurement y (dashed)

the continuously differentiable approximation of the absolute value. We follow the
same high-gain methodology to construct the second observer, placing the poles
of the matrix H at !1˙ 0:2j and !2 and selecting " D 1, which gives the gains
K."/ % Œ4; 5; 0*T. The resulting state estimates can be seen in Figure 6.3, together
with the parameter estimate.

6.9 Concluding Remarks

We have presented an observer design methodology for linear systems with nonlin-
early parameterized perturbations. As illustrated by the simulation example from
Section 6.8, this design methodology can yield good results when applied to a
system with noise-corrupted measurements. By estimating unknown parameters
in the nonlinear perturbation, we avoid having to suppress the effect of these un-
knowns using high gain alone, and we thereby reduce noise sensitivity of the ob-
server estimates compared to a pure high-gain design. By decomposing the linear
part of the error dynamics to the SCB, which explicitly reveals the system’s zero
structure and invertibility properties, we are able to treat a large class of MIMO

systems.
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Figure 6.3: Simulation results
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6.A Proofs

Proof of Lemma 6.1. The error dynamics (6.4) with K."/ D 0 consists of a sys-
tem described by the left-invertible, minimum-phase triple .C;A;E/, augmented
by adding an integrator at each input point. Because integrators are left-invertible,
it follows from the definition of left-invertibility that the augmented system is also
left-invertible. The invariant zeros of a left-invertible triple .C;A;E/ are the val-
ues of ´ for which the Rosenbrock system matrix

*

´I"A "E
"C 0

+

loses rank. It is easy
to confirm that when the triple .C;A;E/ is augmented with an integrator at each
input point, the resulting Rosenbrock system matrix loses rank for precisely the
same values of ´ as before, and hence the invariant zeros (and the minimum-phase
property) remain the same.

Proof of Lemma 6.2. This proof is based on the theory of Saberi and Sannuti
(1990). The proof is stated for the MIMO case, but is valid for SISO systems as
a special case. Define !a D ,a, !b D ,b , and !q D col.!q1 ; : : : ; !qk /, where for
each j 2 1; : : : ; k, !qj WD Sj,qj , where Sj D " Nnq"nqj diag.1; : : : ; "nqj"1/. We
then obtain the following equations:

P!a D Aa!a; P!b D .Ab !KbbCb/!b; (6.17a)

" P!qj D Hj !qj C Bqj "
Nnq .Daj !a CDbj !b C ıj CD"qj !q/; (6.17b)

where D"qj D Dqj diag.S
"1
1 ; : : : ; S"1

k
/. Let Pa, Pb , and Pqj , j D 1; : : : ; k,

be the symmetric, positive-definite solutions of the Lyapunov equations PaAa C
AT
aPa D !Ina , Pb.Ab ! KbbCb/C .Ab ! KbbCb/TPb D !Inb , and PqjHj C

H T
j Pqj D !Inqj , respectively. Define

W D !T
aPa!a C !T

bPb!b C "

k
X

jD1

!T
qj
Pqj !qj :

We then have

PW & !k!ak2 ! k!bk2 !
k
X

jD1

k!qj k2 C " Nnq

k
X

jD1

2kPqj k

# .kDaj kk!ak C kDbj kk!bk C kıj k C kD"qj kk!qk/k!qj k:

From the Lipschitz-like condition on d from Assumption 6.2, we know that for
each j 2 1; : : : ; k, there exist constants ˇaj , ˇbj , ˇ"j , and ˇqj such that

kıj k & ˇaj k,ak C ˇbj k,bk C ˇ"j k Q#k C ˇqj k,qk;
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which means that kıj k & ˇaj k!ak Cˇbj k!bk Cˇ"j k Q#k C "". Nnq"1/ˇqj k!qk. We
furthermore have kD"qj k & "". Nnq"1/kDqj k.

Let (a D
Pk
jD1 2kPqj k.kDaj k C ˇaj /, (b D

Pk
jD1 2kPqj k.kDbj k C ˇbj /,

(q D
Pk
jD1 2kPqj k.kDqj k C ˇqj /, and (" D

Pk
jD1 2kPqj kˇ"j . Then we may

write

PW & !k!ak2 ! k!bk2 ! .1 ! "(q/k!qk2

C " Nnq(ak!akk!qk C " Nnq(bk!bkk!qk C " Nnq("k Q#kk!qk:

Note that (q is multiplied by ". Furthermore, note that the cross terms between
k!ak and k!qk, and between k!bk and k!qk, are multiplied by " Nnq relative to the
stabilizing quadratic terms in k!ak2, k!bk2, and k!qk2. It is therefore straightfor-
ward to show that, by decreasing ", the cross terms are dominated, and there exist
positive constants ca, cb , and cq such that PW & !cak!ak2!cbk!bk2!cqk!qk2C
" Nnq("k Q#kk!qk. This expression shows that PW is negative outside a ball around
the origin, the size of which is proportional to Q# . From Khalil (2002, Th. 4.19),
we conclude that (6.17) is ISS with respect to Q# . Since (6.17) is obtained through
a nonsingular transformation of (6.4), the same holds for (6.4).

Proof of Theorem 6.1. We first note that Assumption 6.3 ensures that if O#.t0/ 2 ‚,
then for all t 2 R!0, O#.t/ 2 ‚. From Lemma 6.2, the error dynamics (6.4) is ISS

with respect to Q# . Hence, any trajectory of (6.4), (6.13) originating in RnCk #
.‚ ! ‚/ remains in a compact subset of RnCk # .‚ ! ‚/ for all future time.
In the remainder of this proof, we shall deal with the transformed system (6.17)
from the proof of Lemma 6.2, and prove that this system, together with (6.13), is
exponentially stable with RnCk # .‚ ! ‚/ contained in the region of attraction.
This will imply that the theorem holds with respect to the error dynamics (6.4),
(6.13). Based on Assumption 6.4, we know, by following the same argument as
for kıj k in the proof of Lemma 6.2, that there exist positive constants Ň

a, Ň
b , Ň

q

such that ku" .&; x;$; O#/!u" .&; Ox; O$; O#/k & Ň
ak!akC Ň

bk!bkC"". Nnq"1/ Ň
qk!qk.

Define V WD W C "2 Nnq"1Vu, where W is from the proof of Lemma 6.2. We then
obtain

PV & !cak!ak2 ! cbk!bk2 ! cqk!qk2 ! a3"2 Nnq"1k Q#k2

C " Nnq Œ.(" C a4 Ň
q/k!qk C a4 Ň

ak!ak C a4 Ň
bk!bk*k Q#k:

To show that we may dominate all the cross terms in the expression above by de-
creasing ", note that for arbitrary positive constants ˛1, ˛2, and ˛3, the expression
!˛1"21 ! ˛2"

2 Nnq"1"22 C ˛3"
Nnq"1"2 can be made negative definite by selecting

" < 4˛1˛2=˛
2
3 . Since we may split out expressions like the one above for each of
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the cross terms (by letting ˛1 and ˛2 be small fractions of the negative quadratic
terms, and ˛3 the constant in the cross term) and make them negative definite by
decreasing ", it is clear that there exists "# and a constant c > 0 such that for all
0 < " < "#, PV & !c.k!ak2 C k!bk2 C k!qk2 C k Q#k2/. This expression holds
on the set RnCk # .‚ ! ‚/. By invoking the comparison lemma (Khalil, 2002,
Lemma 3.4), we may therefore conclude that the origin of (6.17), (6.13) is expo-
nentially stable with RnCk # .‚!‚/ contained in the region of attraction, and the
same holds for (6.4), (6.13).
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Chapter 7

Structural Decomposition of

Linear Multivariable Systems

Using Symbolic Computations

Abstract: We introduce a procedure written in the mathematics software

suite Maple, which transforms linear time-invariant systems to a special co-

ordinate basis that reveals the internal structure of the system. The proce-

dure creates exact decompositions, based on matrices that contain elements

represented by symbolic variables or exact fractions. Throughout the proce-

dure, transformations are constructed with the goal of avoiding unnecessary

changes to the original states. The procedure is intended to complement nu-

merical software algorithms developed by others for the same purpose. We

discuss various system-theoretic aspects of the special coordinate basis as

well as numerical issues related to the decomposition procedure, and illus-

trate use of the procedure by examples.

7.1 Introduction

In 1987 Sannuti and Saberi introduced a structural transformation of multivariable
linear time-invariant (LTI) systems to a special coordinate basis (SCB) (Sannuti and
Saberi, 1987). The transformation partitions a system into separate but intercon-
nected subsystems that reflect the inner workings of the system. In particular, the
SCB representation explicitly reveals the system’s finite and infinite zero structure,
and invertibility properties. Since its introduction, the SCB has been used in a
large body of research, on topics including loop transfer recovery, time scale as-
signment, disturbance rejection,H2 control, andH1 control. It has also been used
as a fundamental tool in the study of linear systems theory. For details on these
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topics, we refer to the books Saberi, Chen, and Sannuti (1993); Saberi, Sannuti,
and Chen (1995); Chen (2000); Chen, Lin, and Shamash (2004); Saberi, Stoorvo-
gel, and Sannuti (2006), all of which are based on the SCB, and references therein.
Other topics include decoupling theory (Sannuti and Saberi, 1987), factorization
of linear systems (Chen, Saberi, and Sannuti, 1992), squaring down of non-square
systems (Sannuti and Saberi, 1987; Saberi and Sannuti, 1990b), and model reduc-
tion (Ozcetin, Saberi, and Sannuti, 1990).

While the SCB provides a fine-grained decomposition of multivariable LTI sys-
tems, transforming an arbitrary system to the SCB is a complex operation. A con-
structive algorithm for strictly proper systems is provided in Sannuti and Saberi
(1987), based on a modified Silverman algorithm (Silverman, 1969). This algo-
rithm is lengthy and involved, and includes repeated rank operations and construc-
tion of non-unique transformations to divide the state space. Thus, the algorithm
can realistically be executed by hand only for very simple systems.

To automate the process of finding transformations to the SCB, numerical algo-
rithms have been developed (see Chu, Liu, and Tan, 2002; Chen et al., 2004) and
implemented as part of the Linear Systems Toolkit forMatlab (Liu, Chen, and Lin,
2005). Although these numerical algorithms are invaluable in practical applica-
tions, engineers often operate on systems where some or all of the elements of the
system matrices have a symbolic representation. There are obvious advantages in
being able to transform these systems to the SCB symbolically, without having to
insert numerical values in place of symbolic variables. Furthermore, the numerical
algorithms are based on inherently inaccurate floating-point operations that make
them prone to numerical errors. Ideally, if the elements of the system matrices are
represented by symbols and exact fractions, one would be able to obtain an exact
SCB representation of that system, also represented by symbols and exact fractions.
To address these issues, we have developed a procedure for symbolic transforma-
tion of multivariable LTI systems to the SCB, using the commercial mathematics
software suiteMaple. The procedure is based on the modified Silverman algorithm
from Sannuti and Saberi (1987), with a modification to achieve a later version of
the SCB that includes an additional structural property (see, e.g., Saberi, Chen, and
Sannuti, 1991), and an extension to SCB for non-strictly proper systems (Saberi
and Sannuti, 1990b). The purpose of this paper is to introduce this procedure,
and to explain how it is implemented using Maple and the LinearAlgebra pack-
age. The paper is also intended to serve as an introduction to the SCB, in particular
for readers that might benefit from the possibility of working with symbolically
represented systems in SCB form.

We believe that our procedure serves as a useful complement to available nu-
merical tools. Symbolic transformation to the SCB makes it possible to work di-
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rectly on the SCB representation of a system without first inserting numerical val-
ues, thereby removing an obstacle to more widespread use. The work presented in
this paper also constitutes the first step in a wider effort to apply symbolic SCB rep-
resentations to topics where the SCB has previously been applied, such as squaring
down of non-square systems and asymptotic time scale assignment.

7.1.1 Notation

We denote by col.´1; : : : ; ´n/ the column vector obtained by stacking the column
vectors ´1; : : : ; ´n. We denote by diag.M1; : : : ;Mn/ the matrix with submatrices
M1; : : : ;Mn (not necessarily of the same dimensions) along the diagonal. We
denote by In the n # n identity matrix. The symbol 0 may refer to the scalar
number zero, or a zero matrix of appropriate dimensions.

7.2 The Special Coordinate Basis

In this section we give a review of the SCB. For readers unfamiliar with the topic,
the complexities of the SCB may initially appear overwhelming. This is only a
reflection, however, of the inherent complexities that exist in general multivari-
able LTI systems. For a less technical introduction to the SCB, we recommend
Berg (1998). In the following exposition, significant complexity is added to ac-
commodate non-strictly proper systems. To get an initial overview of the SCB, we
recommend ignoring the non-strictly proper case and the complexities that follow
from it.

Consider the LTI system

POx D OA Ox C OB Ou; (7.1a)

Oy D OC Ox C OD Ou: (7.1b)

where Ox 2 Rn is the state, Ou 2 Rm is the input, and Oy 2 Rp is the output. We
assume without loss of generality that the matrices Œ OBT; ODT*T and Œ OC ; OD* are of
full rank.

For simplicity in the non-strictly proper case (i.e., OD ¤ 0), we assume in this
section that the input and output are partitioned as

Ou D
!

u0
Ou1

"

and Oy D
!

y0
Oy1

"

;
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where u0 and y0 are of dimension m0, and furthermore that OD has the form OD D
diag.Im0 ; 0/. Then we may write

Oy D
!

y0
Oy1

"

D

"

OC0 Ox C u0
OC1 Ox

#

; (7.2)

where OC0 consists of the upper m0 rows of OC , and OC1 consists of the remaining
rows of OC . The special form in (7.2) means that the input-output map is partitioned
to separate the direct-feedthrough part from the rest: the output y0 is directly af-
fected by u0, and the remainder of the output Oy1 is not directly affected by any
input. Note that by substituting u0 D y0 ! OC0 Ox, we can write the system (7.1) in
the alternative form

POx D . OA ! OB0 OC0/ Ox C OB
!

y0
Ou1

"

; (7.3a)

Oy D OC Ox C OD Ou: (7.3b)

where OB0 consists of the left m0 columns of OB . In the strictly proper case, OB0 and
OC0 are nonexistent.

By nonsingular transformation of the state, output, and input, the system (7.1)
can be transformed to the SCB. We use the symbols x, y, and u to denote the state,
output, and input of the system transformed to SCB form. The transformations
between the original system (7.1) and the SCB are called )1, )2, and )3, and we
write Ox D )1x, Oy D )2y, and Ou D )3u.

