
Lecture 6
Safely Publishing Objects

1

Two key points from last time
• Proper Construction – this reference does not

escape (to another thread) during construction
� Remember – an object is not fully constructed

2

� Remember – an object is not fully constructed
until its constructor returns

• Thread-confined objects are safe
� References are only on stack or in ThreadLocal

objects
� Ad-hoc thread-confinement – only one thread

accesses an object by agreement (but no
language enforcement)

Immutable objects are thread-safe
• Object is immutable if
� It’s state cannot be modified after construction

• “Cannot be modified” vs “is not modified”

3

• “Cannot be modified” vs “is not modified”
� Its data fields are declared final: cannot be

changed after construction (must be declared
final and not just treated as final)

� It’s properly constructed
• Volatile references + immutable objects => simple

thread safety w/o locks
� Beware inadvertant publishing of private values

as in Fig. 3.6

Example: atomic update using
immutable object

Class OVCache {
private final BigInteger last;
private final BigInteger [] lastFactors ;

4

private final BigInteger [] lastFactors ;
public OVCache(BigInteger i, BigInteger[] factors) {

last = i;
lastFactors = Arrays.copyOf(factors…);

}
in using code
private volatile OVCache cache = new OVCache(null,nu ll);
…
cache = new OVCache(i, factors);

Listings 3.12 and 3.13

Unsafe Publication
public Holder holder;
public void init() { holder = new Holder(42); }
public class Holder {

5

public class Holder {
private int n;
public Holder(int n) { this.n = n; }
public void sanityCheck() { if (n != n) … }

}
Holder is properly constructed but not properly pub lished.

sanityCheck() can see two different values for hold er.n!

Safe Publication
• Recall: publication is the action that makes an

object visible outside the current scope – typically
an assignment of the reference

6

an assignment of the reference
• Safe publication is all about making sure that the

reference and the properly initialized fields in th e
object that it refers to become visible at the same
time

Safe publication idioms
• Initializing an object reference in a static initia lizer
� i.e., static class-level data fields

•

7

• Assigning to a volatile field or AtomicReference
object

• Assigning to a final field of a properly constructe d
object

• Assigning to a field that is properly guarded by a
lock

Safe Publication Summary
• Immutable objects can be published by any mechanism
• Effectively immutable objects (ones that in fact ar e not

changed after construction though they do not meet the

8

changed after construction though they do not meet the
strict test) must be safely published – but then can be
accessed without further synchronization

• Mutable thread-safe objects must be safely publishe d
(necessary synchronization is invoked internally by the
object)

• Mutable thread-unsafe objects must be safely publis hed
then accessed using proper synchronization

Chapter 3 Summary
• Visibility of changes is the main issue
• Correct synchronization, proper construction and

safe publication are three requirements for

9

safe publication are three requirements for
programs to have well-defined behavior

• Rules are simpler for immutable objects
• There are no concurrency concerns for thread-

confined objects, mutable or immutable

Chapter 4

• 50+ years of CS and SE devoted to issues of
composability: how to create solutions to big
problems by combining (composing) solutions to
smaller problems

10

smaller problems
� Mechanisms – e.g. intrinsic locks; GC
� Techniques – Invariants, pre- and post-

conditions; confinement; delegation; etc. (Ch4)
� Libraries – working code embodying the

techniques for specific domains (Ch 5)
• This chapter mainly about techniques

Invariants – the fundamental technique
• What property is always true of an object when it i s

in a correct state?
• For sequential programming, the class invariant

11

• For sequential programming, the class invariant
gives you critical information about what each
public method needs to achieve

• For concurrent programming, the class invariant
tells you which fields are related and therefore
have to be protected by a single lock

Post-conditions and Pre-conditions
• The post-condition of a method tells you what that

method is supposed to accomplish
� (A no -op will preserve the invariant but that’s not

12

� (A no -op will preserve the invariant but that’s not
very interesting or useful!)

• The pre-condition tells you what (beyond the
invariant) is supposed to be true for a method to
successfully reach the post-condition
� In sequential programming calling a method

when its precondition is false is an error
� In concurrent programming we can wait for the

precondition to become true

