
Lecture 8Lecture 8
• Assignment on Construction, Publishing and

Visibility is posted (and we will discuss
momentarily)

Assignment: Construction, Visibility, and
PublicationPublication

• Inspect real code for problems
• MARS MIPS simulator system

http://courses.missouristate.edu/KenVollmar/MARS/download.htm

E l• Example

Example
class SimThread extends
SwingWorker { At line 279 in a SimThreadSwingWorker {
private MIPSprogram p;
private int pc, maxSteps;
private int[] breakPoints;

i t b l d

At line 279 – in a SimThread
this.pe = new
ProcessingException(el);

this.constructReturnReason =
EXCEPTIONprivate boolean done;

private ProcessingException
pe;

private volatile boolean
stop = false;

EXCEPTION;
this.done = true;

And at line 122 – in process thatstop false;
private volatile

AbstractAction stopper;
private AbstractAction

starter;

And at line 122 in process that
creates the SimThread

ProcessingException pe =
simulatorThread pe;

private int
constructReturnReason;

simulatorThread.pe;
boolean done =
simulatorThread.done;

Also, note the comments and code at lines 234-239. What’s wrong with this?

Advice
• Some uses in this code are suspicious but you can’t really• Some uses in this code are suspicious but you can t really

tell whether they are wrong without looking at other
modules. For things that catch your eye as suspicious write
d i i d th ti th i b tdown your suspicions and the questions they raise about
other modules.

• It’s a lot of code. What language constructs do you need to g g y
focus on?

• When doing the homework, notice what makes it hard to g ,
determine whether the code is right or wrong

Learn from example code – both good and bad

Chapter 5Chapter 5
• Higher-level concurrency patterns
• Synchronized collections
• Concurrent collections
• Producer-consumer pattern

Serial thread confinement
• Interruptable waiting
• Synchronizersy
• Concurrent result cache

Synchronized Collections (5 1)Synchronized Collections (5.1)
• Collections are thread-safe for their own invariants
• Client invariants are nevertheless at risk
• Requirement for client-side locking

C d ti fi d t if b t it tCompound actions: find, put-if-absent, iterate
Locking policy: intrinsic lock on the collection
Locks held too long limit performanceLocks held too long limit performance

• ConcurrentModificationException
Fail-fast
Client finds out something went wrong, has to
deal with it

Concurrent Collections (5 2)Concurrent Collections (5.2)
• Evolution of libraries based on experience

Fi i d l ki (t th h l ll ti l k• Finer-grained locking (not on the whole collection – lock
striping)

• Concurrent reads; partially concurrent writes
• Weakly-consistent iterators

Return all items in the collection at the time iteration
started and maybe some that were later addedstarted and maybe some that were later added

• Some useful compound actions provided (client does not
have to build them – can’t)

• Commonly used collection is the ConcurrentHashMap<K V>• Commonly used collection is the ConcurrentHashMap<K,V>
Put-if-absent; remove-if-equal; replace-if-equal

Lock Striping (11 4 3)Lock Striping (11.4.3)
• Have a lock for independent subsets of a collection

(e.g. HashMap): N hash buckets N/16 locks.
• Issue: how do you protect the whole collection?

A i ALL f th l k (i l !)Acquire ALL of the locks (recursively!)

Another concurrent collectionAnother concurrent collection
• CopyOnWriteArray{List,Set}

Copying cost – but good when collection is
seldom updated
“P l f ti l d t t t ” b Ch i“Purely functional data structures” by Chris
Okasaki

Producer consumer patternProducer-consumer pattern
• Originally a program structuring convenience; now one way

to achieve parallelismto achieve parallelism
• Similar to shell pipes – which just transfer streams of bytes

But data objects are typed and structured
• Visitor pattern

For each item in a collection perform an action
Ex: Treewalk – the tree walker has state for keeping track p g
of where it is
What if the action involves keeping complicated state? -
compressionp

• Producer-consumer pattern lets both the producer and
consumer keep state from one item to the next

Producer-Consumer Boundary: Blocking
QueueQueue

• Finite capacity
Java also has unbounded queues – use is not
recommended

() f f• put() waits if full
• get() waits if empty

class SimpleBlockingQueue<T> {
private T[] rep;
private int head, tail, size;

• Are the empty and full conditions
correct?