The state x is partitioned as x D col.xa; xb; xc ; xd /, where each component
represents a particular subsystem described in the next section. The output is parti-
tioned as y D col.y0; yd ; yb/, where y0 is the original output y0 from (7.1), yd is
the output from the xd subsystem, and yb is the output from the xb subsystem. The
input is partitioned as u D col.u0; ud ; uc/, where u0 is the original input u0 from
(7.1), ud is the input to the xd subsystem, and uc is the input to the xc subsystem.
The transformation )3 is on the form diag.Im0 ; N)3/, where N)3 is nonsingular.

7.2.1 Structure of the SCB

Consider first the case when (7.1) is strictly proper. The meaning of the four sub-
systems can be explained as follows:

$ The xa subsystem represents the zero dynamics. This part of the system is
not directly affected by any inputs, nor does it affect any outputs directly.
It may be affected, however, by the outputs yb and yd from the xb and xd
subsystems.
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$ The xb subsystem has a direct effect on the output yb , but it is not directly
affected by any inputs. It may be affected, however, by the output yd from
the xd subsystem. The xb subsystem is observable from yb .

$ The xc subsystem is directly affected by the input uc , but it does not have
a direct effect on any outputs. It may also be affected by the outputs yb
and yd from the xb and xd subsystems, as well as the state xa. However,
the influence from xa is matched with the input uc . The xc subsystem is
controllable from uc .

$ The xd subsystem represents the infinite zero structure. This part of the
system is directly affected by the input ud , and it also affects the output yd
directly. The xd subsystem can be further partitioned into md single-input
single-output (SISO) subsystems xi for i D 1; : : : ; md . Each of these sub-
systems consists of a chain of integrators of length qi , from the i’th element
of ud to the i’th element of yd . Each integrator chain may be affected at
each stage by the output yd from the xd subsystem, and at the lowest level
of the integrator chain (where the input appears), it may be affected by all
the states of the system. The xd subsystem is observable from yd , and con-
trollable from ud .

The structure of strictly proper SCB systems is summarized in Table 7.1. For non-
strictly proper systems the structure is the same, except for the existence of the
direct-feedthrough output y0, which is directly affected by the input u0, and can
be affected by any of the states of the system. It can also affect all the states of the
system.

Subsystem Input Output Interconnections Remarks

xa — — yb , yd Zero dynamics
xb — yb yd Observable
xc uc — yb , yd , xa? Controllable
xd ud yd xa

?, xb?, xc? Observable and controllable

?Matched with input

Table 7.1: Summary of strictly proper SCB structure. The Interconnections column indi-
cates influences from other subsystems.

177



STRUCTURAL DECOMPOSITION OF LINEAR MULTIVARIABLE SYSTEMS

USING SYMBOLIC COMPUTATIONS

7.2.2 SCB Equations

The SCB representation of the system (7.1) is given by

Pxa D Aaaxa C Ba0y0 C Ladyd C Labyb; (7.4a)

Pxb D Abbxb C Bb0y0 C Lbdyd ; (7.4b)

Pxc D Accxc C Bc0y0 C Lcdyd C Lcbyb C Bc.uc CEcaxa/; (7.4c)

Pxi D Aqixi C Bd0y0 C Lidyd

C Bqi .ui CEiaxa CEibxb CEicxc CEidxd /; (7.4d)

for i D 1; : : : ; md . The outputs are given by

y0 D C0axa C C0bxb C C0cxc C C0dxd C u0; (7.5a)

yi D Cqixi ; i D 1; : : : ; md ; (7.5b)

yb D Cbxb: (7.5c)

The qi -dimensional states xi make up the state xd D col.x1; : : : ; xmd /; the scalar
outputs yi make up the output yd D col.y1; : : : ; ymd /; and the scalar inputs ui
make up the input ud D col.u1; : : : ; umd /. The matrices Aqi , Bqi , and Cqi have
the special structure

Aqi D

2

6

6

6

4

0 1 ' ' ' 0
:::

:::
: : :

:::
0 0 ' ' ' 1
0 0 ' ' ' 0

3

7

7

7

5

; Bqi D

2

6

6

6

4

0
:::
0
1

3

7

7

7

5

; Cqi D
*

1 0 ' ' ' 0
+

:

The pair .Cb; Abb/ is observable, and the pair .Acc ; Bc/ is controllable. In the
strictly proper case, the input u0 and output y0 are nonexistent, as are the matrices
Ba0, Bb0, Bc0, Bd0, C0a, C0b , C0c , and C0d .

7.2.3 Compact Form

We may write (7.4) as

Px D Ax C B

2

4

y0
ud
uc

3

5 ; (7.6a)

y D Cx CDu; (7.6b)
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with the SCB system matrices A, B , C , andD defined as

A D

2

6

6

4

Aaa LabCb 0 LadCd
0 Abb 0 LbdCd

BcEca LcbCb Acc LcdCd
BdEda BdEdb BdEdc Add

3

7

7

5

; B D

2

6

6

4

Ba0 0 0
Bb0 0 0
Bc0 0 Bc
Bd0 Bd 0

3

7

7

5

;

C D

2

4

C0a C0b C0c C0d
0 0 0 Cd
0 Cb 0 0

3

5 ; D D

2

4

Im0 0 0
0 0 0
0 0 0

3

5 ;

where

Add D diag.Aq1 ; : : : ; Aqmd /C LddCd C BdEdd ;

Bd D diag.Bq1 ; : : : ; Bqmd /;

Cd D diag.Cq1 ; : : : ; Cqmd /;

Ldd D ŒLT
1d ; : : : ; L

T
mdd

*T;

Eda D ŒET
1a; : : : ; E

T
mda

*T;

and similar for Edb , Edc , and Edd .
To see the relationship between the system matrices OA, OB , OC , and OD and the

SCB matrices A, B , C , and D from (7.6), substitute Ox D )1x, Oy D )2y, and
Ou D )3u in equation (7.3). Also, note that since )3 is of the form diag.Im0 ; N)3/,
we can make the substitution col.y0; Ou1/ D )3col.y0; ud ; uc/. We then obtain the
equations

Px D )"1
1 . OA ! OB0 OC0/)1x C )"1

1
OB)3

2

4

y0
ud
uc

3

5 ;

y D )"1
2

OC)1x C )"1
2

OD)3u:

Comparison with (7.6) then shows that A D )"1
1 . OA ! OB0 OC0/)1, B D )"1

1
OB)3,

C D )"1
2

OC)1, and D D )"1
2

OD)3. In the strictly proper case, the expression for
A reduces to A D )"1

1
OA)1.

7.2.4 Pre-Transformation of Non-Strictly Proper Systems

We assumed initially that the input and output vectors Ou and Oy have a special par-
titioning that separates the direct-feedthrough part from the rest, as shown in (7.2).
A strictly proper system already has this form, but given a general non-strictly
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proper system, a pre-transformation may have to be applied to put the system in
the required form. Suppose that the we initially have a system with input Qu, out-
put Qy, input matrix QB , and output matrices QC and QD. Then there are nonsingular
transformations U and Y such that Qu D U Ou and Qy D Y Oy, where Ou and Oy have the
structure required in (7.2). The dimension m0 of u0 and y0 is the rank of QD. The
matrices OB , OC , and OD are obtained from QB , QC , and QD by OB D QBU , OC D Y "1 QC ,
and OD D Y "1 QDU . Our Maple procedure, in addition to returning the matrices A,
B , C , and D of the SCB system, the transformations )1, )2, and )3 to transform
(7.1) to SCB form, and the dimension of each subsystem, returns the transforma-
tions U and Y , to take a general non-strictly proper system to the form required in
(7.1), (7.2).

7.3 Properties of the SCB

The SCB is closely related to the canonical form of Morse (Morse, 1973), which
is obtained through transformations of the state, input, and output spaces, and the
application of state feedback and output injection. A system in the canonical form
of Morse consists of four decoupled subsystems that reflect essential geometric
properties of the original system. The SCB form of a system largely reflects the
same properties; however, the SCB is obtained through transformations of the state,
input, and output spaces alone, without the application of state feedback and output
injection. Thus, the SCB is merely a representation of the original system in a
different coordinate basis, and it can therefore be used directly for design purposes.

Some properties of the SCB, which correspond directly to properties of the
canonical form of Morse, are the following:

$ The invariant zeros of the system (7.1) are the eigenvalues of the matrixAaa.
Hence, the system is minimum-phase if, and only if, the eigenvalues of Aaa
are located in the open left-half complex plane.

$ The system (7.1) is right-invertible if, and only if, the subsystem xb is non-
existent.

$ The system (7.1) is left-invertible if, and only if, the subsystem xc is non-
existent.

$ The system (7.1) is invertible if, and only if, both the subsystem xb and the
subsystem xc are nonexistent.

$ The system (7.1) has m0 infinite zeros of order 0 and i Nqi infinite zeros of
order i , where Nqi is the number of integrator chains of length i in the xd
subsystem.
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By studying the dynamics of the xa subsystem and its connections to the rest of
the system, one obtains a precise description of the invariant zero dynamics of the
system and the classes of input signals that may be blocked by these zeros. The
information thus obtained goes beyond what can be obtained through the notions
of state and input pseudo zero directions (see MacFarlane and Karcanias, 1976;
Saberi et al., 1991).

The representation of the infinite zero structure through integrator chains in
the xd subsystem allows for the explicit construction of high-gain controllers and
observers in a general multiple-input multiple-output setting (see, e.g., Saberi and
Sannuti, 1990a). This removes unnecessary restrictions of square-invertibility and
uniform relative degree that are found in much of the high-gain literature.

7.3.1 Connection to Geometry Theory

Geometry theory is concerned with the study of subspaces of the state space with
certain invariance properties, for example, A-invariant subspaces (which remain
invariant under the unforced motion of the system), .A;B/-invariant subspaces
(which can be made invariant by the proper application of state feedback), and
.C;A/ invariant subspaces (which can be made invariant by the proper applica-
tion of output injection) (see, e.g., Wonham, 1979; Trentelman, Stoorvogel, and
Hautus, 2001). Prominent examples of A-invariant subspaces are the controllable
subspace (i.e., the image of the controllability matrix) and the unobservable sub-
space (the kernel of the observability matrix).

The development of geometry theory has in large part been motivated by the
challenge of decoupling disturbance inputs from the outputs of a system, either
exactly or approximately. Toward this end, a number of subspaces have been iden-
tified, which can be related to the partitioning in the SCB. Of particular importance
in the context of control design for exact disturbance decoupling are the weakly

unobservable subspace, which, by the proper selection of state feedback, can be
made not to affect the outputs; and the controllable weakly unobservable subspace,
which has the additional property that the dynamics restricted to this subspace is
controllable. Of particular importance in the context of observer design for ex-
act disturbance decoupling are the strongly controllable subspace, which, by the
proper selection of output injection, is such that its quotient space can be rendered
unaffected by the system inputs; and the distributionally weakly unobservable sub-
space, which has the additional property that the dynamics restricted to its quotient
space is observable.

We denote by Xa, Xb , Xc , and Xd the subspaces spanned by the states xa,
xb , xc , and xd , and by ˚ the direct sum of two subspaces that intersect only at the
origin. The subspaces mentioned above can then be related to the SCB as follows:
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$ The weakly unobservable subspace is given by Xa ˚ Xc .

$ The controllable weakly unobservable subspace is given by Xc .

$ The strongly controllable subspace is given by Xc ˚ Xd .

$ The distributionally weakly unobservable subspace is given by Xa ˚ Xc ˚
Xd .

A list of further subspaces identified in geometry theory and their relationship to
the SCB can be found in Saberi et al. (1991).

The SCB provides a more direct and tangible path to disturbance decoupling
design than the somewhat abstract notions of geometry theory. For example, ge-
ometry theory tells us that a disturbance entering into the weakly unobservable
subspace can be decoupled from the outputs by the proper selection of state feed-
back. In the SCB the weakly unobservable subspace is represented by the state
variables xa and xc ; thus, a disturbance affecting only xa and xc can be decou-
pled from the outputs. This decoupling is achieved by selecting the state feedback
u0 D !C0axa !C0cxc C v0, ui D !Eiaxa !Eicxc C vi , i D 1; : : : ; md , where
v0 and vi , as well as uc , can be chosen freely. It can be verified by direction in-
spection of (7.4) that this state feedback cancels the influence of xa and xc on the
rest of the system, and therefore on the outputs. With the help of symbolic trans-
formations, such decoupling design can be carried out directly on systems with a
symbolic representation.

7.3.2 Further Properties

Some useful connections can be made between the SCB representation of a system
and the properties of controllability, stabilizability, observability, and detectability:

$ The system (7.1) is controllable (stabilizable) if, and only if, the pair
#!

Aaa LabCb
0 Abb

"

;

!

Ba0 Lad
Bb0 Lbd

"$

is controllable (stabilizable).

$ The system (7.1) is observable (detectable) if, and only if, the pair
#!

C0a C0c
Eda Edc

"

;

!

Aaa 0
BcEca Acc

"$

is observable (detectable).
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$ The system (7.1) is stabilizable if it is right-invertible and minimum-phase
(i.e., the xb subsystem is nonexistent and the eigenvalues of Aaa are in the
open left-half plane).

$ The system (7.1) is detectable if it is left-invertible and minimum-phase (i.e.,
the xc subsystem is nonexistent and the eigenvalues of Aaa are in the open
left-half plane).

The subsystem partitioning of the SCB remains the same when state feedback and
output injection is applied to the system. This is in contrast to the system obtained
by a Kalman decomposition, which is partitioned according to the properties of
controllability and observability.

7.4 Maple Procedure

Our Maple procedure is invoked as follows:

A, B, C, D, G1, G2, G3, U, Y, dim := scb(Ai, Bi, Ci, Di );

The inputs Ai, Bi, Ci, and Di are system matrices describing a general multivariable
LTI system. The outputs A, B, C, and D are the system matrices describing a corre-
sponding SCB system. The outputs G1, G2, and G3 are the transformation matrices
)1, )2, and )3 between the system (7.1) and the SCB. The outputs U and Y are the
pre-transformations that must be applied to the system to put it in the form required
of (7.1), (7.2), as described in Section 7.2.4. Finally, the output dim is a list of four
integers representing the dimensions of the xa, xb , xc , and xd subsystems, in that
order. The Maple source code is available from Grip and Saberi (2010).

The modified Silverman algorithm for transformation to the SCB is much too
long to be presented in this article. For the details of the algorithm, we refer to
Sannuti and Saberi (1987). In the following we shall present a broad outline of
the steps of the algorithm and discuss issues that require particular attention in a
symbolic implementation. Much of the algorithm consists of tedious but straight-
forward manipulation of matrices, which is not discussed in this article.

