Synchronous Message Passing Kernel
CptS 483
April 7-May 5, 2016

April 7, 2016

General Description

In this project you will implement synchronous message passing using shared-memory
concurrent programming. The details for this project are found in the interface speci-
fication below. Reading and understanding the Concurrent ML paper linked from the
course calendar page (full citation at the bottom of the assignment) should be consid-
ered a prerequisite for doing this assignment, particularly as the terminology used here
comes from that paper.

Use Java for your implementation. Your life will be easier if you make good use of
available libraries for manipulating linked lists.

Important Dates

This problem is harder than it looks at first. Therefore, I've broken it down into 3
stages. The target dates for the first two stages are soft — they aren’t due dates, but if
you come to me in the last week of April for help (or mercy) without having done them
I won’t be happy

I suggest the following targets for the 3 stages:

April 15: a working implementation of synchronous send and receive for channels
(stage 1). See the interface specification and implementation notes below.

April 22: a working implementation of synchronous event-based communication (stage
2).

May 5: the full implementation including select() is due.



Interface Specification

You are to provide data structures and operations corresponding to those described
here. You may need to provide additional operations or to add fields to the objects in
order to implement the required semantics.

Note that the terminology (channels, send, recv, sendEvent and recvEvent) comes
from Concurrent ML — Java concepts with the same names are not involved!

First Stage

For the first stage implementation:

class Channel {
Object Send(Object o);
Object Recv();

Note that Channel as specified here has semantics very similar to SynchronousQueue
in the Java library. While you could implement Channel using SynchronousQueue it
wouldn’t get you very far along the way toward what is ultimately needed. Make sure to
use proper Java synchronization and publication practices throughout this assignment.
Send returns the object that was passed to it.

Second Stage

Interfaces for the second stage implementation. Notice that the Send and Recv opera-
tions of Channel are no longer required to achieve communication. If you implement
them, implement them in terms of SendEvent and RecvEvent.

class CommEvent {
Object sync();

}

class SendEvent extends CommEvent {
SendEvent (Object o, Channel c);

}

class RecvEvent extends CommEvent {
RecvEvent (Channel c¢);

Remember that c . Send (o) is the logical equivalent of sync (new SendEvent (o, c) ),
andv = c.Recv () isthelogical equivalentof v = new RecvEvent (c) .sync();
The sync() operation for SendEvents returns the sent object — i.e. the object that was
passed to the SendEvent constructor.



Third Stage

For the final implementation, all of the classes of the second stage plus:

class SelectionList {
void addEvent (CommEvent ce);
Object select();

In stages 2 and 3, an event that is used in a sync or select() operation may be used
repeatedly. (Each time a SendEvent is sync’d or select’d it sends the same value.) You
may (should) assume that an event will not be used twice at the same time: that is
it won’t appear in two SelectionLists passed simultaneously (from different threads)
to select(), nor be passed simultaneously (from different threads) to two sync()s, nor
be passed to sync and appear in a SelectionList passed to select() simultaneously. An
easy way to make sure that you observe these restrictions in your testing code is to use
each CommEvent and SelectionList only in the thread in which it is created (thread
confinement!)

Implementation notes

Java’s intrinsic monitors are ill-suited to the synchronization requirements for this
project. You will want to be able to wake up a particular process rather than all waiting
processes (which you’re pretty much forced to with Java’s single-lock, single-CV per
object model). I suggest using the ReentrantLock class along with the Condition class.
Do not use busy-waiting or timeouts!

The stages of the project are intended to allow you to develop something fairly easy
first, get it working, and gradually enhance it to meet the full specifications. The third
part is by far the hardest so pushing the schedule on the first two parts is advisable.
Here are notes on each of the stages.

Stage 1: Channels with Send and Receive

Synchronous communication on channels is easy to implement: each channel has a
send queue and a receive queue. At least one of the queues is always empty (invariant,
why?). Channels have two operations, Send and Recv. The Send operation works as
follows. If the recv queue is non-empty a send transfers its object to the first recv
from the queue, moving the sent data to the receiver and releasing the queued receving
process. On the other hand, if the recv queue is empty, make an entry in the send queue
and wait to be woken by a receiver. The Recv operation is symmetrical to Send: if
the send queue is non-empty, a receive takes the value from the first send in the send
queue, moving the data from the sender to the receiver and wakening the sender.



Mutual exclusion: since only a single channel is involved in any communication, ade-
quate mutual exclusion can be obtained by locking the channel during each operation.

To pass data from the sender to the receiver I suggest using a field in the data structures
that are used to represent waiting senders or receivers (in the queues). Notice that the
interface signature says that the value communicated over the channel is a Java Object.

You need to explicitly represent the queues of waiting communications! That is, if
multiple threads have called Send on a channel there should be an object in the send
queue in your channel object for each of them. You have to design an object type to
be held in the queue. You are welcome to use a java library queue type for the queue
itself.

Important design question: how will you represent operations that are waiting? I sug-
gest using an object (of your design) to contain the value being transfered (o) and the
Condition object that you will use to wait in the process calling Send and awaken from
the process calling Recv. These objects will be kept in the send queue of the channel.
Similar considerations apply if their are multiple waiting Recv’ers. Remember, there
should always be only Senders or Receivers waiting but not both. Condition objects
should be associated with the ReentrantLock objects that are in turn associated with
each Channel.

