
CptS 483

First project

Assigned: 2/11/16

Due: 2/25/16 11:59:59PM. Turn in using the course Turn-in page.

In this assignment you will create several classes that implement synchronizers along the lines 
described in the book in section 5.5. The directions for each class provide the class name and file 
name that you are to use for that class. When finished, put all of the source code (that's the source
code, not the compiled class files or project files) in a zip file (that’s a zip file, not tar, not bzip, 
not jar: a zip file) and submit it to the turn-in page. As always, you may turn in the code as many 
times as you like. Only the last will be graded. 

The purpose of this assignment is to gain experience thinking about how threads can be 
synchronized with each other. Thus, you may not use any library classes that essentially 
implement any of the assigned classes. You may, however, use library classes that provide 
synchronization capabilities beyond what is provided by intrinsic synchronization, such as the 
Atomic<X> classes, lock classes, etc.

Each implementation must contain enough class-level comments to explain how it works as well 
as per-method comments explaining what each method does. Include additional comments at the 
block or line level to help me understand your implementations.

For each synchronizer Foo, write another class FooDemo, containing a main program that can 
be run to demonstrate your code in operation, doing what it is supposed to do. If the main 
program requires or takes command-line arguments to control its execution, make sure to 
document that fact in a comment. In short, I should be able to run 

java FooDemo <args>

and see evidence that your class operates correctly.

You must not use busy-waiting (defined as implementations that saturate the CPU doing nothing 
useful or sit in loops that use calls to Thread.sleep() waiting for something to happen).

1. Semaphore (Semaphore.java, SemaphoreDemo.java) 

Semaphore semantics are described in section 5.5.3. Implement a constructor providing the initial
number of permits, and public methods for acquire(int n) and release(int n). 
Overloaded parameterless methods acquire() and release() correspond to passing 1 to the
parameter-ful versions. It is important that acquire(n) not be implemented as repeatedly 
doing acquire(). Explain in your comments why not.

2. CountDownLatch (CountDownLatch.java, CountDownLatchDemo.java)

CountDownLatch is described in section 5.5.1. The constructor initializes a counter to the 
provided value. The countdown() method decrements the counter (by 1); the await() 
method returns when the counter is no longer positive.

3. Mailbox (Mailbox.java, MailboxDemo.java)

Recall the discussion from class: a mailbox is a queue that holds at most one element, with put 
and take methods. Put (respectively, take) waits if the mailbox is full (resp. empty). The 
queue implementation from class with size==2 implements a mailbox, but the goal in this 



assignment is to implement the mailbox without the complication of head and tail indexes and an 
array. 

4. CyclicBarrier (CyclicBarrier.java, CyclicBarrierDemo.java)

CyclicBarrier is described in section 5.5.4. The constructor initializes a counter. The await() 
method decrements the counter and waits until the counter reaches zero at which point all waiting
threads are released, the counter is reset to its initial value, and subsequent calls to await again 
block until the counter reaches 0. You do not need to implement the handling of timeouts and 
interruptions described in the text nor do you need to implement the barrier action feature 
described in the first line of p. 101.) Note: my Race program for assignment 1 contained a barrier 
implementation but it does not fully meet the re-usability requirements for this assignment. You 
may use it as a starting point if you wish.

Assignments will be graded on: correct functioning, correctly described in comments. The Demo 
programs that you write cannot possibly exhaustively test your code. Testing can only tell us that 
code is wrong, not that it is correct, and may have limited utility for concurrent programs. For any
concurrent program you must be able to construct a correct argument about how your code 
correctly implements the desired functionality—and that's what I expect to see in the comments 
to your code.