Throughout the algorithm, we identify a large number of variables that are lin-
ear transformations of the original state. We keep track of these by storing the
matrices that transform the original state to the new variables. For example, the
temporary variable yi0, given by the expression yi0 D Ci Ox, is represented inter-
nally by a Matrix data structure containing Ci . The procedure is not written to per-
form well on floating-point data. For this reason, all floating-point elements of the
matrices passed to the procedure are converted to exact fractions before any other
operations are performed, using Maple’s convert function. In many cases, we need
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to store a whole list of matrices, representing variables obtained during successive
iterations of a particular part of the algorithm. To do this, we use the Maple data
structures Vector and Matrix, which can be used to store vectors or matrices whose
elements are Matrix data structures.

7.4.1 Strictly Proper Case

The algorithm for strictly proper systems is implemented as scbSP. The first part
of this algorithm identifies the two subsystems that directly influence the outputs,
namely the xb and xd subsystems, through a series of steps that are repeated until
the outputs are exhausted. The algorithm works by identifying transformed input
and output spaces such that each input channel is directly connected to one output
channel by a specific number of inherent integrations.

Let the strictly proper system passed to the scbSP procedure be represented by
the state equations POx D OA Ox C OB Ou, Oy D OC Ox. In the first iteration we start with the
output y10 D OC Ox, and determine whether its derivative Py10 D OC OA Ox C OC OB Ou de-
pends on any part of the input Ou. If so, we use a transformation NS1 to separate out
a linear combination of outputs and inputs that are separated by one integration in
a linearly independent manner. This will create an integrator chain of length one,
as part of the xd subsystem. A transformed part of the output derivative that is not
directly influenced by the input is denoted QC1 Ox, and is processed further. We use
a transformation N$1 to separate out any part of QC1 Ox that is linearly dependent on
y10. This will create states that are part of the xb subsystem. After the linearly de-
pendent components are separated out, the remaining part of the output derivative
is given the name y20. In the next iteration we process y20 in the same fashion
as y10, to identify integrator chains of length two, and possibly further additions
to the xb subsystem. The algorithm continues in this fashion until the outputs are
exhausted.

Constructing Transformation Matrices

When implementing these steps in Maple, the main part of each iteration consists
of constructing transformation matrices NSi and N$i . In particular, we are faced with
the following problem at step i : given a matrix Ci of dimension pi # n and a
matrix NDi"1 of dimension Nqi"1 # m of maximal rank Nqi"1, let Nqi be the rank of
Œ NDT
i"1; .Ci

OB/T*T, and let qi D Nqi ! Nqi"1. Find a nonsingular matrix NSi such that

NSi
! NDi"1
Ci OB

"

D

2

4

NDi"1
ODi
0

3

5 ; NSi D
!

I Nqi"1 0
Sia Si

"

; Sia D
!

0
Sib

"

; Si D
!

Si1
Si2

"

;
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where ODi is a qi #m matrix of maximal rank, and where Si1, Si2, and Sib are of
dimensions qi # pi , .pi ! qi / # pi , and .pi ! qi / # Nqi"1. The meaning of the
various dimensions is not important in this context. In general, NSi is not unique.

The rank of the matrix Œ NDT
i"1; .Ci

OB/T*T can be obtained with the Rank function
in the LinearAlgebra package. To construct the matrix NSi , the first observation we
make is that, since Sib NDi"1CSi2Ci OB D 0, the rows of the matrix ŒSib; Si2*must
belong to the left null space of Œ NDT

i"1; .Ci
OB/T*T. If Œ NDT

i"1; .Ci
OB/T*T has full rank

Nqi"1 C pi , then Sib and Si2 are empty matrices, and we may select Sia D 0 and
Si1 D Ipi . Otherwise, we can obtain a set of linearly independent basis vectors
for the left null space of Œ NDT

i"1; .Ci
OB/T*T, or equivalently, for the right null space

of its transpose, using the NullSpace function of the LinearAlgebra package. The
transpose of the basis vectors can then be stacked to form the matrix ŒSib; Si2*,
which can be split up to form Sib and Si2. However, the null space basis is not
unique and, moreover, the order in which the basis vectors are returned by Maple
is not consistent. This may cause our procedure to produce different results on dif-
ferent executions with the same matrices, which is undesirable. To avoid this, we
first stack the transpose of the basis vectors, and then transform the resulting ma-
trix to the unique reduced-row echelon form, by using the ReducedRowEchelonForm

function of the LinearAlgebra package. Since the transformation involves a finite
number of row operations, the rows of the matrix in reduced-row echelon form
remain in the left null space.

Since NSi should be a nonsingular matrix, the submatrix Si must be nonsingular.
This requires that Si2 has maximal rank, which is confirmed as follows: if any of
the rows of Si2 are linearly dependent, a linear combination of rows in ŒSib; Si2*
can be constructed to create a row vector v such that vŒ NDT

i"1; .Ci
OB/T*T D 0, where

the rightmost pi columns of v are zero. However, since the rows of NDi"1 are lin-
early independent, this implies that v D 0, which in turn implies that ŒSib; Si2*
must have linearly dependent rows. Since this is not the case, Si2 must have max-
imal rank.

We continue by constructing the matrix Si1. Nonsingularity of Si requires
that the rows of Si1 must be linearly independent of the rows of Si2. One way to
produce Si1 is to choose its rows to be orthogonal to the rows of Si2, which can
be achieved by using a basis for the right null space of Si2. However, since the
matrix NSi will be used to transform the state of the original system, it is generally
desirable for this matrix to have the simplest possible structure. This helps avoids
unnecessary changes to the original states, and thus it generally produces more
appealing solutions. We therefore construct Si1 by the following procedure: we
start by initializing Si1 as the identity matrix of dimension pi #pi . We then create
a reduced-row echelon form of Si2, and iterate backwards over the rows of this
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matrix. For each row, we search along the columns from the left until we reach
the leading 1 on that row. We then delete the row in Si1 corresponding to the
column with the leading 1. This ensures that Si D ŒST

i1; S
T
i2*

T is nonsingular, with
Si1 consisting of zeros except for a single element equal to 1 on each row. The
construction of NSi is now easily completed.

At each step, we must also construct a nonsingular matrix N$i . The problem
of finding this matrix is analogous to the problem of finding NSi , and we there-
fore use the same procedure. Finding the transformations NSi and N$i constitute the
most important part of finding the states xb and xd . After xb and xd are iden-
tified, finding the output transformation )2 is straightforward, based on Sannuti
and Saberi (1987). We also find an input transformation ) 0

3 based on Sannuti and
Saberi (1987) and write Ou D ) 0

3Œud
T; u0

c
T*T, where u0

c is a temporary input. Unlike
Sannuti and Saberi (1987), we shall apply a further transformation to u0

c to achieve
an input uc that is matched with the influence from xa on the right-hand side of
the xc equation.

7.4.2 Constructing the xa and xc States

After finding the transformations from the original states to the xb and xd states,
the next step is to find a transformation to a temporary state vector xs that will
be further decomposed into the states xa and xc . The requirements on xs is that
it must be linearly independent of the already identified states xb and xd , so that
xs , xb , and xd together span the entire state space; and that its derivative Pxs must
only depend on xs itself, plus yb , yd , and u0

c , because those are the only quantities
allowed in the derivatives of xa and xc in the strictly proper case.

Suppose that col.xb; xd / D )bd Ox. The procedure for finding xs is to start
with a temporary state vector x0s D )0s Ox that is linearly independent of xb and xd .
Hence, we select )0s such that Œ)0T

s ;)
T
bd

*T is nonsingular. To do so in our Maple
procedure, we use the same technique as for finding Si1 based on Si2 in Section
7.4.1.

The derivative of x0s , written in terms of the states x0s , xb , and xd , and the
inputs u0

c and ud , can be written as

Px0s D A0

2

4

x0s
xb
xd

3

5C B0
!

ud
u0
c

"

D A0sx
0
s C A0bxb C A0dxd C B0dud C B0c u

0
c;

for some matrices A0 D ŒA0s ; A
0
b
; A0

d
* and B0 D ŒB0

d
; B0c *. In our Maple pro-

cedure, we can easily calculate A0 D )0s OA.Œ)0T
s ;)

T
bd

*T/"1 and B0 D )0s OB) 0
3,

and then extract the matrices A0s , A
0
b
, A0c , B

0
d
, and B0c . To do so, we use the

MatrixInverse function of the LinearAlgebra package.
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To conform with the SCB, we need to modify x0s to eliminate the input ud
in Px0s . To eliminate ud , we create a temporary state vector xd0 D )d0 Ox, con-
sisting of the lowermost level of each integrator chain in the xd subsystem (that
is, the point where the input enters the integrator chain). According to (7.4),
we then have Pxd0 D ud C Ad0Œx

0
s

T
; xb

T; xd
T*T, for some matrix Ad0. There-

fore, by defining a new temporary state x1s D x0s ! B0
d
xd0, we have Px1s D

.A0 !B0
d
Ad0/Œx

0
s

T
; xb

T; xd
T*T CB0c u

0
c . Hence, the derivative of the new tempo-

rary state vector x1s is independent of ud , bringing us one step closer to obtaining
xs . The elimination procedure is continued in a similar fashion, as described in
Sannuti and Saberi (1987), until we obtain a state xs such that Pxs depends only on
xs , yb , yd , and u0

c .
The final step is to decompose xs into two subsystems, xa and xc , and to

transform the input u0
c into uc , in such a way that xa is unaffected by uc and xc is

controllable from uc . Furthermore, the influence of xa on xc should be matched
with uc , as seen in (7.4). If u0

c is nonexistent, then we simply set xa D xs . If
u0
c does exist, we proceed by first finding the derivative Pxs D Assxs C Lsbyb C
Lsdyd C Bscu

0
c , for some matrices Ass , Lsb , Lsd , and Bsc . We then obtain the

proper transformations by calling scbSP recursively on the transposed system with
system matrix AT

ss , output matrix BT
sc , and an empty input matrix. This recursive

call returns a system consisting only of an xa and an xb subsystem. It is easily
confirmed that, when transposed back again, this system has the desired structure.
We therefore let ŒxaT; xc

T*T D )?1
Txs and uc D )?2

Tu0
c , where )?1 and )?2 are the

state and output transformations returned by the recursive call.

7.4.3 Non-Strictly Proper Case

To handle the non-strictly proper case, the first step is to find the pre-transformation
matrices U and Y , described in Section 7.2.4. Suppose that the matrices passed to
the procedure scb are OA, QB , QC , and QD. We need to find nonsingular U and Y such
that, according to Section 7.2.4, OB D QBU , OC D Y "1 QC , and OD D Y "1 QDU , where
OD is of the form diag.Im0 ; 0/. The rankm0 of QD is found using the Rank function.
Let Y "1 D ŒY T

1 ; Y
T
2 *

T, where Y1 has m0 rows. Then we have the equations

Y "1 QDU D
!

Y1 QDU
Y2 QDU

"

D
!

Im0 0
0 0

"

:

To solve these equations, we choose the rows of Y2 from the left null space of QD,
using the functions NullSpace and ReducedRowEchelonForm as before; and we select
Y1 such that ŒY T

1 ; Y
T
2 *

T is nonsingular, using the same procedure as for finding
Si1 given Si2 in Section 7.4.1. This leaves us to solve the equation Y1 QDU D
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ŒIm0 ; 0* with respect to some nonsingular U . Let U"1 D ŒU T
1 ; U

T
2 *

T such that
U1 has m0 rows. We select U1 D Y1 QD, and we select U2 such that ŒU T

1 ; U
T
2 *

T is
nonsingular, by the same procedure as before. It is then straightforward to confirm
that Y1 QDU D ŒIm0 ; 0*. We can now calculate the matrices OB , OC , and OD that
conform with the required structure of (7.1), (7.2).

Let OB0 consist of the leftm0 columns of OB , and let OB1 consist of the remaining
columns of OB . Similar to (7.3), we can write the system equations (7.1) as

POx D . OA ! OB0 OC0/ Ox C OB0y0 C OB1 Ou1; (7.7a)

y0 D OC0 Ox C u0; (7.7b)

Oy1 D OC1 Ox: (7.7c)

Suppose we obtain the SCB form of the strictly proper system described by the ma-
trices . OA! OB0 OC0/, OB1, and OC1, by invoking the procedure scbSP, and suppose the
transformation matrices returned for this system are N)1, N)2, and N)3. Substituting
Ox D N)1x, Oy1 D N)2Œyd

T; yb
T*T, and Ou1 D N)3Œud

T; uc
T*T in (7.7) yields

Px D N)"1
1 . OA ! OB0 OC0/ N)1x C N)"1

1
OB0y0 C N)"1

1
OB1 N)3

!

ud
uc

"

;

y0 D OC0 N)1x C u0;
!

yd
yb

"

D N)"1
2

OC1 N)1x:

It is easily confirmed that this system conforms to the SCB, by defining A D
N)"1
1 . OA ! OB0 OC0/ N)1, B D N)"1

1 Œ OB0; OB1 N)3*, C D Œ OC T
0 ; .

N)"1
2

OC1/T*T N)1, and D D
diag.Im0 ; 0/. Defining the transformations for the non-strictly proper system as
)1 D N)1, )2 D diag.Im0 ; N)2/, and )3 D diag.Im0 ; N)3/, we obtain A D )"1

1 . OA !
OB0 OC0/)1, B D )"1

1
OB)3, C D )"1

2
OC)1, and D D )"1

2
OD)3, which are the

proper expressions relating the matrices OA, OB , OC , and OD to the SCB matrices (see
Section 7.2.3).

7.5 Examples

In this section, we apply the decomposition procedure to several example systems.

7.5.1 Linear Single-Track Model

A widely used model for the lateral dynamics of a car is the linear single-track
model (see, e.g., Kiencke and Nielsen, 2000). For a car on a horizontal surface,
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this model is described by the equations

Pvy D
1

m
.Ff C Fr/ ! rvx;

Pr D
1

J
.lfFf ! lrFr/;

where vy is the lateral velocity at the center of gravity; r is the yaw rate (angular
rate around the vertical axis); m is the mass; J is the moment of inertia around
the vertical axis through the car’s center of gravity; lf and lr are the longitudinal
distances from the center of gravity to the front and rear axles; and Ff and Fr are
the lateral road-tire friction forces on the front and rear axles. The longitudinal
velocity vx is assumed to be positive and to vary slowly enough compared to the
lateral dynamics that it can be considered a constant. The friction forces can be
modeled by the equations

PFf D
cf

Tr

#

ıf !
vy

vx
! lf

r

vx

$

!
1

Tr
Ff;

PFr D
cr

Tr

#

!
vy

vx
C lr

r

vx

$

!
1

Tr
Fr;

where ıf is the front-axle steering angle; cf and cr are the front- and rear-axle
cornering stiffnesses; and Tr is a speed-dependent tire relaxation constant (see,
e.g., Pacejka, 2006). In modern cars with electronic stability control, the main
measurements that describe the lateral dynamics are the yaw rate r and the lateral
acceleration ay D 1

m.FfCFr/. Considering ıf as the input, the system is described
by

OA D

2

6

6

6

4

0 !vx 1
m

1
m

0 0 lf
J ! lrJ

! cf
Trvx

! lfcf
Trvx

! 1
Tr

0

! cr
Trvx

lrcr
Trvx

0 ! 1
Tr

3

7

7

7

5

; OB D

2

6

6

4

0
0
cf
Tr
0

3

7

7

5

;

OC D
!

