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SUMMARY

In this paper, we investigate the relationship between Lp stability and internal stability of nonlinear systems.
It is shown that under certain conditions, Lp stability implies attractivity of the equilibrium, and that local
Lp stability with finite gain implies local asymptotic stability of the origin. Copyright © 0000 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

In this paper, we study the relationship between Lp stability and internal stability of nonlinear
systems. Specifically, for a nonlinear system that is Lp stable, we are interested in investigating the
internal stability of the autonomous system when the input is zero. The research on this topic evolves
mainly along two lines. The first line starts with Lp stability. An important result that emerges in
this direction is [3]. It is shown that under a fairly restrictive condition on the structural property of
the system, Lp stability implies global attractivity of the equilibrium. In fact, it turns out that this
conclusion can be attained under much weaker conditions than those in [3]. It is shown in this paper
that under mild conditions, global Lp stability ensures attractivity of the equilibrium in the absence
of input and attractivity of the origin with any Lp input.

The other line emanates from Lp stability with finite gain. There is a large body of work in the
literature in this direction; see, for instance, [2, 6, 1, 3]. Along this line of research, the objective
is to conclude local asymptotic stability of the equilibrium based on Lp stability with finite gain.
It was shown in [2] that under a uniform reachability condition, global Lp stability with finite gain
implies local asymptotic stability of the equilibrium. In [6], the notion of small-signal Lp stability
with finite gain was introduced and its connection to attractivity of the equilibrium was established.
This concept of small-signal Lp stability was extended in [1] by so-called gain-over-set stability,
and it was shown that finite-gain Lp stability over a set in Lp space yields local asymptotic stability
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of the equilibrium. In this paper, we prove a result on the relationship between Lyapunov stability
and local Lp stability with finite gain, which further extends, to some level, the result in [1].

2. PRELIMINARIES

Consider a nonlinear system

Σ1 : ẋ = f(x, u), x(0) = x0, (1)

where x ∈ Rn and u ∈ Rm. We assume that f(·, u) is continuous. Let x(t, t0, u, x0) denote the
trajectory of Σ1 initialized at time t0 with input u and initial condition x0.

We shall investigate the internal stability of the unforced system

Σ2 : ẋ = f(x, 0), x(0) = x0, (2)

under the assumption that Σ1 is Lp stable in some sense.
We formally define the notions of Lp stability as follows:

Definition 1
Σ1 is said to be globally Lp stable if for x0 = 0 and any u ∈ Lp, there exists a unique solution
x(·, 0, u, 0) ∈ Lp. Σ1 is said to be locally Lp stable with finite gain if there exists a δ and γ such that
for x0 = 0 and any u with ∥u∥Lp ≤ δ, a unique solution exists and ∥x(·, 0, u, 0)∥Lp ≤ γ∥u∥Lp .

The domain of attraction and the notion of an Lp-reachable set are defined as follows:

Definition 2
The set

A(Σ2) = {x0 ∈ Rn | x(t, 0, 0, x0) → 0 as t → ∞}

is called the domain of attraction of the system Σ2.

Definition 3
A point ξ ∈ Rn is an Lp-reachable point of system Σ1 if there exist finite T , M and a measurable
input u : [0, T ] → Rm such that x(T, 0, u, 0) = ξ and∫ T

0

∥u(t)∥pdt ≤ M. (3)

The set of all Lp-reachable points of Σ1 is called the Lp-reachable set of Σ1, which is denoted as
Rp(Σ1).

Remark 1
The requirement (3) in Definition 3 is a weak condition that ensures that the integral of ∥u(t)∥p over
the interval [0, T ] is finite. For example, any x0 that is reachable via a signal u(t) that is essentially
bounded on [0, T ] is Lp-reachable for any p ∈ [1,∞).

The following definition of small-signal local Lp-reachability is adapted from [1]:

Definition 4
The system Σ1 is said to be small-signal locally Lp-reachable if for any ϵ > 0, there exists δ such that
for any ξ ∈ Rn with ∥ξ∥ ≤ δ, we can find a finite time T and a measurable input u : [0, T ] → Rm

such that x(T, 0, u, 0) = ξ and ∥u∥Lp ≤ ϵ.

