
Principle 1
• If more than one thread accesses a given state 

variable and one of them might write to it then
• All accesses to the variable must be correctly 

coordinated using some synchronization 
mechanism

• If this rule is not followed then the program is 
broken!

• What is “correct” depends on the chosen 
mechanism



Making Individual Objects Thread-safe
• What is thread-safety?
• Invariants
• Encapsulation
• Immutability



Def. 1: Class thread-safety
• An class is thread-safe if it 

behaves correctly 
regardless of scheduling 
decisions and without any 
synchronization or 
coordination by its client 
code.



Invariants
• An invariant is a property of 

an object that holds except 
when its state is being 
actively modified

Sorted
Balanced
Exists a path to every 
element
tree.count == # of 
elements stored in the 
tree



Invariants (2)
• An invariant is a 

relationship between the 
values of state variables

• Stateless objects are 
always thread-safe (no 
synchronization is 
required)

What is required to be 
called “stateless”?



Encapsulation
• The idea that maintaining 

invariants is the job of an 
object’s code, not the job of 
its callers

• Thread-safe classes include 
any required 
synchronization code



Atomic/Atomicity
• An operation is atomic iff it 

is indivisible
Concurrent operations 
see no intermediate 
states
Concurrent operations 
affect no intermediate 
states

• Compound actions are the 
opposite of atomicity

Read-modify-write
Check-then-act

• Compound actions can be 
made atomic using 
synchronization 

• java.util.concurrent.atomic 
classes



Principle 2
• To preserve state consistency (i.e. invariants) 

update related state variables in a single atomic 
operation

Variables are related if they contribute to 
operands of a relation in an invariant: <, = , >, 
element-of, etc.
• Example invariant: product(lastFactors)==lastNumber 

(Fig. 2.5)



Achieving atomicity using Java intrinsic 
locks

• synchronized(object) { … }
• The compound action … 

above will be atomic with 
respect to any other action 
that also uses 
synchronized(object)

• synchronized foo (…) {…} 
is equivalent to 
foo (…) synchronized(this) 
{…}



Correct use of intrinsic locks
• Every access to a mutable state variable accessed 

by more than one thread must be guarded by the 
same lock (document which one) (Principle 1)

• All variables that are related by an invariant must 
be guarded by the same lock (Principle 2)



Intrinsic lock re-entrancy
• If a thread already holds an 

intrinsic lock, can it enter 
another synchronized block 
protected by that lock?

It’s a language or library 
design decision
Java – yes; locks are re-
entrant
Some languages – no

• Implementation: owner 
(thread) and locked count 
for each lock



Argument for reentrancy
• Allows overriding synchronized method to call 

overridden synchronized method:
• synchronized foo(…) { … super.foo(…); … }
• Convenient if part of the work of a synchronized 

method is interesting in its own right as a 
synchronized method 

• synchronized foo(…) {… bar(…); …}
• synchronized bar(…) {…} 
• Argue that it is better to use bar() in foo() than to 

repeat the code



Argument against re-entrancy
• If the invariant holds 

whenever the lock is 
released (which is a basic 
correctness criterion) and

• Locks are not re-entrant, 
then

• at the beginning of any 
synchronized block you 
can trust that the invariant 
guarded by that lock holds

• Re-entrancy violates 
encapsulation



For next time
• Read Chapter 3


	Principle 1
	Making Individual Objects Thread-safe
	Def. 1: Class thread-safety
	Invariants
	Invariants (2)
	Encapsulation
	Atomic/Atomicity
	Principle 2
	Achieving atomicity using Java intrinsic locks
	Correct use of intrinsic locks
	Intrinsic lock re-entrancy
	Argument for reentrancy
	Argument against re-entrancy
	For next time