0 1 0 0

0 0 1
m

1
m

"

; OD D
!

0
0

"

:

If we pass these matrices to our Maple procedure, we obtain SCB system matrices

A D

2

6

6

6

6

4

! 1
Tr

1 0 Trlfm
cr.lfClr/

! lrcr.lfClr/vxTrJ
0 1 lfm

cr.lfClr/

!cr.lfClr/TrJ
0 0 1

vx
cr.lrcr"lfcf/.lfClr/

mT 2r vxJ
0 !cfCcrmTr

! 1
Tr

3

7

7

7

7

5

; B D

2

6

6

4

0
0
0
1

3

7

7

5

;
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C D
!

0 0 0 1
1 0 0 0

"

; D D
!

0
0

"

;

and the transformations

)1 D

2

6

6

6

4

0 0 vx 0
cr.lfClr/
TrJ

0 0 0

! cr
T 2r

cr
Tr

0 m
cr
T 2r

! crTr 0 0

3

7

7

7

5

; )2 D

"

0 cr.lfCcr/
TrJ

1 0

#

; )3 D
mTr

cf
:

The dimension list dim returned by the procedure is 0; 3; 0; 1, meaning that the first
three states belong to the xb subsystem, and the last state is an integrator chain of
length 1, belonging to the xd subsystem. Inspection of the SCB system immedi-
ately reveals that the system is observable, since both the xb and xd subsystems are
always observable. The system is left-invertible, since the state xc is non-existent,
meaning that the steering angle can be identified from the outputs if the initial con-
ditions are known. The system is not right-invertible, since it has an xb subsystem,
reflecting the obvious fact that the yaw rate and lateral acceleration cannot be in-
dependently controlled from a single steering angle. The system has no invariant
zero dynamics, since the state xa is non-existent.

If we add rear-axle steering by augmenting the OB matrix with a column
2

6

6

4

0
0
0
cr
Tr

3

7

7

5

;

the Maple procedure returns the SCB system matrices

A D

2

6

6

6

4

0 1 !vx 0

! cfCcr
mTrvx

! 1
Tr

lrcr"lfcf
mTrvx

0

0 0 0 1
lrcr"lfcf
JTrvx

0 ! l
2
f cfCl

2
r cr

JTrvx
! 1
Tr

3

7

7

7

5

; B D

2

6

6

4

0 0
1 0
0 0
0 1

3

7

7

5

;

C D
!

0 1 0 0
0 0 1 0

"

; D D
!

0 0
0 0

"

;

and the transformations

)1 D

2

6

6

6

4

1 0 0 0
0 0 1 0

0 lrm
lfClr

0 J
lfClr

0 lfm
lfClr

0 ! J
lfClr

3

7

7

7

5

; )2 D
!

0 1
1 0

"

; )3 D

"

lrTrm
cf.lfClr/

TrJ
cf.lfClr/

lfTrm
cr.lfClr/

! TrJ
cr.lfClr/

#

;
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with dimensions 1; 0; 0; 3. This means that the first state of the system belongs to
the zero dynamics subsystem xa, and the remaining three states belong to the xd
subsystem. The xd subsystem consists of two integrator chains; one of dimension
one, and one of dimension two. We conclude that the system is invertible, due to
the lack of xb and xc subsystems. TheAaa matrix is identically 0, meaning that the
system has a zero at the origin. Hence, the relationship between the steering angle
inputs and the yaw rate and lateral acceleration outputs is non-minimum phase.

Referring back to our discussion of geometry theory, we see that the weakly
unobservable subspace is spanned by the vector Œ1; 0; 0; 0*T. Transformed back
to the original coordinate basis, this corresponds to the state vy . We therefore
know that a hypothetical disturbance occurring in Pvy can be decoupled from the
outputs ay and r by state feedback (and the SCB representation tells us exactly
how to do it). However, we also know that the resulting subsystem would not be
asymptotically stable, since the non-minimum phase zero would become a pole of
the closed-loop system.

7.5.2 DC Motor with Friction

According to Canudas de Wit and Lischinsky (1997), a DC motor process can be
described by the equations

P2 D !;

J P! D u ! F;

where 2 is the shaft angular position, ! is the angular rate, u is the DC motor
torque, F is a friction torque, and J D 0:0023 kgm2 is the motor and load inertia.
The friction torque can be modeled by the dynamic LuGre friction model

F D 00´C 01 Ṕ C ˛2!;

Ṕ D ! !
00´j!j
".!/

;

where ".!/ D ˛0C˛1 exp.!.!=!0/2/. Numerical values for the friction parame-
ters are 00 D 260:0 Nm=rad, 01 D 0:6 Nms=rad, ˛0 D 0:28 Nm, ˛1 D 0:05 Nm,
˛2 D 0:176 Nms=rad, and !0 D 0:01 rad=s. The system can be viewed as con-
sisting of a linear part with a nonlinear perturbation 00´j!j=".!/. Assuming that
only the shaft position 2 is measured, a nonlinear observer can be designed for
this system by using the time scale assignment techniques from Saberi and San-
nuti (1990a). To do so, it is necessary to find the SCB form of the system, with
the nonlinear perturbation 00´j!j=".!/ considered as the sole input. The original
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system with the nonlinear perturbation as the input is described by the matrices

OA D

2

4

0 1 0

0 ! 1J .˛2 C 01/ ! 1J 00
0 1 0

3

5 ; OB D

2

4

0
1
J 01
!1

3

5 ; (7.8a)

OC D
*

1 0 0
+

; OD D 0: (7.8b)

Inserting numerical values and using the Linear Systems Toolkit (Liu et al., 2005)
yields the SCB matrices

A %

2

4

!433:3 !592:7 0
0 0 1

!1:1 ' 105 !1:5 ' 105 95:9

3

5 ; B D

2

4

0
0
1

3

5 ;

C D
*

0 1 0
+

; D D 0;

where the first state belongs to the zero dynamics subsystem xa, and the remaining
two states consist of an integrator chain of length two, in the xd subsystem. As
suggested by the large elements in the system matrices, the problem is poorly
conditioned, and we find that we require very large gains to stabilize the system.
Using our Maple procedure, we obtain the SCB matrices

A D

2

6

6

4

!'0
'1

!'0.'0J"'1˛2/

'31
0

0 0 1

!'0
J !'0.'0J"'1˛2/

J'21

'0J"'1˛2"'21
J'1

3

7

7

5

; B D

2

4

0
0
1

3

5 ;

C D
*

0 1 0
+

; D D 0:

This reveals that the small parameter 01 generates a singularity for several ele-
ments ofA, even though the original matrices in (7.8) did not have any singularities
with respect to this parameter. In particular, we see that 01 acts as a small regu-
lar perturbation that results in singularly perturbed zero dynamics, which happens
when a regular perturbation reduces a system’s relative degree (Sastry, Hauser,
and Kokotović, 1989). Using the approximation 01 D 0 results in a dramatically
different structure, with the SCB consisting of a single integrator chain of length
three, represented by the SCB matrices

A D

2

4

0 1 0
0 0 1
0 !'0

J !˛2J

3

5 ; B D

2

4

0
0
1

3

5

C D
*

1 0 0
+

; D D 0:

Proceeding with the observer gain selection based on this system, we obtain good
results without using high gains.

192



7.5. EXAMPLES

7.5.3 Tenth-Order System

Our last example is a strictly proper, tenth-order system from Sannuti and Saberi
(1987):

OA D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 0 0 1 1 0 0 0 0
!1 0 0 0 1 0 1 0 0 0
1 1 !1 !1 0 0 !1 0 0 0
0 1 1 1 0 0 0 0 0 0
!1 2 0 !1 2 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
!1 !1 0 0 1 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

OB D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 1 0 1
0 0 0 0
0 0 0 0
0 1 0 1
0 2 0 1
0 0 1 0
0 0 0 0
0 0 0 0
1 0 1 0
0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; OC T D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

!1 0 0 0
!1 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0
2 1 0 0
0 1 0 1
0 0 0 0
0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

The Maple procedure gives the SCB system matrices

A D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 0 1 !1 0 !1 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 !1 1 0 1 0 0
2 !12 0 2 !8 8 0 8 0 0

2 !4 !2 1
2 !2 1 1 1 1 0

0 0 0 0 0 0 1 0 0 0
2 !2 !2 0 0 !1 1 !1 1 !1
0 0 0 0 !1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

0 2 0 !12 2 !2 0 !2 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;
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B D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; C T D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

and the dimensions 1; 2; 1; 6. Hence, the first state belongs to the xa subsystem,
and we can therefore easily see that the system has a non-minimum phase invariant
zero at 1. The next two states belong to the xb subsystem; thus, the system is not
right-invertible. The fourth state belongs to the xc subsystem; thus, the system is
not left-invertible. Finally, the last six states consists of three integrator chains of
length 1, 2, and 3, respectively, belonging to the xd subsystem.

7.6 Numerical Issues

The procedure described in this paper uses exact operations only; thus, there is
no uncertainty in the results produced by the decomposition algorithm. The al-
gorithm is primarily based on rank operations and the construction of bases for
various subspaces. Rank operations are discontinuous, in the sense that arbitrarily
small perturbations to a matrix may alter its rank. This implies that, when a de-
composition is carried out using exact operations, arbitrarily small perturbations to
system matrices may fundamentally alter the identified structure of a system. This
is in contrast to decompositions based on floating-point operations, which may be
insensitive to small perturbations to the system matrices.

Whether exactness is desirable or not depends on the application. When the
input data is exact or the system model is based on first principles, an exact de-
composition may help to reveal fundamental structural properties of the system
and how these properties are affected by various quantities in the system matrices.
If, on the other hand, the system matrices have been derived based on experimen-
tal system identification, an exact decomposition may not be desirable, and it may
even provide misleading information about the system structure. Thus, the exact
procedure presented here is not a replacement for numerical tools developed for
the same purpose.

Throughout the decomposition algorithm, a number of non-unique transfor-
mation matrices must be constructed. In the Maple procedure, these matrices are
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constructed with the goal of having a simple structure, based on the assumption
that fewer changes to the original states will result in less complicated symbolic
expressions in the computed SCB system. Depending on the structure and dimen-
sions of the system, however, the procedure may still result in complicated expres-
sions, and if the original system matrices contain complicated expressions, these
will in general not be simplified.

A precise analysis of the computational complexity of the procedure is diffi-
cult, due to the complex nature of the decomposition algorithm and the underlying
Maple functions. However, it is possible to make some practical observations re-
garding this issue. Executed in Maple 12 on an Intel Pentium processor with two 2-
MHz cores, the total CPU time needed for decomposition of the single-track model
was approximately 0:30 s for the single-input case and 0:21 s for the double-input
case. For the DC motor example, the total CPU time was approximately 0:19 s for
the original matrices in (7.8) and 0:25 s with the modification 01 D 0. For the
tenth-order example, the total CPU time was approximately 0:48 s. These execu-
tion times illustrate that an increase in the order of the system does not automat-
ically result in a large increase in execution time; the structure of the system and
the complexity of the expressions in the system matrices has a greater impact on
execution time. For example, randomly generated, strictly proper systems with 20
states, 4 inputs and 4 outputs, with the system matrices made up of integers be-
tween !10 and 10 with 25% density, are generally decomposed in less than 0:4 s.
If, on the other hand, the number of inputs is reduced to 3, the decomposition gen-
erally takes around 50 s. The reason for this large difference is that, in the former
case, the computed SCB systems generally consist of an xa subsystem with 16
states and an xd subsystem with four states, which requires only a single iteration
of the algorithm for identifying xb and xd (described at the beginning of Section
7.4.1). In the latter case, the computed SCB systems generally consist of an xb
subsystem with 17 states, and an xd subsystem with three states, which requires
17 increasingly complex iterations of the algorithm for identifying xb and xd .

7.7 Concluding Remarks

We have presented a procedure written in the mathematics software suite Maple,
which is capable of transforming any linear time-invariant system described by
exact symbols and fractions to the SCB, and we have illustrated the use of this
algorithm on several examples.

The DC motor example shows that the symbolic form of the SCB can be used to
reveal structural bifurcations in linear systems due to parameter changes. System-
atic ways of using symbolic representations of the SCB for this purpose is a topic

195



STRUCTURAL DECOMPOSITION OF LINEAR MULTIVARIABLE SYSTEMS

USING SYMBOLIC COMPUTATIONS

of future research. Future research will also investigate application of symbolic
SCB representations to topics such as squaring down of non-square systems and
asymptotic time scale assignment.
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Chapter 8

Stabilization of Multiple-Input

Multiple-Output Linear Systems

with Saturated Outputs

Abstract: We consider linear time-invariant multiple-input multiple-output

systems that are controllable and observable, where each output component

is saturated. We demonstrate by constructive design that such systems can

be globally asymptotically stabilized by output feedback without further re-

strictions. This result is an extension of a previous result by Kreisselmeier for

single-input single-output systems. The control strategy consists of driving

the components of the output vector out of saturation one by one, to identify

the state of the system. Deadbeat control is then applied to drive the state to

the origin.

8.1 Introduction

Saturations are ubiquitous in physical control systems, and occur both in actuators,
states, and outputs. In this note we focus on linear time-invariant multiple-input
multiple-output (MIMO) systems with saturated outputs. An output saturation typ-
ically occurs when a measured quantity exceeds the range of the sensor used to
measure it. It can also occur as a result of a nonlinear measurement equation.
An example of the latter can be found in the automotive industry, where the mea-
sured lateral acceleration of a car can be used to estimate its sideslip angle (Grip,
Imsland, Johansen, Kalkkuhl, and Suissa, 2009). The response of the lateral accel-
eration to changes in the sideslip angle is approximately linear for small sideslip
angles, but a saturation occurs for large sideslip angles.
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Several results in the literature deal with the issue of output saturations. Kreis-
selmeier demonstrated in Kreisselmeier (1996) that it is possible to design a control
law for any linear time-invariant single-input single-output (SISO) system with a
saturated output to make it globally asymptotically stable, provided the linear sys-
tem is controllable and observable. It is not obvious that this should be possible,
because globally stabilizable and observable systems may not be globally stabiliz-
able by output feedback, as demonstrated in Mazenc and Praly (1994). Observ-
ability of systems with saturated outputs was studied in detail in Koplon, Sontag,
and Hautus (1994).