3. MAIN RESULT

Theorem 1
Suppose system Σ1 is globally Lp stable for some p ∈ [1,∞). Then A(Σ2) ⊇ Rp(Σ1).
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In order to prove Theorem 1, we need the following lemma:

Lemma 1
Consider system Σ2. If x(·, 0, 0, x0) ∈ Lp for some p ∈ [1,∞), then x(t, 0, 0, x0) → 0.

Proof
For simplicity, we denote x(t, 0, 0, x0) by x(t) and f(x(t), 0) by f(x(t)) in this proof. Suppose, for
the sake of establishing a contradiction, that x(t) → 0 does not hold. Then there exists a δ > 0 such
that, for any arbitrarily large T ≥ 0, there is a τ ≥ T such that ∥x(τ)∥ ≥ 2δ. Let m be a bound on
∥f(x)∥ on the closed ball B(2δ). This bound exists due to continuity of f(x) with respect to x.

For some τ such that ∥x(τ)∥ ≥ 2δ, let t2 > τ be the smallest value such that ∥x(t2)∥ = δ, and
let t1 be the largest value such that t1 < t2 and ∥x(t1)| = 2δ. Such t1 and t2 exist because x(t)
is absolutely continuous and x ∈ Lp. Since ∥x(t)∥ ∈ B(2δ) for all t ∈ [t1, t2], we have, due to the
absolute continuity of the solution,

∥x(t1)∥ − ∥x(t2)∥ ≤ ∥x(t2)− x(t1)∥ =

∥∥∥∥∫ t2

t1

f(x(τ)) dτ
∥∥∥∥ ≤

∫ t2

t1

∥f(x(τ))∥ dτ ≤ (t2 − t1)m.

Hence, t2 − t1 ≥ (∥x(t1)∥ − ∥x(t2)∥)/m = δ/m. Clearly ∥x(t)∥ ≥ δ for all t ∈ [τ, t2], and
furthermore t2 − τ ≥ t2 − t1 ≥ δ/m. It follows that for each τ such that ∥x(τ)∥ ≥ 2δ, we have
∥x(t)∥ ≥ δ for all t ∈ [τ, τ + δ/m].

Let T be chosen large enough that ∫ ∞

T

∥x(t)∥p dτ <
δp+1

m
. (4)

Such a T must exist, since x(t) ∈ Lp. Let τ ≥ T be chosen such that ∥x(τ)∥ ≥ 2δ. We have∫ ∞

T

∥x(t)∥p dτ ≥
∫ τ+δ/m

τ

∥x(t)∥p dτ ≥ δp+1

m
.

This contradicts (4), which proves that x(t) → 0.

Remark 2
As pointed out to us by one of the reviewers of this paper, the result in Lemma 1 is closely connected
to Theorem 1 in [5]. The proof given above also employs a similar computation technique as used
in [5]. Here we are only concerned about attractivity of the equilibrium whereas in Theorem 1
of [5], a result of global asymptotic stability was proved. Therefore, only a weaker condition that
x(·, 0, 0, x0) ∈ Lp is required compared with [5] where the Lp norm of the trajectory needs to be a
class K function of the ∥x0∥.

Proof of Theorem 1
For any x0 ∈ Rp(Σ1), there exist finite T , M and an input u0(t) for t ∈ [0, T ] such that
x(T, 0, u0, 0) = x0 and ∫ T

0

∥u0(t)∥pdt ≤ M

Define

u(t) =

{
u0(t), t ∈ [0, T ]

0, t > T

Clearly, u ∈ Lp. Since Σ1 is globally Lp stable, we have that x(·, 0, u, 0) ∈ Lp. On the other hand,
u(t) = 0 for t > T implies that after T the system Σ1 is equivalent with system Σ2 initialized at x0,
i.e. x(t, 0, u, 0) = x(t− T, 0, 0, x0) with t > T . Therefore, x(t, 0, 0, x0) ∈ Lp over [0,∞). It follows
from Lemma 1 that x(t, 0, 0, x0) → 0 as t → ∞. This completes the proof.

