
W ' l (t) h th ti l b h i i ittWe've seen examples (servers, actors) where the essential behavior is written
once and then instantiated with different functions.

The Erlang OTP (Open Telecommunication Platform) pursues this idea g (p) p
aggressively – almost all concurrent behavior is captured in library modules
and then instantiated with modules containing purely sequential code.
Why is this good?

What is the advantage of using modules instead of functions for instantiation?
We want to generalize behaviors that extend beyond a single function to a set
of related functions. Example – a server requires code for initialization as well
as steady-state operation
Aside 1: process control systems folklore – system initialization often requires
the intensive assistance of the system designers because PCSs are often
designed without sufficient attention to the startup processdesigned without sufficient attention to the startup process.
Aside 2: does the OTP approach alleviate this by calling explicit attention to the
startup phase?
Aside 3: what does this idea correspond to in Java?

%% b i b h i%% basic server behavior
-module(server1).
-export([start/2, rpc/2]).

start(Name, Mod) ->
register(Name, spawn(fun() -> loop(Name, Mod, Mod:init()) end)).

rpc(Name Request) >rpc(Name, Request) ->
Name ! {self(), Request},
receive

{Name, Response} -> Response
end.

loop(Name, Mod, State) ->
receivereceive

{From, Request} ->
{Response, NextState} = Mod:handle(Request, State),
From ! {Name, Response},
loop(Name, Mod, NextState)

end.

%% A name server callback module using basic server behavior

-module(name_server).
-export([init/0, add/2, whereis/1, handle/2]).
-import(server1, [rpc/2]).

%% client routines – aka client stubs
add(Name, Place) -> rpc(name_server, {add, Name, Place}).
whereis(Name) -> rpc(name server, {whereis, Name}).whereis(Name) rpc(name_server, {whereis, Name}).

%% callback routines
init() -> dict:new().

handle({add, Name, Place}, Dict) -> {ok, dict:store(Name, Place, Dict)};
handle({whereis, Name}, Dict) -> {dict:find(Name, Dict), Dict}.
--
%% then outside of name_server instantiate one using
1> server1:start(name_server, name_server).
2> name_server:add(joe, “at home”).
3> name server:whereis(joe)3> name_server:whereis(joe).
{ok, “at home”}

-module(server2).
-export([start/2, rpc/2]).p ([, p])
%% server behavior w/ transaction semantics

start(Name, Mod) ->
register(Name spawn(fun() > loop(Name Mod Mod:init()) end))register(Name, spawn(fun() -> loop(Name,Mod,Mod:init()) end)).

rpc(Name, Request) ->
Name ! {self(), Request},
receive

{Name, crash} -> exit(rpc);
{Name, ok, Response} -> Response

endend.

log_the_error(Name, Request, Why) ->
io:format("Server ~p request ~p ~n"

"caused exception ~p~n",
[Name, Request, Why]).

%% loop for transactional semantics
loop(Name, Mod, OldState) ->

receive
{From, Request} ->

try Mod:handle(Request OldState) oftry Mod:handle(Request, OldState) of
{Response, NewState} ->

From ! {Name, ok, Response},
loop(Name, Mod, NewState)

catch
_:Why ->

log_the_error(Name, Request, Why),
%% send a message to cause the client to crash%% send a message to cause the client to crash
From ! {Name, crash},
%% loop with the *original* state
loop(Name, Mod, OldState)

dend
end.

%% the callback module doesn’t change!g

%% server behavior with “hot” code replacement
-module(server3).
-export([start/2, rpc/2, swap_code/2]).

start(Name, Mod) ->
register(Name,
spawn(fun() -> loop(Name,Mod,Mod:init()) end)).

rpc(Name, Request) ->
Name ! {self(), Request},
receivereceive

{Name, Response} -> Response
end.

%% The server implements the swap_code operation
%% and passes other ops off to the callback module%% and passes other ops off to the callback module

swap_code(Name, Mod) -> rpc(Name, {swap_code, Mod}).

loop(Name, Mod, OldState) ->
receive

{From, {swap_code, NewCallBackMod}} ->
From ! {Name, ack},From ! {Name, ack},
loop(Name, NewCallBackMod, OldState);

{From, Request} ->
{Response, NewState} = Mod:handle(Request, OldState),
F ! {N R }From ! {Name, Response},
loop(Name, Mod, NewState)
end.

Supervison Trees

W k fWorker processes – gen_server, gen_fsm
The examples above are “toy” generic server code to illustrate the main ideas.
Real OTP gen_server details are different but same idea

Supervisor processes/Supervision trees:
Long-lived systems need to protect against failures of software (and hardware)
supervisor:start(CallBackModule, Arguments)
CBM contains init/1 functionCBM contains init/1 function
init/1 returns {ok, SupervisorSpec, ChildSpecList}
Each ChildSpec is

{Id, {M, F, A}, …, Type, …}

SupervisorSpec has form {RestartStrategy, AllowedRestarts, InSeconds}
Restart strategy is one of: one_for_one, one_for_all, rest_for_one
If restarting too frequently the *supervisor* terminates!If restarting too frequently, the supervisor terminates!

The gen_server of OTP implements these behaviors and more, including
support for supervision trees.

These code swapping servers are a key component of high availabilityThese code-swapping servers are a key component of high-availability
systems – you can keep a system up for years while updating the software
as it runs.

Joe Armstrong describes this in his PhD thesis “Making Reliable
Distributed Systems in the Presence of Software Errors” -- it's worth a
read.