Lin and Hu (2001) presented a design that applies to stabilizable and detectable
SISO systems with all the invariant zeros located in the closed left-half plane. The
design in Lin and Hu (2001) is semiglobal, but it is based on a linear control law,
unlike the discontinuous control law from Kreisselmeier (1996). As pointed out
by the authors, the approach in Lin and Hu (2001) cannot easily be extended to
MIMO systems. In Marconi (2003), the result in Lin and Hu (2001) was extended
to handle tracking of signals produced by marginally stable exosystems.

Kaliora and Astolfi (2004) presented an approach for global stabilization of
linear systems with output saturations, under the conditions that the linear system
is controllable and observable, and that the open-loop system is stable. The design
in Kaliora and Astolfi (2004) is formulated for SISO systems, but it is also applica-
ble to MIMO systems, as remarked by the authors. Recent results on anti-windup
strategies for systems with output saturations (see, e.g., Turner and Tarbouriech,
2009), as well as an H1-based approach (Cao, Lin, and Chen, 2003) for systems
with output nonlinearities, also deal with MIMO systems. However, these meth-
ods can in general provide neither global nor semiglobal stabilization, unless the
open-loop system is already asymptotically stable.

To the best of our knowledge, no previous results address stabilization of gen-
eral controllable and observable linear MIMO systems with output saturations, ei-
ther globally or semiglobally. The purpose of this note is to demonstrate by con-
structive design that such stabilization is possible without further restrictions, by
extending the result of Kreisselmeier for SISO systems. In Kreisselmeier’s design,
the output is first brought out of saturation using a control strategy that relies only
on the sign of the output. When the output comes out of saturation, the state of the
system is identified exactly by using a deadbeat observer. This is possible, even if
the output is out of saturation only for a brief interval, because the system behaves
like a linear observable system during that time. Once the state of the system has
been identified, it is brought to the origin in finite time by using a deadbeat control
strategy. At first glance, the MIMO case looks considerably more complicated. The
analogous strategy would be to drive the output of the linear system into the hyper-
rectangle where every output component is unsaturated. It is exceedingly difficult

202



8.2. PROBLEM FORMULATION

to do so, however, because one needs to coordinate several output components to
make them simultaneously unsaturated, based only on their signs.

The central point in this note is that it is unnecessary to make the output compo-
nents simultaneously unsaturated. Instead it is sufficient to bring each component
out of saturation at least once, even if some or all of the other components are satu-
rated when this happens. Our control strategy is therefore to drive the components
out of saturation one by one. The data gathered from each component when it was
unsaturated is then pieced together to identify the state of the system. Finally, the
state is brought to the origin by deadbeat control.

We emphasize that the focus of this note is not on issues of performance; rather,
the goal is to prove that global asymptotic stabilization by output feedback is pos-
sible for the class of systems under considerations, and to illustrate the principle
that information from multiple output components that come out of saturation at
different points in time can be combined to identify the state of the system. Never-
theless, we present a numerical simulation example that illustrates the workings of
the control law, and we discuss various numerical issues related to implementation
of the control law.

8.2 Problem Formulation

We consider a linear time-invariant system with saturated outputs:

Px.t/ D Ax.t/C Bu.t/; x.t/ 2 R
n; u.t/ 2 R

m; (8.1a)

y.t/ D sat.Cx.t//; y.t/ 2 R
p; (8.1b)

where sat.'/ represents a standard component-wise saturation. That is,

y.t/ D

2

6

4

sat.C1x.t//
:::

sat.Cpx.t//

3

7

5
;

where sat.Cix.t// D sign.Cix.t//minf1; jCix.t/jg and Ci , i D 1; : : : ; p, are the
rows of C .

Assumption 8.1. The pair .A;B/ is controllable, and the pair .C;A/ is observ-
able.

We assume that the system is initialized at time t D 0. We seek to render to
the origin of the system (8.1) globally asymptotically stable by output feedback.
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8.3 Control

For the purpose of control, we divide the time t > 0 into intervals .kT; kT C T *,
where k D 0; 1; 2; : : : ; and T > 0 is a constant chosen by the designer. On each
interval, the control is given as in Kreisselmeier (1996) by

u.kT C +/ D !BTe"AT#Uk; + 2 .0; T *; (8.2)

where Uk is constant on the interval .kT; kT C T *. We define Uk as follows:

Uk D

(

NB"1˛k.˛hjk ! eAT hjk /yjk .kT /;
Qp
iD1 0i .kT / D 0;

NB"1eAT .eAkTD"1.kT /!.kT /C -.kT //;
Qp
iD1 0i .kT / > 0;

(8.3)

where jk is defined as the smallest i 2 1; : : : ; p such that 0i .kT / D 0. The vectors
hi 2 Rn, i D 1; : : : ; p, are chosen by the designer in such a way that Cihi > 0.
The scalar ˛ is defined as ˛ D (kexp.AT /k, where ( > 1 is a number chosen by
the designer. The constant matrix NB 2 Rn$n is defined as

NB D
Z T

0
eA.T"#/BBTe"AT# d+: (8.4)

We note that NB is invertible, due to controllability of the pair .A;B/. The quantities
0i .t/ 2 R, i D 1; : : : ; p, !.t/ 2 Rn, -.t/ 2 Rn, and D.t/ 2 Rn$n are given by
the following expressions:

0i .t/ D
Z t

0
.1 ! jyi .+/j/ d+; i D 1; : : : ; p; (8.5a)

!.t/ D
p
X

iD1

Z t

0
.1 ! jyi .+/j/eA

T#C T
i .yi .+/ ! Ci-.+// d+; (8.5b)

-.t/ D
Z t

0
eA.t"#/Bu.+/ d+; (8.5c)

D.t/ D
p
X

iD1

Z t

0
.1 ! jyi .+/j/eA

T#C T
i Cie

A# d+: (8.5d)

In the following section, we provide a simple explanation of how the control
algorithm works. The details of this explanation will become clear from the proof
of Theorem 8.1 in Section 8.3.2.
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8.3.1 Explanation of the Control Law

The control strategy is based on dividing the time t > 0 into intervals .kT; kTCT *.
At the beginning of each interval, the control to be applied over the interval is
determined by calculating the vector Uk according to (8.3). The scalar functions
0i .t/, i D 1; : : : ; p, play a crucial role in this process. Each signal 0i .t/ is an
indicator of whether the corresponding output component yi .t/ has been out of
saturation at any time since initialization at time t D 0. If yi .t/ has been saturated
the whole time, then 0i .t/ D 0; if yi .t/ has been out of saturation at any point
since initialization, then 0i .t/ > 0.

Driving the Outputs Out of Saturation

The initial task of the controller is to ensure that each output component yi .t/
comes out of saturation at least once. This task is accomplished sequentially, by
first ensuring that y1.t/ comes out of saturation, then ensuring that y2.t/ comes
out of saturation, and so on. At the start of an interval .kT; kT C T *, the value jk
is set to the smallest i such that 0i .kT / D 0, meaning that yi .t/ has not yet been
out of saturation. Assuming such an i exists, Uk is set to Uk D NB"1˛k.˛hjk !
eAT hjk /yjk .kT /, according to (8.3). This choice ofUk is the same as the one used
in Kreisselmeier (1996) to drive the output of a SISO system out of saturation. The
strategy behind this choice is to drive the output in the direction of the origin, based
only on the sign of the output. For each interval that passes, the control amplitude
grows larger, due to the factor ˛k . The increasing control amplitude is needed in
order to catch up with any instabilities in the system that may be driving the output
away from the origin.

Deadbeat Control

Eventually, every output component will have been out of saturation at least once,
and thus there will be an integer Ok such that at time OkT , we have 0i . OkT / > 0
for all i 2 1; : : : ; p. This can also be expressed as

Qp
iD1 0i .

OkT / > 0. At

this point, U Ok
is chosen as U Ok

D NB"1eAT .eA OkTD"1. OkT /!. OkT / C -. OkT //, ac-
cording to (8.3). To justify this choice, we first note that the initial condition of
the system can be related to the quantities in (8.5) by the expression !. OkT / D
D. OkT /x.0/ (this relationship will become clear from the proof of Theorem 8.1
below). Since every component of the output has been out of saturation at least
once,D. OkT / is a nonsingular matrix, and hence x.0/ can be calculated as x.0/ D
D"1. OkT /!. OkT /. Once x.0/ is known, x. OkT / can also be calculated from the stan-
dard variation-of-constants formula (DeCarlo, 1989) as x. OkT / D eA OkT x.0/ C
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R OkT
0 eA. OkT"#/Bu.+/ d+ D eA OkTD"1. OkT /!. OkT / C -. OkT /. We have therefore
identified the state of the system at time OkT precisely. We can now rewrite U Ok

as U Ok
D NB"1eAT x. OkT /, which yields the same deadbeat control as in Kreis-

selmeier (1996) and ensures that x. OkT C T / D 0. The difference between this
note and Kreisselmeier (1996) lies in how the information from different output
components, which become unsaturated at different times, is pieced together to
allow deadbeat observation of the state of the system.

Remark 8.1. We remark that ˛ in this note is chosen somewhat differently from
Kreisselmeier (1996), where ˛ was defined as ˛ D exp.2kAkT /. The point of
redefining ˛ is to ensure that the factor ˛k does not grow much faster than what
is necessary to drive the output components out of saturation. The definition used
here also ensures that ˛ > k exp.AT /k, even when A D 0. Technically, an addi-
tional condition of this kind is also needed in Kreisselmeier (1996), to handle the
particular case where the system consists of a single integrator.

8.3.2 Stability

We now state the stability results of the closed-loop system in a formal manner.

Theorem 8.1. The origin of (8.1) with the control (8.2)–(8.5) is globally asymp-
totically stable.

Proof. Given t1 and t2 such that t2 " t1 " 0, we know from the standard variation-
of-constants formula (DeCarlo, 1989) that

x.t2/ D eA.t2"t1/x.t1/C
Z t2"t1

0
eA.t2"t1"#/Bu.t1 C +/ d+: (8.6)

Applying this formula over an interval by setting t1 D kT and t2 D kT C T ,
and inserting the expression (8.2) for the control law, it is easily confirmed that we
obtain, as in Kreisselmeier (1996),

x.kT C T / D eAT x.kT / ! NBUk : (8.7)

We shall use the expression (8.7) in the remainder of the proof, which is divided
into two parts, similar to Kreisselmeier (1996). First, we show that the origin is
globally attractive, and then we show that it is a Lyapunov stable equilibrium point.

The origin is globally attractive We start by showing that there is an integer Ok
such that each output component has been out of saturation on Œ0; OkT *. For the
sake of establishing a contradiction, suppose that this is not the case. Then there
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is a set of output components that remain in saturation for all time. Let l denote
the smallest integer such that yl .t/ remains in saturation for all time. Then there
is an integer Nk such that for all k " Nk, 0i .kT / > 0 for all i D 1; : : : ; l ! 1. It
follows that jk D l for all k " Nk. We now establish the contradiction by showing
that yl.t/ will eventually become unsaturated. This is established in the same way
as in the proof from Kreisselmeier (1996).

Since jk D l for all k " Nk, we have from (8.3) that for all k " Nk, Uk D
NB"1˛k.˛hl ! eAT hl/yl.kT /. Inserting this expression for Uk into (8.7), we see
that for all k " Nk, x.kT C T / D eAT x.kT / ! ˛k.˛hl ! eAT hl/yl .kT /, which
can be reformulated as

x.kT C T / D eAT .x.kT /C ˛khlyl.kT // ! ˛kC1hlyl.kT /: (8.8)

Since yl.t/ is assumed to be saturated for all time, we can replace yl.kT / in (8.8)
by yl. NkT /. We can furthermore calculate the solution recursively as

x.kT C T / D eA
QkT .x. NkT /C ˛

Nkhlyl. NkT // ! ˛kC1hlyl . NkT /;

where Qk D k ! Nk C 1. Premultiplying this expression by yl . NkT /Cl and making
the substitution k C 1 D Qk C Nk gives

yl. NkT /yl.kT C T / D Cle
A QkT .x. NkT /yl. NkT /C ˛

Nkhl/ ! ˛
QkC NkClhl :

We now upper-bound the first term on the right-hand side, using the expression
˛

Qk D (
Qkk exp.AT /k Qk , which yields

yl. NkT /yl .kT C T / & keAT k Qk
%

kClk.kx. NkT /k C ˛
Nkkhlk/ ! (

Qk˛
NkClhl

&

:

Considering the expression inside the parenthesis, we see that the first term re-
mains constant as k, and therefore Qk, grows larger, whereas the second term be-
comes more and more negative (recall that Clhl > 0). Thus, we eventually have
yl. NkT /yl.kT C T / < 0, which implies that the sign of yl.kT C T / is different
from the sign of yl. NkT /. This contradicts the assumption that yl.t/ remains satu-
rated for all time, and we have therefore proven that there exists an integer Ok such
that all the output components have been out of saturation at least once on Œ0; OkT *.

It follows from the above discussion that
Qp
iD1 0i .

OkT / > 0. Thus, we have
from (8.3) that

U Ok
D NB"1eAT .eA

OkTD"1. OkT /!. OkT /C -. OkT //:

As discussed in Section 8.3.1, the idea behind this choice is to make U Ok
satisfy

the expression U Ok
D NB"1eAT x. OkT /. This would result in deadbeat control as
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in Kreisselmeier (1996), which is easily seen by inserting the expression U Ok
D

NB"1eAT x. OkT / into (8.7), to obtain x. OkT C T / D eAT x. OkT / ! eAT x. OkT / D 0.
We now need to show that eA OkTD"1. OkT /!. OkT /C -. OkT / D x. OkT /.