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc



4 X. WANG ET AL.

Corollary 1
Suppose system Σ1 is globally Lp stable for some p ∈ [1,∞). If Rp(Σ1) = Rn, then the origin of
Σ2 is globally attractive.

The next theorem shows that under a certain condition on the structure of f(x, u), the origin of
Σ1 is attractive for any input u ∈ Lp.

Theorem 2
Suppose that Σ1 is globally Lp stable for some p ∈ [1,∞). If there exist δ > 0, m1 ≥ 0, m2 ≥ 0 and
q ∈ [0, p] such that for any x with ∥x∥ ≤ δ

∥f(x, u)∥ ≤ m1 +m2∥u∥q, (5)

then for x0 = 0 and any u ∈ Lp, x(t, 0, u, 0) → 0 as t → ∞.

Proof
Define a generalized saturation function σ̄(·) : Rn → Rn ∈ C1 as

σ̄(x) =

 σ̄1(x1)
...

σ̄n(xn)

 , σ̄i(xi) =


− 2δ

π , xi < −δ
2δ
π sin( π

2δxi), |xi| ≤ δ
2δ
π , xi > δ

Consider x̄(t) = σ̄(x(t, 0, u, 0)). Note that x̄(t) is still absolutely continuous on any compact
interval. Let x̄i and fi denote the ith element of x̄ and f(x, u) respectively. We have

| ˙̄xi(t)| =

{
0, |xi(t)| > δ

| cos( π
2δxi)fi(x(t), u(t))| ≤ m1 +m2∥u(t)∥q, |xi(t)| ≤ δ

Therefore, ∥ ˙̄x(t)∥ ≤
√
n(m1 +m2∥u∥q) for all t > 0. Note that ∥u(t)∥q ≤ 1 + ∥u(t)∥p and hence

∥u∥q is locally uniformly integrable. Then it follows from [4] that x̄(t) → 0 as t → 0. This implies
that x(t, 0, u, 0) → 0 as t → 0.

Remark 3
In [3], in order to prove the same result as in Theorem 2, the following condition was imposed on
f(x, u): there exists δ1, K1, K2 and α ∈ [0, p] such that for x ∈ Rn with ∥x∥ ≤ δ1,

∥f(x, u)∥ ≤ K1(∥x∥+ ∥u∥) +K2(∥x∥α + ∥u∥α)

Theorem 2 shows that the restrictions on x in the above condition are not necessary.

An immediate consequence of Theorem 2 is the next theorem.

Theorem 3
Suppose that Σ1 is globally Lp stable and Rp(Σ1) = Rn for some p ∈ [1,∞). If there exist δ > 0,
m1 ≥ 0, m2 ≥ 0 and q ∈ [0, p] such that for any x with ∥x∥ ≤ δ

∥f(x, u)∥ ≤ m1 +m2∥u∥q,

then Σ1 is globally Lp stable with arbitrary initial condition.† Moreover, for any x0 ∈ Rn and any
u ∈ Lp, x(t, 0, u, x0) → 0 as t → ∞.

Proof
Since Rp(Σ1) = Rn, for any x0 ∈ Rn, there exist finite T , M and a measurable input u0 : [0, T ] →

†Σ1 is said to be global Lp stable with arbitrary initial condition if for any x0 ∈ Rn and u ∈ Lp, we have x(·, 0, u, x0) ∈
Lp.
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Rm such that x(T, 0, u0, 0) = x0 and ∫ T

0

∥u0(t)∥p dt ≤ M.

For any u ∈ Lp, define

ū(t) =

{
u0(t), t ∈ [0, T ]

u(t− T ), t > T

Then we have x(t, 0, u, x0) = x(t+ T, 0, ū, 0). Clearly ū ∈ Lp. This implies that x(·, 0, ū, 0) ∈ Lp

and hence x(·, 0, u, x0) ∈ Lp. This proves Lp stability with arbitrary initial condition and it follows
from Theorem 2 that x(t, 0, ū, 0) → 0 as t → ∞ and therefore x(t, 0, u, x0) → 0 as t → ∞.

In what follows, we prove a theorem that is a slight generalization of results in [1].

Theorem 4
Suppose that Σ1 is locally Lp stable with finite gain and small-signal locally Lp-reachable. Then the
origin of Σ2 is locally asymptotically stable.