• Does it work if size==1? (Queue with
size==1 is often called a *mailbox*private int head, tail, size;

public BQ(int size) {
rep = new T[size];
head = 0; tail = 0; this.size=size;

}

size==1 is often called a mailbox
• How could you allow concurrent putting

and taking? What would be the problem
cases?

}
public synchronized T take() {

T result;
while (head==tail) wait();
result = rep[head];esu t ep[ead];
head += 1; // mod size
notify();

}
public synchronized put(T elem) {p y p () {

while (tail+1==head) wait(); // mod size
rep[tail] = elem;
tail += 1; // mod size
notify();y();

}
}

Extended blocking queue interfaceExtended blocking queue interface
• offer and poll methods

Don’t wait – always return immediately
Allow clients to decide what to do if blocking

ldwould occur
Note: have to be careful using these in check-act
situations Why?situations. Why?

Serial thread confinementSerial thread confinement
• Recall thread confinement – object is only

ibl f i l th daccessible from a single thread
• An object only accessed from a single thread does

not require synchronizationnot require synchronization
• Serial thread confinement – after passing an object

into a blocking queue the producer never touches
it again. The synchronization of the blocking queue
suffices to safely publish the object to the
consumerconsumer

• Other mechanisms for safe publishing can also be
used in the serial confinement pattern

DequesDeques
• Double-ended queues
• Pronounced “deck”
• Put and take at either end

Cooperative InterruptionCooperative Interruption
• Interruptions occur only when a thread is blocked

I t ti i d li dInterruption is delivered as a
InterruptedException

• This is a nice modelThis is a nice model
• Thread is free to swallow an interrupted exception

(not good practice)(g p)
• Contrast with C signals and signal handlers

Signal handler can start executing any time the
i l i t bl k dsignal is not blocked

This is not a nice model

Don’t swallow InterruptedException (Fig.
5 10)5.10)

• Methods that call things that can raise
I t t dE ti t ithInterruptedException must either

Be declared as throw’ing InterruptedException,
or
Catch InterruptedException
• Clean up local state
• Thread currentThread interrupt() // restore interrupt• Thread.currentThread.interrupt() // restore interrupt

status if InterruptedException cannot be re-raised
Or both

R i i I t t dE ti ft l i l l• Re-raising InterruptedException after cleaning up local
state

Other fun synchronizers LatchesOther fun synchronizers - Latches
CountDownLatch – initial non-zero value
Blocks threads calling latch.await() until latch
value is 0; once 0 value never changes – “sticky”
“monotonic property”monotonic property”
latch.countDown() reduces the latch value
Co-ordinated starting and ending pointsCo ordinated starting and ending points
• Create N tasks that wait on a startingLatch (value 1)
• startingLatch.countDown()
• endingLatch.await() // endingLatch initial value N
• Each of N threads calls endingLatch.countDown()

FutureTaskFutureTask
• Think of it as a thread body that computes a result

value

• th = new Thread(future); // different constructor
than Thread(runnable)

• future.get() returns the result of the execution –
complicated by how to handle exceptions. Not very
elegant to my mindelegant to my mind

SemaphoresSemaphores
• Like latches, an integer value
• acquire(): if value is 0 wait, otherwise reduce the

value by 1
• release(): increase the value by 1

BarriersBarriers
• CyclicBarrier – allow N threads to repeatedly all

gather at the barrier
• Think about rewriting the example used in Hwk1 to

l t h d/ b i i l f thuse latches and/or barriers in place of the
homegrown barriers that I used.

Results cache (5 6)Results cache (5.6)
• Very interesting example
• Sometimes called a “memo” cache
• Illustrates implementation of caching – a common

technique to increase performance
Idea: if it takes a long time to get an answer, save
it f hil i d it iit for awhile in case you need it again
• Memory caches, disk caches, results caches

Stages in Cache DesignStages in Cache Design
Cache for concurrent use is
trickyy
• Obvious, use intrinsic lock

around everything. Problem:
lock held during long
computation limits concurrency

• Use ConcurrentHashMap –• Use ConcurrentHashMap –
better concurrency but
unsynchronized check-then-act
with long “act” potentially allows
unneeded work
C h F t T k i th• Cache a FutureTask in the
ConcurrentHashMap – still
unsynchronized check-then-act
but now the “act” is just
inserting a FutureTask rather g
than the long expensive
computation

• Use putIfAbsent to eliminate this
final race