Using (8.6) with t1 D 0 and t2 D t , it is easily confirmed that we have x.t/ D
eAtx.0/C -.t/. Premultiplying this expression by .1! jyi .t/j/eA

TtC T
i Ci for any

i 2 1; : : : ; p and rearranging yields

.1 ! jyi .t/j/eA
TtC T

i .yi .t/ ! Ci-.t// D .1 ! jyi .t/j/eA
TtC T

i Cie
Atx.0/;

where we have used the fact that Cixi .t/ D yi .t/ whenever .1 ! jyi .t/j/ ¤ 0.
If we now integrate this expression from 0 to OkT and take the sum over i from
1 to p, we obtain the expression !. OkT / D D. OkT /x.0/. Assuming for the mo-
ment that D. OkT / is nonsingular, we can calculate the initial condition as x.0/ D
D"1. OkT /!. OkT /. Again using (8.6) with t1 D 0 and t2 D OkT , we obtain the
desired expression eA OkTD"1. OkT /!. OkT /C -. OkT / D x. OkT /.

We still have to show that D. OkT / is nonsingular. We can write D. OkT / D
Pp
iD1Di .

OkT /, where

Di . OkT / D
Z OkT

0
.1 ! jyi .+/j/eA

T#C T
i Cie

A# d+: (8.9)

Each matrix Di . OkT / is positive semidefinite, because the integrand in (8.9) is
positive semidefinite. It follows thatD. OkT / is also positive semidefinite. We shall
prove that D. OkT / is in fact positive definite, by showing that ´TD. OkT /´ > 0 for
each ´ ¤ 0.

Since each component of the output has been out of saturation on the interval
Œ0; OkT * and the solutions are continuous, there exists a number m > 0 and a set
of intervals .ti ; ti C "/ ( .0; OkT /, i D 1; : : : ; p, of length " > 0 such that for all
t 2 .ti ; ti C "/, 1 ! jyi .t/j > m. It therefore follows that

´TD. OkT /´ D
p
X

iD1

´TDi . OkT /´ > m
p
X

iD1

Z tiC"

ti

´TeA
T#C T

i Cie
A#´ d+: (8.10)

Suppose for the sake of establishing a contradiction that there exists a ´ ¤ 0 such
that the right-hand side of (8.10) is zero. This implies that for each i 2 1; : : : ; p
and for all t 2 .ti ; tiC"/, ´TeA

TtC T
i Cie

At´ D 0. This furthermore implies that for
each i D 1; : : : ; p and for all t 2 .ti ; ti C"/, CieAt´ D 0, which means that for all
t 2 .ti ; ti C "/, eAt´must belong to the unobservable subspace of the pair .Ci ; A/.
Since the unobservable subspace is A-invariant (see DeCarlo, 1989, Ch. 21), the
vector ´ must also belong to the unobservable subspace with respect to the pair
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.Ci ; A/. However, if the vector ´ belongs to unobservable subspace of .Ci ; A/ for
each i 2 1; : : : ; p, then it belongs to the unobservable subspace of .C;A/, which
consists only of the origin. This shows that the right-hand side of (8.10) cannot
be zero unless ´ D 0, and it follows thatD. OkT / is positive definite (and therefore
nonsingular).

The above argument proves that U Ok
satisfies U Ok

D NB"1eAT x. OkT /, so that

deadbeat control is applied over the interval . OkT; OkT C T *. This yields x. OkT C
T / D 0. The same argument can be used to show that U OkC1

D NB"1eAT x. OkT C
T / D 0, and thus the control u.t/ D 0 is applied over the interval . OkT C T; OkT C
2T *. It follows that x.t/ remains at the origin on this interval, and by induction,
on every subsequent interval.

The origin is a Lyapunov stable equilibrium point Lyapunov stability is estab-
lished by the same approach as in Kreisselmeier (1996). Suppose that kx.0/k is
sufficiently small such that all the output components are unsaturated at t D 0 (i.e.,
jyi .0/j < 1, i D 1; : : : ; p). Clearly 0i .0/ D 0 for all i 2 1; : : : ; p. Hence, j0 D 1,
and U0 is given by U0 D NB"1.˛h1 ! eAT h1/y1.0/, according to (8.3). It follows
that kU0k is bounded by an expression proportional to ky1.0/k, and therefore also
by an expression proportional to kx.0/k. Using (8.6), it is now straightforward to
show that there is a '1 > 1 such that for all t 2 .0; T *, kx.t/k & '1kx.0/k. Since
every output component is out of saturation for at least part of the first interval, we
have 0i .T / > 0 for all i 2 1; : : : ; p. By the above discussion of global attractivity,
we therefore have U1 D NB"1eAT x.T /, and it follows that kU1k is bounded by an
expression proportional to kx.T /k. Using (8.6), it is now straightforward to show
that there is a '2 > 1 such that for all t 2 .T; 2T *, kx.t/k & '2kx.T /k. For all
t > 2T , we have x.t/ D 0. Combining the above inequalities, we therefore find
that for sufficiently small kx.0/k, kx.t/k & '1'2kx.0/k for all t " 0. This shows
that the origin is a Lyapunov stable equilibrium point.

8.4 Numerical Issues and Tuning

As mentioned above, the input applied to the system to drive the outputs out of
saturation grows larger with each time interval, in order to catch up with any insta-
bilities in the system. As a consequence of this, the state of the system may grow
large, and an output component may come out of saturation only briefly before
again becoming saturated. The calculation of the state of the system may there-
fore be poorly conditioned and sensitive to measurement noise, disturbances, and
model inaccuracies.
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(b) Outputs (solid: y1, dashed: y2). Unsaturated versions of the outputs are shown with dotted
lines.

Figure 8.1: Simulation results

Applying a growing input is not necessary for systems that are open-loop stable
(as, for example, in Kaliora and Astolfi, 2004). In this case, there is no danger of
the state escaping, and so a small input may be applied over a long period of time
to bring all the outputs out of saturation. An alternative to applying a growing
input is to adjust the controller parameters according to the size of an admissible
set of initial conditions, leading to semiglobal results, as in Lin and Hu (2001).

We follow the approach of Kreisselmeier (1996) in applying deadbeat control
to bring the state to the origin. However, deadbeat control is rarely used in practical
implementations, in particular, due to robustness problems. There is no theoretical
requirement that deadbeat control be used in the present case; once the state of the
system has been identified, it is in principle known for all future time, and thus any
state-feedback controller may be applied instead of the deadbeat controller.

Several of the quantities used in the controller can be adjusted by the designer,
in particular, T , (, and hi , i D 1; : : : ; p. These quantities can be viewed as tuning
parameters with associated tradeoffs. Choosing T small ensures that, once an
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output has been driven out of saturation, the controller quickly jumps to the next
task, which may be to drive another output out of saturation or to apply deadbeat
control. On the other hand, using a small T may cause the identification of the
system state to be based on a smaller amount of data, thereby increasing sensitivity
to uncertainties such as measurement noise. Choosing ( low limits the growth
rate of the input, but may increase the time spent on bringing the outputs out of
saturation. The direction of the vector hi affects the direction of the input applied
to bring the output yi .t/ out of saturation. Without further knowledge about the
state, however, it is difficult to interpret how different choices affect the outcome.
One option is therefore to use hi D C T

i , possibly with a scaling to adjust the
magnitude of the applied input.

We end this section by remarking that, although the integrals in (8.5) are al-
ways well-defined, some of them may grow unbounded as t ! 1. The reason
for this is that the controller needs to piece together data from different output
components that become unsaturated at different times. The integrals in (8.5) are
used to gather the necessary data from the time of initialization, without any form
of forgetting. Unbounded internal signals are obviously undesirable; however, the
integrals in (8.5) are only needed up until the point when deadbeat control is ap-
plied. After deadbeat control has been applied, the state is at the origin and the
outputs are all out of saturation. Thus, the issue of unbounded internal signals can
easily be resolved by switching to a different controller (e.g., a linear control law)
after deadbeat control has been applied. Alternatively, the controller algorithm in
(8.2)–(8.5) may be reset with regular intervals from this point on.

8.5 Simulation Example

Consider the system

Px1.t/ D x2.t/C x3.t/; Px2.t/ D u1.t/; Px3.t/ D u2.t/;

y1.t/ D x1.t/; y2.t/ D x1.t/C x2.t/:

This system has an eigenvalue with multiplicity one and an eigenvalue with mul-
tiplicity two, both at the origin; thus the system is open-loop unstable. We imple-
ment the controller algorithm using T D 0:5, ( D 1:1, h1 D C T

1 , and h2 D C T
2

and simulate with initial conditions x1.0/ D 2, x2.0/ D !4, and x3.0/ D 1. The
results can be seen in Figure 8.1, where the intervals are marked by vertical dashed
lines.

The controller begins by driving y1.t/ out of saturation, and achieves this in
the first time interval. The controller then proceeds with driving y2.t/ out of sat-
uration, which is achieved in the fifth time interval. At this point y1.t/ is again
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saturated. In the sixth time interval deadbeat control is applied, so that for t " 6T ,
the state is at rest at the origin.

8.6 Concluding Remarks

We have demonstrated that the origin of a linear time-invariant MIMO system with
saturated outputs can be globally asymptotically stabilized, provided the linear
system is controllable and observable. We have done so by extending the design
presented in Kreisselmeier (1996) for SISO systems. We note, however, that if the
controller presented in this note is applied to a SISO system, it does not coincide
precisely with the controller in Kreisselmeier (1996). This is because deadbeat
identification of the state in Kreisselmeier (1996) is done using data only from the
previous interval.

The focus of this note is not on performance; indeed, it is unlikely that an
unmodified version of the controller presented here would be suitable for practical
implementation. Nevertheless, the results illustrate a general principle, namely,
that one may drive each component of the output out of saturation separately to
identify the state of the system, and thereafter control the state to the origin. Within
this framework, both the approach used to drive the outputs out of saturation and
the controller used to drive the state to the origin can be modified to improve
performance.
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Chapter 9

Semiglobal Stabilization of

Sandwich Systems by Dynamic

Output Feedback

Abstract: We consider the problem of stabilizing a class of sandwich sys-

tems, consisting of two linear subsystems connected in cascade by a satu-

rated scalar signal, with partial-state measurement available from the sec-

ond subsystem only. We present conditions for semiglobal stabilization and

demonstrate their sufficiency by explicit construction of a stabilizing con-

troller. This controller is a mathematical construction that is not intended

for practical implementation in its current form. Central to the stabiliza-

tion strategy is a detection scheme that determines whether the saturation is

active or inactive within intervals of a freely chosen length.

9.1 Introduction

Many physical systems can be modeled as interconnections of several distinct sub-
systems, some of which are linear and some of which are nonlinear. One common
type of structure consists of a static nonlinear element sandwiched between two
linear systems, as illustrated in Figure 9.1. This type of structure can occur, for
example, when an actuator with linear dynamics and an output nonlinearity is con-
nected to a linear system. We refer to the system in Figure 9.1 as a sandwich

system.
In this paper we focus on sandwich systems where the sandwiched nonlinear-

ity is a saturation. Saturations can occur due to the limited capacity of an actuator,
limited range of a sensor, or physical limitations within a system. Physical quan-
tities such as speed, acceleration, pressure, flow, current, voltage, and so on, are
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Figure 9.1: Sandwich system

always limited to a finite range, and saturations are therefore a ubiquitous feature
of physical systems. Our primary goal is to investigate conditions for semiglobal
stabilization by output feedback. Due to space constraints we limit ourselves to the
case when the available output is a linear combination of the states of the second
subsystem only, as illustrated in Figure 9.2. This formulation captures the main
challenge of the output-feedback stabilization problem, namely, that the states of
the first subsystem can only be observed when the saturation is inactive. We refer
to the two linear subsystems as the L1 and L2 subsystems.

Stabilization of sandwich systems has been studied previously, for example,
in Taware and Tao (2002, 2003a,b); Taware, Tao, and Teolis (2002). The main
technique used in Taware and Tao (2002, 2003a,b); Taware et al. (2002) is based
on approximate inversion of the sandwiched nonlinearity. Inversion is a viable
approach for some types of nonlinearities, a prominent example being the dead-
zone nonlinearity, which is right-invertible. Saturations, however, have a limited
range and are therefore not amenable to inversion except in a small region; thus, a
different approach is required. In Wang, Stoorvogel, Saberi, Grip, Roy, and San-
nuti (2009), the authors considered full-state feedback stabilization of sandwich
systems with saturation nonlinearities. The technique introduced in Wang et al.
(2009) is a generalization of the low-gain design methodologies developed in Lin
and Saberi (1993, 1995); Lin (1999) for stabilization of linear systems subject to
actuator saturation. Roughly, a pre-feedback is designed to make the L1 subsys-
tem exponentially stable, so that saturation is avoided after an initial transient. The
pre-feedback is then augmented by a control law designed for the overall system
with a sufficiently low gain to guarantee that saturation is avoided as the whole
state is brought to the origin.

When full-state measurement is not available, it is natural to construct an ob-
server to estimate the states. For the system in question, observer design is com-
plicated by the saturation, which separates the L1 subsystem from the output. In
general, the saturation must therefore be deactivated before all the states of the
system can be identified.
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Figure 9.2: Sandwich system with saturation nonlinearity and partial-state measurement
from second subsystem only

The problem considered in this paper is related to the problem of stabiliz-
ing a linear system with a saturated output. This problem has been considered
for single-input single-output (SISO) systems in Kreisselmeier (1996); Lin and Hu
(2001), and the results in Kreisselmeier (1996) have been extended to multiple-
input multiple-output (MIMO) systems in Grip, Saberi, and Wang (2010). In the
approach from Kreisselmeier (1996), the output is brought out of saturation by
applying an input that grows sufficiently fast to catch up with any internal instabil-
ities, based only on the sign of the output. When the output comes out of saturation,
the state is identified and controlled to the origin in a deadbeat manner.

9.1.1 Stabilization Strategy

In this paper we combine the method from Wang et al. (2009) for state-feedback
stabilization of sandwich systems with the method from Kreisselmeier (1996) for
stabilization of systems with an output saturation. As in Kreisselmeier (1996), our
strategy is to deactivate the saturation without knowing the full state of the system.
Once the saturation is deactivated, the states are identified and controlled to the
origin using the method from Wang et al. (2009). A difficulty with this approach
is the lack of direct knowledge of whether the saturation is active or inactive at any
given time. Consequently, an integral part of the strategy is to detect whether the
saturation is active or not based only on the available output.

Because the saturation is separated from the output by a dynamical system,
we generally cannot expect to detect activation or deactivation of the saturation
instantly. Instead, we shall consider arbitrarily small time intervals and create
a detection scheme to determine whether, on any such interval, the saturation is
active or not. We shall furthermore determine the sign of the saturation if it is
indeed active. When the saturation is detected as inactive for an entire interval, the
state of the full system can be determined. This strategy requires that the output
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of the L1 subsystem is driven out of saturation for at least one entire interval. To
guarantee that this happens, we make the time intervals sufficiently small relative
to the size of a bounded set of admissible initial conditions. Our result is therefore
semiglobal rather than global; that is, the region of attraction is bounded but can
be made arbitrarily large by decreasing the length of the time intervals.