Proof
Let ϵ be an arbitrary positive real number. We need to show that there exists a δ > 0 such that
∥x0∥ ≤ δ implies ∥x(t, 0, 0, x0)∥ ≤ ε for all t ≥ 0. Toward this end, let δ ≤ ϵ

2 be chosen such that
for any x0 ∈ Rn with ∥x0∥ ≤ δ, there exist a finite time T and measurable input u : [0, T ] → Rm

such that

x(T, 0, u, 0) = x0 and ∥u∥Lp < ϵ
2γ

(
ϵ

2M(ϵ)

) 1
p
.

This is possible due to Lp local reachability.
Set u(t) = 0 for t > T . Since Σ1 is locally Lp stable with finite gain, from Definition 1, there

exists γ such that∫ ∞

T

∥x(t, 0, u, 0)∥p dt ≤
∫ ∞

0

∥x(t, 0, u, 0)∥p dt ≤ γp∥u∥pLp
< ϵp+1

2p+1M(ϵ) .

For t > T , the system Σ1 is equivalent to Σ2 initialized at x(0) = x0, i.e. x(t, 0, u, 0) = x(t−
T, 0, 0, x0). Hence we have ∫ ∞

0

∥x(t, 0, 0, x0)∥p dt < ϵp+1

2p+1M(ϵ) . (6)

It immediately follows from Lemma 1 that x(t, 0, 0, x0) → 0 as t → ∞.
We proceed to show that ∥x(t, 0, 0, x0)∥ < ϵ for all t ≥ 0. Suppose, for the sake of establishing

a contradiction, that there exists a τ such that ∥x(τ, 0, 0, x0)∥ ≥ ϵ. Let t1 < τ be the largest
value such that ∥x(t1, 0, 0, x0)∥ = ϵ/2, and let t2 ≤ τ be the smallest value such that t2 > t1 and
∥x(t2, 0, 0, x0)∥ = ϵ. Such t1 and t2 exist because ∥x0∥ ≤ ϵ

2 . Then ϵ/2 ≤ ∥x(t, 0, 0, x0)∥ ≤ ϵ for all
t ∈ [t1, t2]. Let M(ϵ) be a bound on f(x, 0) for ∥x∥ ≤ ϵ. We have, owing to the absolute continuity
of x(·, 0, 0, x0),

∥x(t2, 0, 0, x0)∥ − ∥x(t1, 0, 0, x0)∥ ≤ ∥x(t2, 0, 0, x0)− x(t1, 0, 0, x0)∥

≤
∥∥∥∥∫ t2

t1

f(x(t), 0) dt
∥∥∥∥ ≤

∫ t2

t1

M(ϵ) dt ≤ M(ϵ)(t2 − t1)

This gives that t2 − t1 ≥ ϵ
2M(ϵ) and hence that∫ ∞

0

∥x(t, 0, 0, x0)∥p dt ≥
∫ t2

t1

∥x(t, 0, 0, x0)∥p dt ≥
∫ t2

t1

( ϵ

2

)p

dt = ϵp+1

2p+1M(ϵ) ,

which contradicts (6). Hence ∥x(t, 0, 0, x0)∥ < ϵ for all t ≥ 0, which completes the proof.
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Remark 4
Compared with the result in [1], Theorem 4 requires a finite gain only within an arbitrary small
neighborhood of the origin of Lp space.

Remark 5
We assume in this paper that f(x, u) is continuous with respect to x, which covers a large class of
dynamical systems. In fact, it can be seen from the proof that we only need continuity of f(x, u)
with respect to x at x = 0.

Remark 6
We also refer the reader to a related paper [5] which presents the integral characterizations
of uniform asymptotic stability and uniform exponential stability for differential equations and
inclusions.

4. CONCLUSION

In this paper, we study the connection between two notions of stability of nonlinear systems, namely
Lyapunov stability and external Lp stability. While no direct translation can be made between these
notions of stability in general, this paper represents another effort in exposing the relationship
between them by studying attractivity for Lp stable systems with additional structural properties,
such as local reachability and bounds on the derivative.
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