
1

Chapter 4

• 50+ years of CS and SE devoted to issues of
composability: how to create solutions to big
problems by combining (composing) solutions to
smaller problems
 Mechanisms – e.g. intrinsic locks; GC
 Techniques – Invariants, pre- and post-

conditions; confinement; delegation; etc. (Ch4)
 Libraries – working code embodying the

techniques for specific domains (Ch 5)
• This chapter mainly about techniques

Presenter
Presentation Notes
Chapter 4: Composing Objects
Mechanisms – built in to languages, OS, etc.

2

Invariants – the fundamental technique
• What property is always true of an object when it is

in a correct state?
• For sequential programming, the class invariant

gives you critical information about what each
public method needs to achieve

• For concurrent programming, the class invariant
tells you which fields are related and therefore
have to be protected by a single lock

Presenter
Presentation Notes
Invariants again: essential for both sequential and concurrent programming.

3

Post-conditions and Pre-conditions
• The post-condition of a method tells you what that

method is supposed to accomplish
 (A no-op will preserve the invariant but that’s not

very interesting or useful!)
• The pre-condition tells you what (beyond the

invariant) is supposed to be true for a method to
successfully reach the post-condition
 In sequential programming calling a method

when its precondition is false is an error
 In concurrent programming we can wait for the

precondition to become true

Two common problems
• Composing a thread-safe class from unsafe

building blocks
• Composing a thread-safe class when the building

blocks are already thread-safe

Confinement Technique (4.2) – thread-
safe object built from unsafe objects

• Allow access to a thread-unsafe object only through another object that
is thread-safe

public class PersonSet {
 private final Set<Person> mySet = new
HashSet<Person>();

 public synchronized void add(Person p) {
 mySet.add(p); }
 public synchronized boolean contains(Person p) {
 return myset.contains(p); }
}
• hashSet is not ThreadSafe, PersonSet is
• Idea of ownership: PersonSet owns mySet but probably not the

Persons contained in it

Presenter
Presentation Notes
mySet confined to PersonSet

Danger in Confinement Technique
• Inadvertant publication of what is supposed to be private (confined)

mutable state
public synchronized MutablePoint getLocation(String id) {
 MutablePoint loc = locations.get(id);
 return loc == null ? Null : new MutablePoint(loc);
}
Public synchronized setLocation(String id, int x, int y) {
 MutablePoint loc = locations.get(id);
 if (loc == null) { … exception …}
 loc.x = x; loc.y = y
}
• My preference would be to express this interface using

ImmutablePoints.

Presenter
Presentation Notes
Listing 4.4 Page 63

Thread-safe objects built from thread-safe
components – Delegating safety (4.3)

• Delegation: giving responsibility for thread safety
to the object(s) containing this object’s state
 ConcurrentMap (TS) instead of Map (not TS)
 Atomic<foo>

• If this object’s state involves multiple other objects
delegation may or may not work
 If the sub-objects are independent, ok
 If the sub-objects are related, this object must

provide its own synchronization – even if all the
sub-objects are themselves thread-safe

Example
class PongPaddle {
 private final AtomicInteger left = new AtomicInteger(0);
 private final AtomicInteger right = new AtomicInteger(1);
 public void move(int dx) { left.getAndAdd(dx);
right.getAndAdd(dx); }

 public void changeWidth(int dw) { right.getAndAdd(dw); }
 public boolean hit(int pos) {
 return left.get()<=pos && pos <= right.get();
 }
}
• No visibility concerns
• What is the invariant that relates left and right?
• What should we do to fix it?

Reduce, Reuse, Recycle
• Don’t Repeat Yourself (DRY)
• I am very anti cut-and-paste coding
 Hard on the reader
 Hard on the maintainer
 Instead of 1 change, n changes
 Instead of 1 bug, n bugs

• Design code so there only needs to be one copy (use
parameterization, polymorphic parameterization)

• Even better, reuse existing code that does almost the right
thing

• How does this interact with synchronization?

Adding functionality (4.4)
• Example: add putIfAbsent to a collection that already

supports atomic contains() and add() methods
• Four approaches
 Modify existing class
 Extend existing class or
 Wrap existing class – “client-side” locking
 Composition -

1. Modify existing class
• Assuming the existing class is already thread-safe:
 Introduce a new method that uses the same

synchronization technique already in use
 Best way but
 Assumes you have control over the existing class

• Would not be the case for library classes

2. Extend the existing class
public class BetterVector<E> extends Vector<E> {
 public synchronized boolean putIfAbsent(E x) {
 boolean absent = !contains(x);
 if (absent) { add(x); }
 return absent;
 }
}
• Vector is a thread-safe library class
• Vector provides enough primitive building blocks to allow construction of

putIfAbsent
• Fig. 4.13 Note the benefit of re-entrant locks!
• Note the implicit assumption that we understand the way that Vector does

synchronization – using intrinsic locks, in this case
• Note that we don’t have any dependency on Vector’s implementation

3. Client-side locking
• Assume v is a thread-safe list obtained from
v = Collections.synchronizedList(new ArrayList<E>());

• Type of this object is List<E> -- not extendable
• Any code that wants to do putIfAbsent item x to such a list, v, can write
synchronized (v) {
 if (!v.contains(x)) v.add(x);
}

• Could be placed in a helper class – beware you have to synchronize on
the list and not on the helper object – see Figs 4.14 and 4.15

• Still depending on knowing the synch policy for the wrapped object
• … and spreading the knowledge about the synchronization policy far

and wide

Composition
• Mimic the idea of Collections.synchronizedList
 Provide all the synchronization in a new object that extends the

functionality of an existing object instance (not class)
 Delegates most operations to the existing object

Public class ImprovedList<T> implements List<T> {
 private final List<T> list;
 public ImprovedList(List<T> list) {
 this.list = list; }
 public synchronized boolean putIfAbsent(T x) …
 public synchronized boolean contains(T x) {
 return list.contains(x); }
 …
Note this is similar to how we handled an non-thread-safe
object

Presenter
Presentation Notes
Contains: example of delegation of functionality but not synchronization.

Intro to Chapter 5 – Building Blocks
• Chapter 4 was about low-level techniques
• This chapter is about libraries – embodiments of

the techniques
• Section 5.1 Synchronized collections – read to see

why you want to use Concurrent collections
instead
 The idioms described are even more unsafe than

asserted in the book because of visibility
problems

Chapter 5 topics
• Concurrent collections (5.2)
• The ubiquitous producer-consumer pattern (5.3)
• Interruptable methods (5.4)
• Primitive synchronizers (5.5)

	Chapter 4
	Invariants – the fundamental technique
	Post-conditions and Pre-conditions
	Two common problems
	Confinement Technique (4.2) – thread-safe object built from unsafe objects
	Danger in Confinement Technique
	Thread-safe objects built from thread-safe components – Delegating safety (4.3)
	Example
	Reduce, Reuse, Recycle
	Adding functionality (4.4)
	1. Modify existing class
	2. Extend the existing class
	3. Client-side locking
	Composition
	Intro to Chapter 5 – Building Blocks
	Chapter 5 topics