We emphasize that the main purpose of this paper is to investigate solvabil-
ity conditions for semiglobal stabilization of the sandwich system in Figure 9.2.
Although we do so by explicit construction of a stabilizing controller, we do not
claim that this controller achieves good performance in most cases. Nevertheless,
we introduce design ideas that will be used in future work with attention to perfor-
mance.

9.2 System Description

The class of sandwich systems considered in this paper is described by the follow-
ing equations:

L1 W

(

Px.t/ D Ax.t/C Bu.t/;

´.t/ D Cx.t/;
(9.1a)

L2 W

(

P!.t/ D M!.t/CN0.´.t//;

y.t/ D G!.t/;
(9.1b)

where x.t/ 2 Rn, !.t/ 2 Rm, u.t/ 2 R, y.t/ 2 Rp, and ´.t/ 2 R. The function
0.'/ is a standard saturation described by 0.´.t// D sign.´.t//minf1; j´.t/jg.
The input u.t/ is assumed to be piecewise continuous. We assume without loss
of generality that G has full row rank. For ease of notation, we define ,.t/ WD
col.x.t/; !.t//.

In the region where the saturation is inactive (that is, when j´.t/j & 1), the
system equations can be merged in a single linear system:

P,.t/ D A,.t/C Bu.t/ (9.2a)

y.t/ D C,.t/: (9.2b)

where

A WD
!

A 0
NC M

"

; B WD
!

B
0

"

; C WD
*

0 G
+

:

The system is initialized at time t D 0.

Assumption 9.1. The pair .A;B/ is controllable, and the pair .C ;A/ is observ-
able.
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It follows from Assumption 9.1 that the pairs .A;B/ and .M;N / are control-
lable, and that the pairs .C;A/ and .G;M/ are observable.

Assumption 9.2. The eigenvalues of M are located in the closed left-half plane,

and the triple .G;M;N / has no invariant zeros at the origin.

The assumption that the eigenvalues of M are located in the closed left-half
plane is necessary to ensure stabilizability of the system, even in the case of full-
state feedback, as explained in Wang et al. (2009). We use the assumption that
the triple .G;M;N / has no zeros at the origin to facilitate detection of an active
or inactive saturation. This can be intuitively understood by noting that a zero at
the origin would block constant inputs to the L2 subsystem from being visible at
the output y.t/. It would therefore be impossible to use the output y.t/ to sep-
arate between different constant inputs to the L2 subsystem, including a positive
saturation (0.´.t// D 1), a negative saturation (0.´.t// D !1), and a zero signal
(0.´.t// D 0).

9.3 Saturation Detection

We wish to design a detection scheme to determine whether the saturation in (9.1)
is active or inactive, based only on knowledge of the output y.t/ and the input u.t/.
To this end, we divide the time t > 0 into intervals .kT ! T; kT *, k D 1; 2; : : : ;
where the interval length T > 0 is a design parameter that can be made arbitrarily
small. The detection scheme will determine at time kT whether on the preceding
interval .kT ! T; kT *, the saturation was active for the entire interval, inactive for
the entire interval, or both active and inactive within the interval.

To illustrate the approach, suppose that the saturation is active in the positive
direction for an entire interval; that is, for some arbitrary k 2 1; 2; : : : ; ´.t/ "
1 for all t 2 .kT ! T; kT *. On this interval the L2 subsystem behaves like a
linear system with 0.´.t// D 1 as a constant input. Hence the output satisfies the
following equation for all + 2 .0; T *:

y.kT ! T C +/ D GeM#!.kT ! T /CGu#
s .+/; (9.3)

where

u#
s .+/ WD

Z #

0
eM.#"(/N d': (9.4)

If we premultiply (9.3) by eM
T#GT and integrate from 0 to + , we obtain

!s.kT ! T I +/ D Ds.+/!.kT ! T /C Ss.+/; (9.5)
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where

!s.kT ! T I +/ D
Z #

0
eM

T(GTy.kT ! T C '/ d'; (9.6a)

Ds.+/ D
Z #

0
eM

T(GTGeM( d'; (9.6b)

Ss.+/ D
Z #

0
eM

T(GTGu#
s .'/ d': (9.6c)

Each of the quantities in (9.6) can be computed based on the available output data.
Furthermore, we can use (9.5) to calculate !.kT ! T / as

!.kT ! T / D D"1
s .+/.!s.kT ! T I +/ ! Ss.+//: (9.7)

Thus (9.7) represents a deadbeat observer for the L2 subsystem when the satura-
tion is active in the positive direction. Note thatDs.+/ is the observability Gramian
of the observable pair .G;M/, and thus it is invertible for all + 2 .0; T *.

We wish to use (9.7) to detect whether the saturation really is active in the pos-
itive direction on the entire interval .kT ! T; kT *. To do so we premultiply (9.7)
by GeM# . Since Ds.+/ becomes singular as + ! 0, we also multiply the expres-
sion by det.Ds.+// to obtain det.Ds.+//D"1

s .+/ D adj.Ds.+//, where adj.Ds.+//
is the adjugate of Ds.+/, which is bounded on .0; T *. Rearranging the resulting
expression and using (9.3), we obtain

det.Ds.+//.y.kT ! T C +/ !Gu#
s .+//

!GeM#adj.Ds.+//.!s.kT ! T I +/ ! Ss.+// D 0: (9.8)

Equation (9.8) can be checked using available output data, and it holds for each + 2
.0; T * if the saturation is active in the positive direction on the entire interval. If
the saturation is not active in the positive direction on the entire interval, one might
expect (9.8) not to hold, at least for some + 2 .0; T *. Indeed, this expectation turns
out to be true under the assumptions made in this paper. Our detection scheme is
therefore based on checking the validity of (9.8). We create a similar test to check
whether the saturation is active in the negative direction on the entire interval.
Finally, we do the same based on the model (9.2) and input u.t/ to check whether
the saturation is inactive on the entire interval.
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9.3.1 Detectors

We define the following quantities:

ekC D
Z T

0
kdet.Ds.+//.y.kT ! T C +/ !Gu#

s .+//

!GeM#adj.Ds.+//.!s.kT ! T I +/ ! Ss.+//k d+;

ek" D
Z T

0
kdet.Ds.+//.y.kT ! T C +/CGu#

s .+//

!GeM#adj.Ds.+//.!s.kT ! T I +/C Ss.+//k d+;

ek0 D
Z T

0
kdet.D0.+//.y.kT ! T C +/ !Gu#

0.kT ! T I +//

! CeA#adj.D0.+//.!0.kT ! T I +/ ! S0.kT ! T I +//k d+;

where

u#
0.kT ! T I +/ D

Z #

0
eA.#"(/

Bu.kT ! T C '/ d';

!0.kT ! T I +/ D
Z #

0
eAT(

C
Ty.kT ! T C '/ d';

D0.+/ D
Z #

0
eAT(

C
T
CeA( d';

S0.kT ! T I +/ D
Z #

0
eAT(

C
T
Cu#

0.kT ! T I '/ d':

The functions u#
0 , !0,D0, and S0 correspond to the functions defined in (9.4), (9.6)

but are based on the system matrices of the system (9.2) and the input u.t/, rather
than the system matrices of the L2 subsystem and the input 1.

To facilitate detection, we also need an assumption regarding the control input
u.t/.

Assumption 9.3. If for any k 2 1; 2; : : : ; the function + 7! u.kT ! T C +/ is a
Bohl function on .0; T /,1 then its spectrum does not contain any invariant zeros of

the triple .G;M;N /.2

1Remark added after publication: Technically, this statement should read “If for any k 2
1; 2; : : : ; the function + 7! u.kT ! T C +/ is a Bohl function almost everywhere on .0; T /; : : :”

2A function f .t/ is a Bohl function if it is a linear combination of signals of the form t˛e%t ,
where the ˛’s are nonnegative integers and the %’s are complex numbers. The set of %’s is called the
spectrum of f .t/ (Trentelman, Stoorvogel, and Hautus, 2001).
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Remark 9.1. Assumption 9.3 specifies a mild restriction on the allowable input
signals u.t/ on any interval. The reason for this restriction is that some signals
may create an output from the L1 subsystem that is blocked by the zeros of the L2
subsystem.

We can now state our result on saturation detection.

Theorem 9.1. For each k 2 1; 2; : : :

1. ekC D 0 if and only if for all t 2 .kT ! T; kT *, ´.t/ " 1

2. ek" D 0 if and only if for all t 2 .kT ! T; kT *, ´.t/ & !1

3. ek0 D 0 and ekC; ek" > 0 if and only if for all t 2 .kT ! T; kT *, !1 &
´.t/ & 1 and for some t 2 .kT ! T; kT *, j´.t/j < 1

Proof. See Appendix 9.A.

9.4 Semiglobal Stabilization

In this section we use the detection scheme from the previous section to create a
stabilizing control law for the system (9.1). Because the approach is semiglobal,
we make the following assumption:

Assumption 9.4. The state ,.t/ is initialized from some a priori known compact

set K0.

The control strategy can be divided into three consecutive stages, described in
the following sections. In Stage 2, we apply a control on the form !BTe"AT#1
on intervals .0; NT *, where 1 is a constant. This approach is borrowed from Kreis-
selmeier (1996) and is used to deactivate the saturation. To ensure that the control
law satisfies the assumption about u.t/ in Theorem 9.1, we therefore replace it
with the following assumption:

Assumption 9.30. No eigenvalues of !A coincide with any invariant zeros of the

triple .G;M;N /.

We remark that this is not a necessary condition, as the control law in Stage 2
can easily be modified to ensure that Assumption 9.3 holds, even when Assump-
tion 9.30 does not hold.
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Stage 1

In Stage 1 we do not apply any control, but wait until the saturation is either active
or inactive for an entire interval .k1T ! T; k1T *, as indicated by the condition
ek1Cek1"ek10 D 0. This is guaranteed to occur for some finite k1 " 1 if T is
chosen sufficiently small, because the unforced system cannot oscillate arbitrarily
fast. In Stage 1, the control is therefore specified by

u.t/ D 0; t 2 Œ0; k1T *: (9.9)

At time t D k1T we move to Stage 2.

Stage 2

In Stage 2 we apply a control to ensure that ´.t/ is brought out of saturation for
an entire interval .k2T ! T; k2T *, as indicated by the condition ek20 D 0 and
ek2Cek2" > 0. Define

ı D

!
1; ek1C D 0;

!1; ek1" D 0;

0; otherwise.

Let NT > 0 be some arbitrary fixed constant. We divide the time t " k1T into
intervals .k1T C j NT ! NT ; k1T C j NT *, j D 0; 1; : : : The control in Stage 2 is
defined based on Kreisselmeier (1996) by

u.k1T C j NT C +/ D !BTe"AT#Uj ; 8t 2 .k1T; k2T *; (9.10)

where j D 0; 1; : : : and + 2 .0; NT *. The quantities Uj and ˇ. NT / are defined by

Uj D ˛jˇ"1. NT /.˛h ! eA NT h/ı;

ˇ. NT / D
Z NT

0
eA. NT"(/BBTe"AT(d';

Finally, ˛ is defined such that ˛ > e2 NT kAk and h is any vector such that Ch > 0.
At time k2T , we move to Stage 3.

The following lemma shows that we will indeed move to Stage 3 within finite
time.

Lemma 9.1. If T > 0 is chosen sufficiently small, then there exists a k2 " k1 such
that ek20 D 0 and ek2Cek2" > 0.

Proof. See Appendix 9.A.
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Stage 3

In Stage 3 we bring the states to the origin by using the state-feedback approach
from Wang et al. (2009). To do so, we need access to the full state ,.t/. Since
the saturation is inactive on the interval .k2T ! T; k2T *, the full state ,.t/ at time
k2T !T can be calculated precisely by using a deadbeat approach, as indicated by
the discussion in Section 9.3. After this point ,.t/ can be calculated by integrating
(9.1). Thus, we define a state estimate O,.t/ for t " k2T by

PO,.t/ D f . O,.t/; u.t//; (9.11a)

O,.k2T / D eATD"1
0 .T /.!0.k2T ! T IT /

! S0.k2T ! T IT //C u#
0.k2T ! T IT /; (9.11b)

where f . O,.t/; u.t// represents the right-hand side of (9.1).

Lemma 9.2. For all t " k2T , O,.t/ D ,.t/.

Proof. See Appendix 9.A.

We use the precise knowledge of ,.t/ for all t " k2T to implement a linear
state-feedback control law according to Wang et al. (2009). We start by selecting
F such that AC BF is Hurwitz. We then find the unique solution P" D P T

" > 0
of the algebraic Riccati equation

!

AC BF 0
NC M

"T

P" C P"

!

AC BF 0
NC M

"

! P"
!

BBT 0
0 0

"

P" C "I D 0;

where " > 0 is a low-gain parameter that must be chosen sufficiently small. The
control in Stage 3 is now defined by

u.t/ D
(*

F 0
+

!B
TP"

)

O,.t/; 8t > k2T: (9.12)

Since O,.t/ D ,.t/, we may use the state-feedback theory from Wang et al.
(2009). From the proof of Lemma 9.1, we know that ,.k2T / belongs to a compact
set K2 ( RnCm, the size of which is bounded as a function of the set K0 of
admissible initial conditions. By Wang et al. (2009, Theorem 3), the control law
therefore ensures that ,.t/ ! 0 as t ! 1, provided the low-gain parameter " > 0
is chosen sufficiently small depending on K0.

9.4.1 Asymptotic Stability

Based on the discussion in the previous section, we can now state the main result
on semiglobal stabilization of the sandwich system.
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Theorem 9.2. For any compact set K0 ( RnCm, there exist T # > 0 and "# > 0
such that for all 0 < " & "# and 0 < T & T #, the control law described in Stages

1–3 asymptotically stabilizes the system (9.1) with K0 contained in the region of

attraction.

Proof. See Appendix 9.A.

9.5 Discussion

As emphasized in the introduction, the primary purpose of this paper is to in-
vestigate solvability conditions for the semiglobal stabilization problem, not to
construct a control law to ensure good performance. Although the control law pre-
sented in Section 9.4 is theoretically stabilizing, there are several obvious draw-
backs that must be addressed in a practical implementation.

First, the input applied to the system to deactivate the saturation grows expo-
nentially larger for each interval .k1T C j NT ! NT ; k1T C j NT *, even when this is
not necessary. If, for example, L1 is asymptotically stable with u.t/ D 0, then no
input needs to be applied to deactivate the saturation, and if L1 is marginally sta-
ble, only a small input needs to be applied. The exponentially growing input may
cause ´.t/ to pass quickly through the saturation, thus requiring T to be chosen
small. As a consequence, the deadbeat observation of ,.t/ may become poorly
conditioned.

