
Lecture 10

• First mid-term: Wednesday, Feb 26, one week from
today: open book, open notes. No computers
(except for accessing the book)

• For Monday, Feb 24, there will be a recorded
lecture. It will be the Erlang Introduction and will
NOT be on the exam. The link will be posted on the
course calendar

• Today:

 Chapter 6

 Exam Review

Exploiting Parallelism

• Sources of and constraints on parallelism

 CPUs

 Disk

 Network

 Memory

• Sources of delay: disk i/o, network i/o

• Complete success: keep computation and i/o
resources busy all the time

• How many threads? ~nCPUs ready threads

Task-based design

• Instead of thinking about threads, think about
tasks to be done

 Compute this

 Process a web client request (server side)

 Fetch a URL (client side)

 Fetch a disk block

 Write a file

 Etc.

Thread-per-task

• Manually create a thread for each task as you
become aware of it

 Risks:
• thread lifecycle overhead

• Overconsumption of resources (esp. memory) – leading
to poor performance

• Danger of reaching system limits followed by system
collapse

Executor Model

• Java executors are objects that make policy
decisions about how to execute tasks:

 In a new thread

 In a thread pool

 In the current task

• public interface Executor {
 void execute(Runnable task);
}

• Producer-consumer design with no explicit queues

Kinds of Executors

1. Thread-per-task

2. Fixed thread pool – a predetermined fixed
number of threads

3. Cached thread pool – no fixed maximum number
of threads; threads created as needed

4. Single thread executor – later tasks guaranteed
to see the results (side effects) of earlier tasks

• Nrs 1-3 are good for independent tasks

• Nr 4 is good for sequentially dependent tasks

Additional Executors

• ScheduledThreadPool and DelayQueue

Executors sometimes not a good idea

• If your implementation is designed as a pipeline of
threads interacting through queues

• Anything where threads need to dynamically
interact

Uses of Threads

• Defer work – good application of executors

• Periodic work – cron jobs

• Scheduled future work

• Exploit Parallelism – how many threads?

Deadlock avoidance

• Recall deadlock involves multiple (two or more)
threads waiting for one another

• Basic deadlock avoidance technique: always
acquire locks in the same order (in all threads)

What if you don’t know what locks you’ll
need?

• Required lock order: ABCDEFGHI

• you don’t always need all of the locks and
occasionally you learn you need a lock after you’re
allowed to acquire it

• Two possibilities: fork a thread to do the work
under the missing lock (but you can’t wait for it to
finish)

• Fork a thread to redo the computation from the
beginning but advising it to acquire the missing
lock at the proper time

Pipelines

• Chains of threads interacting through bounded
buffers (queues)

• T1 -> Q1 -> T2 -> Q2 -> …

• Threads may be thought of a “pumps” moving data
through the pipeline

• Different threads may work on different size
“chunks” of data. In particular if T2’s interactions
with Q2 are very expensive it may be good to take
many chunks from Q1 to form the inputs to Q2

Problem

• How long does T2 wait for “enough” data before
passing it along to Q2?

 As always, it depends

 If there is no real-time requirement then however
long it takes to fill a chunk

 Otherwise, a good use for a timeout

• Beware of timeout-driven systems

 Lousy performance, low CPU utilization