Stage 2: Events with SendEvt, RecvEvt, sync

This stage introduces the notion of communication events, which come in two forms,
SendEvt and RecvEvt. (Again note that these events have absolutely nothing to do
with the term event as used in Java or Java GUIs.) An event encapsulates the notion
of the potential to perform a communication action, without actually performing it.
Let me repeat, when an event is created no communication is performed. In order to
perform its communication, a sync operation must be performed on the event (In class I
called this operation perform. (Note: SendEvt and RecvEvt here are just data structures
— which makes the “event” part a bit of a misnomer; nothing “happens” in creating one
of these “events” except allocation and initialization of data fields.

A SendEvt consists, abstractly, of a value and a channel. A RecvEvt consists of a chan-
nel and an operation for extracting the received value. The received value is available
after the receive event’s sync operation returns.

Here is how you implement sync which is part of the public interface of events. This
sounds complicated, but all these components are needed in order to have the select
operation work right later.

e Events have a private poll method and a private enqueue method which are used
in implementing sync, as follows:

e sync first calls poll which, if the operation can be performed (the opposite queue
is non-empty) transfers the data object to the receiving queue object and then
wakes up the waiting thread (whether it was the sender or the receiver).



o If the poll operation fails, sync calls enqueue on the object, which adds the event
to the correct queue of the channel. After that sync waits —

e when it is awakened (by another thread’s poll) a communication will have been
completed. Observe that every completed communication consists of one thread’s
sync calling enqueue after which it waits until another thread’s sync calls poll,
which wakes up the waiting process. Of course one of threads must be operat-
ing on a SendEvt and the other on a RecvEvt, but either can be enqueue’s caller
while the other calls poll. While there are other ways to implement sync, doing
it in the way I suggest positions you well to complete the third stage — I suggest
you read the third stage notes before tackling the second stage.

(Don’t confuse poll here with the poll Unix system call. The two are not related.)

Synchronization: In this implementation it is still sufficient to have one ReentrantLock
object per channel object because only a single channel is involved in all operations.

Stage 3: Full implementation with Select

The final step is to add synchronous selective communication. (Note that select here
has absolutely nothing to do with the Unix select system call.) To do this we add
the SelectionList class which has methods for constructing a list of communication
events and for performing a select() operation on the list. Events in a SelectionList can
consist of a mixture of SendEvts and RecvEvts. In addition different events may refer
to different channels. Each SelectionList is used by only a single thread and you may
assume that a SendEvt and a RecvEvt for the same channel do not ever get put on the
same SelectionList. (You do not have to implement code to check these two things —
just write your demo code to obey those rules.)

select() performs exactly one of the events in the SelectionList by matching it with a
complementary event on the same channel. The complementary event may be being
sync’d directly or it may be itself part of a SelectionList on which select is being per-
formed (by a different thread, of course). (Don’t confuse the behavior select here with
the behavior of the select Unix system call. The Unix select call returns data indicating
which file descriptor(s) are ready to perform I/O. Our select will actually perform one
interaction with another thread.)

Now we come to the part where we really take advantage of the poll and enqueue
functions that we built before. To implement select, call poll for each element of the
SelectionList. If one of the calls to poll finds a matching event it causes the commu-
nication to occur we’re done. If none of the polls succeeds, select() calls enqueue for
each element of the SelectionList, thus adding each event to the approriate queue of
the appropriate channel. After calling enqueue for all the elements, select waits. When
awoken, it figures out which event was matched (there must be only one!), removes all
the other events of the SelectionList from their channel queues, and returns the Object
associated with the successful event — either the sent Object in the case of a SendEvt
or the received Object in the case of a RecvEvt. The trick to making this work is that



all of the objects that are enqueued by a given call to select should reference the same
Condition object. Once all are enqueued, select waits on that condition object. A sub-
sequent poll wakes up the waiting select by notifying on the common condition object.
Select must then go through the elements of the SelectionList and remove them from
the queues of the channels. Select should not remove anything from the SelectionList
itself.

Synchronization:

Select is manipulating multiple channels: there is a serious risk of deadlock due to
acquiring locks in different orders if channel locks are used. At this stage, I suggest
using a single, global, lock (ReentrantLock).

Demonstration

To demonstrate the first stage implementation, two sender threads and a receiver thread
that successfully pass about 10000 values on a single channel and two receive threads
and a single sender that successfully pass about 10000 values should be adequate.

Demonstrating the second stage is not really any harder: just replace the send and recv
calls to calls of new SendEvent(...).sync() and new RecvEvent(...).sync();

Demonstrating the third stage actually is harder. I suggest starting with two senders
sending on different channels using sync() on SendEvents, while the receiver selects
on two RecvEvents (one for each channel). When that works then make sure that a sin-
gle sender using a select on two channels is able also to complete the demonstration.
What other demonstrations can you think up? Remembering that testing is woefully in-
adequate methodology for concurrent programs, how can you establish the correctness
of your implementation?

References

Synchronous communication in the form here is found in the Concurrent ML language
(though CML threads are much lighter-weight than Java threads and there are other
factors that increase its appeal in that context.) Concurrent ML references that are
easily available include

Reppy, J.H. “CML: A higher-order concurrent language.” In Proceedings of the SIG-
PLAN 91 Conference on Programming Language Design and Implementation,
pp- 293-305 (available on-line through the WSU library; there’s a link via the
WSU library on the course calendar for 3/31).

Reppy, J.H. Higher Order Concurrency, Ph.D. Dissertation, Cornell University, 1992.
Cornell Computer Science Tech Report TR 92-1285. (Available from Cornell’s
web site I believe.)

There is also a book by John Reppy, Concurrent Programming in ML, of which the
WSU library has a copy but availability is always iffy.