Second, the state estimation of ,.t/ is based on deadbeat observation at t D
k2T and integration of the system equations from that point on. Clearly this is not
a robust approach; any disturbance or modeling inaccuracy may cause the state
estimate to diverge as t ! 1. An obvious improvement would be to update
O,.t/ using the deadbeat approach every time the saturation is inactive for an entire
interval. Indeed, after some finite amount of time the saturation becomes inactive
in every time interval.

Third, the algorithm passes through the three stages in a linear manner. A
more robust approach would include a path back to Stage 2 from Stage 3, in case
the control in Stage 3 fails to make the state converge and the saturation remains
active. This can occur, for example, if an unknown disturbance to (9.2) causes O,.t/
to become inaccurate.

Design of a controller that includes the above improvements, as well as others,
is the subject of current research.
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9.6 Concluding Remarks

We have presented conditions for semiglobal stabilization of systems consisting
of two linear systems connected in a saturated cascade connection. Sufficiency
of the conditions is demonstrated through constructive design of a semiglobally
stabilizing controller. Current research is focused on further development of a
controller with emphasis on performance.

9.A Proofs

Proof of Theorem 9.1. We first prove that if for all + 2 .0; T *, 0.´.kT !TC+// D
1, then ekC D 0. Taking the norm on both sides of (9.8), we obtain

kdet.Ds.+//.y.kT ! T C +/ !Gu#
s .+//

!GeM#adj.Ds.+//.!s.kT ! T I +/ ! Ss.+//k D 0; (9.13)

for all + 2 .0; T *. To form ekC we integrate the left-hand side of (9.13) from 0 to
T , and it follows that ekC D 0. The same argument can be applied for ek" and
ek0. This proves the if part of statements 1 and 2 of the theorem.

We now prove that if ekC D 0, then for all + 2 .0; T *, ´.kT !T C+/ " 1. We
shall need the following lemma, which specifies that the output must correspond
to a solution of L2 with input 1, for some set of initial conditions.

Lemma 9.3. For each k 2 1; 2; : : : ; if ekC D 0, then there exists a vector !0 2
Rm such that for all + 2 .0; T *, y.kT ! T C +/ corresponds to the output of L2
with input 1, initialized at time t D kT ! T with initial condition !0.

Proof. Suppose that ekC D 0. Then from (9.8), we have

y.kT ! T C +/ !Gu#
s .+/ !GeM#D"1

s .+/.!s.kT ! T I +/ ! Ss.+// D 0:

Premultiplying byD"1
s .+/eM

T#GT, it is easily verified that we obtain

D"1
s .+/

d
d+
.!.kT ! T I +/! Ss.+//C

d
d+
.D"1

s .+//.!s.kT ! T I +/! Ss.+// D 0:

Using integration by parts from 0 to + therefore yields

D"1
s .+/.!s.kT ! T I +/ ! Ss.+// D 1;

where 1 is a constant vector. Premultiplying byDs.+/ and differentiating on .0; T /
yields

eM
T#GTy.kT ! T C +/ ! eM

T#GTGu#
s .+/ D eM

T#GTGeM#1:

226



9.A. PROOFS

Because GT has full column rank and eM
T# is nonsingular, the above expression

implies that
y.kT ! T C +/ !Gu#

s .+/ D GeM#1:

Comparison with (9.3) shows that y.kT !T C +/ corresponds to the output of
L2 with input 1, initialized at time t D kT ! T with initial condition 1 on .0; T /,
which by continuity extends to .0; T *.

Based on Lemma 9.3, suppose that for all + 2 .0; T *, the output y.kT !T C+/
corresponds to the response of the L2 subsystem with input 1, initialized at time
t D kT ! T with initial condition !0. Then we may write y.kT ! T C +/ D
G O!.kT!TC+/, where PO!.kT!TC+/ D M!.kT!TC+/CN and O!.kT!T / D
!0. Defining Q!.kT !T C +/ D O!.kT !T C +/!!.kT !T C +/, we obtain the
system

PQ!.kT ! T C +/ D M Q!.kT ! T C +/CN-.kT ! T C +/;

where -.kT !T C+/ WD 1!0.´.kT !T C+//. From Sannuti and Saberi (1987) it
is easy to show that the Q! system with output Qy.kT !TC+/ WD G Q!.kT !TC+/ is
left-invertible with respect to the input -.kT !T C+/, because it is observable and
the input is scalar. Since Qy.kT !T C +/ D 0, it follows that -.kT !T C +/ must
either be zero, or it must be blocked by the invariant zeros of the triple .G;M;N /.
If -.kT ! T C +/ D 0, then we have 0.´.kT ! T C +// D 1, as desired. If
-.kT ! T C +/ is a nonzero signal blocked by the invariant zeros of the triple
.G;M;N /, then it must be a Bohl function on the interval .0; T / with a spectrum
that contains only invariant zeros of .G;M;N /. Furthermore, this signal must be
non-constant, since .G;M;N / has no invariant zeros at the origin. This implies
that ´.kT ! T C +/ must be a nonzero Bohl function with a spectrum containing
an invariant zero of .G;M;N /. Since the L1 subsystem is a controllable and
observable SISO system, this can only occur if either A has an eigenvalue that
coincides with an invariant zero of .G;M;N / or if the input u.kT ! T C +/ is a
Bohl function on .0; T /with a spectrum containing an invariant zero of .G;M;N /.
By Assumption 9.3, u.kT ! T C +/ cannot be a Bohl function with a spectrum
containing an invariant zero of .G;M;N /, and thus A must have an eigenvalue
that coincides with an invariant zero of .G;M;N /. However, since the L1 and L2
subsystems are connected in cascade by a scalar signal, it is easy to show that this
would lead to a pole-zero cancellation in the linear system (9.2), with a resulting
loss of observability. This contradicts Assumption 9.1, and hence we must have
´.kT ! T C +/ " 1.

The same argument holds for ek" as for ekC. We have therefore proven the
only if part of statements 1 and 2 of the theorem, as well as the if part of statement
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3. For statement 3, we still have to prove that ek0 D 0 and ekC; ek" > 0 cannot
occur unless for all + 2 .0; T *, !1 & ´.kT !T C +/ & 1 and for some + 2 .0; T *,
j´.kT !T C+/j < 1. We can use the same argument as in Lemma 9.3 to prove that
ek0 D 0 implies that for all + 2 .0; T *, y.kT ! T C +/ corresponds exactly to the
response of the , system with input u.kT !T C+/, initialized at time t D kT !T
with some initial condition ,0. Let Ox.kT ! T C +/ and O!.kT ! T C +/ represent
the corresponding trajectories. Following the same argument as above, we define
Q!.kT ! T C +/ D O!.kT ! T C +/ ! !.kT ! T C +/ and obtain the system

PQ!.kT ! T C +/ D M Q!.kT ! T C +/CN-.kT ! T C +/;

where -.kT ! T C +/ WD C Ox.kT ! T C +/ ! 0.´.kT ! T C +//. This can be
rewritten as -.kT ! T C +/ D ´.kT ! T C +/ ! 0.´.kT ! T C +//C C Qx.+/,
where PQx.+/ D A Qx.+/. As before, -.kT !TC+/must be a Bohl function to ensure
Qy.kT ! T C +/ D 0. Since Qx.+/ is a Bohl function, ´.kT ! T C +/! 0.´.kT !
T C+//must also be a Bohl function, which shows that either j´.kT !T C+/j " 1
or j´.kT ! T C +/j & 1 holds for all + 2 .0; T * (otherwise ´.kT ! T C +/ !
0.´.kT !T C+// would be zero on a subinterval in .0; T * and nonzero on another
subinterval).

If j´.kT !T C+/j " 1, then ekC or ek" D 0. Hence, ek0 D 0 and ekC; ek" >
0 can only occur if for all + 2 .0; T *, !1 & ´.kT ! T C +/ & 1 and for some
+ 2 .0; T *, j´.kT ! T C +/j < 1.

Proof of Lemma 9.1. We start by noting that from the dynamics of the system,
there is an upper bound on the maximum time before the saturation is active or
inactive for an entire interval when u.t/ D 0, provided T is sufficiently small.
Using the fact that ,.t/ is initialized from a compact set K0, we therefore know
that for small T there is a T -independent bound on kx.k1T /k.

We now prove that there is a finite k2 " k1 so that ek20 D 0 and ek2Cek2" >
0. If ı D 0, then ek10 D 0 and ek1Cek1" > 0, and hence k2 D k1. Suppose
instead that ı D 1 and, for the purpose of establishing a contradiction, that ek0 D 0
and ekCek" > 0 does not take place for any k " k1, no matter how small T > 0
is chosen. Noting that ı D sign.´.k1T //, it follows directly from Kreisselmeier
(1996) that the sign of ´.t/ switches before time k1T C j 0 NT , where j 0 is the
smallest integer j that satisfies

˛j=2 >
kCk.kx.k1T /k C khk/

Ch
:

Since there is a T -independent bound on kx.k1T /k, it follows that j 0 is indepen-
dent of T . From (9.10), we therefore see that there is a T -independent bound on
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u.t/ for all t 2 .k1T; k1T C j 0 NT *. It follows that there is a T -independent bound
on x.t/ for all t & k1T C j 0 NT . Based on this we know that there is a lower bound
on the time that ´.t/ is out of saturation before switching sign. However, if T is
chosen smaller than half the length of that minimum interval, it is guaranteed that
there is an entire interval .k2T ! T; k2T * in which ´.t/ is out of saturation before
switching sign, and hence ek20 D 0 and ek2Cek2" > 0. The same argument holds
if ı D !1.

Proof of Lemma 9.2. Since the saturation is inactive on the interval .k2!T; k2T *,
(9.2) is valid on this interval. Just as we may use (9.7) for the saturated system, we
may therefore calculate ,.k2T ! T / by

,.k2T ! T / D D"1
0 .T /.!0.k2T ! T IT / ! S0.k2T ! T IT //:

It therefore follows from the solution of the linear system (9.2) on .k2T !T; k2T *
that O,.k2T / as defined in (9.11) satisfies O,.k2T / D ,.k2T /. For t " k2T , O,.t/
evolves according to the same differential equation as ,.t/, with the same initial
condition and the same input. Hence for all t " k2T , O,.t/ D ,.t/.

Proof of Theorem 9.2. Through our discussion of the various stages, we have al-
ready proven that ,.t/ ! 0 as t ! 1, provided " > 0 and T > 0 are chosen
sufficiently small. It remains to be shown that the origin of (9.1) is a stable equi-
librium point.

On the interval Œ0; T *, we have u.t/ D 0. Hence, if k,.0/k & c for some
sufficiently small constant c > 0, then the state evolves according to ,.t/ D
eAt,.0/ and the saturation remains strictly inactive for all t 2 Œ0; T *. This implies
that e10 D 0 and e1C; e1" > 0, and hence we move directly past Stage 2 to Stage
3. For sufficiently small ,.T / D eAt,.0/, the controller in Stage 3 ensures that for
all t " T , k,.t/k & 'k,.T /k for some ' " 1. It follows that for all sufficiently
small k,.0/k, k,.t/k & 'keAT kk,.0/k, which shows that the origin is a stable
equilibrium point.
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Thesis Conclusion

This thesis covers three different topics within state and parameter estimation for
nonlinear and uncertain systems.

Part I presents a nonlinear observer for estimating the vehicle sideslip angle
and compares its performance to an EKF developed for the same purpose. It is
found that the nonlinear observer performs as well as the EKF while achieving a
significant reduction in computational complexity. However, there is still room for
improvement of the vehicle sideslip observer; in particular, there are still problems
related to the difficulty of separating a nonzero bank angle from the effect of driv-
ing on a low-friction road surface. The nonlinear analysis fails to prove stability
of the observer when friction estimation and bank-angle estimation are combined,
and the ad hoc solution of adjusting the bank-angle gain according to heuristic rules
is unsatisfactory, both in terms of theoretical justification and performance in some
situations. This aspect of the design must be improved before the observer can
reach production quality. Nevertheless, improvements made in this regard are un-
likely to have a significant effect on the performance in the majority of situations,
and improvements in the sensor configuration are therefore needed to achieve a
goal of consistently estimating the vehicle sideslip angle with 1ı accuracy. The
most promising avenue for increasing accuracy seems to be the addition of sen-
sors for measuring the roll and pitch rate and the vertical acceleration. Preliminary
tests with this type of sensor configuration suggest that significant improvements
in performance can be achieved. In terms of sensor inaccuracy, bias and drift are
the most limiting factors, and a reduction in these types of low-frequency errors
would have a large impact on performance.

Part II presents a framework for state and parameter estimation for linear sys-
tems that are perturbed by a nonlinear function of the system state, external time-
varying signals, and a set of unknown, constant parameters. The focus of the theory
in Part II is on proving asymptotically exact estimation of both of the parameters
and the state of the system through Lyapunov-type analysis. This strategy is ad-
vantageous when parameter estimation is a goal in itself, but it may be a drawback
in control problems where parameter estimation is of secondary importance, as in
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traditional adaptive control formulations. An improvement to the results may be
possible by investigating convergence of the parameter-estimation error to some
larger subset than the origin, in cases where persistency-of-excitation conditions
are not fulfilled. Further development of techniques for constructing the parameter
estimator is another topic for future research. One possibility is to use time delays
to create a set of equations that are uniquely solvable, even when the perturbation
is not invertible with respect to the unknown parameters at any single point in time.

Part III presents designs for output-feedback stabilization of two classes of
systems containing saturations. The first class of systems is multivariable linear
systems with saturated outputs, and the second class of systems is sandwich sys-
tems consisting of two linear subsystems with a saturation sandwiched between
them. Although output-feedback controllers are explicitly constructed for both
classes of systems, the results presented in Part III should primarily be viewed as
proofs of existence of stabilizing controllers, rather than practical design methods.
The presented controllers have some obvious drawbacks, and addressing these is a
topic of current research. Forthcoming publications will also deal with sandwich
systems where the outputs are linear combinations of the states of both subsystems.

232



Corrigendum to “Topics in State and Parameter
Estimation for Nonlinear and Uncertain Systems”

Håvard Fjær Grip

In Chapter 6, Section 6.3.2, there is a scaling error in the expression for Kqj q .
The correct expression is

Kqj q."/ D
�
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�.j �1/ col
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" ; : : : ;
NKqj nqj

"
nqj

�
0nqj
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C Lqj q:

Left uncorrected, the error affects MIMO systems of non-uniform rank, but not
SISO systems or MIMO systems of uniform rank.


