WASHINGTON STATE
@UNIVERSH‘Y

'Itlﬁr!d Class. Face to Face,

Lecture 8

* Assignment on Construction, Publishing and
Visibility is posted (and we will discuss
momentarily)



WASHINGTON STATE
@UNIVERSH‘Y

'Itlﬁr!d Class. Face to Face,

Assignment: Construction, Visibility, and
Publication

* Inspect real code for problems
* MARS MIPS simulator system

= http://courses.missouristate.edu/KenVollmar/MARS/download.htm

* Example




WASHINGTON STATE

I UNIVERSITY

'ltlﬁr!d Class. Face to Face,

class SimThread extends
SwingWorker {

private MIPSprogram p;
private int pc, maxSteps;
private int[] breakPoints;
private boolean done;

private ProcessingException
pe,

private volatile boolean
stop = false;

private volatile
AbstractAction stopper;

private AbstractAction
starter;

private int
constructReturnReason;

Example

At line 279 —in a SimThread

this.pe = new
ProcessingException(el);

this.constructReturnReason =
EXCEPTION;

this.done = true;

And at line 122 — in process that
creates the SimThread

ProcessingException pe =
simulatorThread.pe;

boolean done =
simulatorThread.done;

Also, note the comments and code at lines 234-239. What’s wrong with this?



WASHINGTON STATE

I UNIVERSITY

'ltlﬁr!d Class. Face to Face,

Advice

® Some uses Iin this code are suspicious but you can’t really
tell whether they are wrong without looking at other
modules. For things that catch your eye as suspicious write

down your suspicions and the questions they raise about
other modules.

* |t’'s a lot of code. What language constructs do you need to
focus on?

* When doing the homework, notice what makes it hard to
determine whether the code is right or wrong

* Learn from example code — both good and bad



WASHINGTON STATE
@UNIVERSH‘Y

'ltlﬁr!d Class. Face to Face,

Chapter 5

* Higher-level concurrency patterns
* Synchronized collections
* Concurrent collections

* Producer-consumer pattern
= Serial thread confinement

* Interruptable waiting
®* Synchronizers
* Concurrent result cache



WASHINGTON STATE
@UNIVERSH‘Y

World Class. Face to Face.

Synchronized Collections (5.1)

®* Collections are thread-safe for their own invariants
e Client iInvariants are nevertheless at risk

* Requirement for client-side locking
» Compound actions: find, put-if-absent, iterate
» Locking policy: intrinsic lock on the collection
» Locks held too long limit performance

* ConcurrentModificationException
» Fail-fast

» Client finds out something went wrong, has to
deal with it



WASHINGTON STATE
@UNIVERSH‘Y

'ltlﬁr!d Class. Face to Face,

Concurrent Collections (5.2)

* Evolution of libraries based on experience

* Finer-grained locking (not on the whole collection —lock
striping)

* Concurrent reads; partially concurrent writes

* Weakly-consistent iterators
* Return all items in the collection at the time iteration
started and maybe some that were later added

e Some useful compound actions provided (client does not
have to build them — can’t)

* Commonly used collection is the ConcurrentHashMap<K,V>
= Put-if-absent; remove-if-equal; replace-if-equal



WASHINGTON STATE
@UNIVERSH‘Y

'ltlﬁr!d Class. Face to Face,

Lock Striping (11.4.3)

* Have a lock for independent subsets of a collection
(e.g. HashMap): N hash buckets N/16 locks.

* |[ssue: how do you protect the whole collection?
Acquire ALL of the locks (recursively!)



WASHINGTON STATE
@UNIVERSH‘Y

'ltlﬁr!d Class. Face to Face,

Another concurrent collection

* CopyOnWriteArray{List,Set}

* Copying cost — but good when collection is
seldom updated

= “Purely functional data structures” by Chris
Okasaki



WASHINGTON STATE
@UNIVERSH‘Y

'ltlﬁr!d Class. Face to Face,

Producer-consumer pattern

* Originally a program structuring convenience; now one way
to achieve parallelism

* Similar to shell pipes — which just transfer streams of bytes
= But data objects are typed and structured

¢ Visitor pattern
* For each item in a collection perform an action
* Ex: Treewalk — the tree walker has state for keeping track
of where it is
= What if the action involves keeping complicated state? -
compression

* Producer-consumer pattern lets both the producer and
consumer keep state from one item to the next




WASHINGTON STATE
@UNIVERSH‘Y

'ltlﬁr!d Class. Face to Face,

Producer-Consumer Boundary: Blocking
Queue

* Finite capacity
» Java also has unbounded queues — use Is not
recommended

* put() waits if full
* get() waits If empty




WASHINGTON STATE
@UNIVERSH‘Y

'ltlﬁr!d Class. Face to Face,

class SimpleBlockingQueue<T> {
private T[] rep;
private int head, tail, size;
public BQ(int size) {
rep = new T[size];
head = 0; tail = 0; this.size=size;
}
public synchronized T take() {
T result;
while (head==tail) wait();
result = rep[head];
head +=1; // mod size
notify();
}
public synchronized put(T elem) {
while (tail+1==head) wait(); // mod size
rep[tail] = elem;
tail +=1; // mod size
notify();

}
}

Are the empty and full conditions
correct?

Does it work if size==17? &Queue with
size==1 is often called a *mailbox*
How couldf}/ou allow concurrent putting

and taking? What would be the problem
cases?



WASHINGTON STATE
@UNIVERSH‘Y

'ltlﬁr!d Class. Face to Face,

Extended blocking queue interface

e offer and poll methods
* Don’t wait — always return immediately

= Allow clients to decide what to do if blocking
would occur

* Note: have to be careful using these in check-act
situations. Why?




WASHINGTON STATE
@UNIVERSH‘Y

World Class. Face to Face.

Serial thread confinement

* Recall thread confinement — object is only
accessible from a single thread

* An object only accessed from a single thread does
not require synchronization

* Serial thread confinement — after passing an object
Into a blocking queue the producer never touches
It again. The synchronization of the blocking queue
suffices to safely publish the object to the
consumer

* Other mechanisms for safe publishing can also be
used in the serial confinement pattern



WASHINGTON STATE
@UNIVERSI‘I‘Y

'Itlﬁr!d Class. Face to Face,

Deques

Double-ended queues
Pronounced “deck”

Put and take at either end



WASHINGTON STATE
@UNIVERSH‘Y

'ltlﬁr!d Class. Face to Face,

Cooperative Interruption

* Interruptions occur only when a thread is blocked
* Interruption is delivered as a
InterruptedException
®* This is a nice model

* Thread is free to swallow an interrupted exception
(hnot good practice)
* Contrast with C signals and signal handlers

» Signal handler can start executing any time the
signhal is not blocked

= This IS not a nice model




WASHINGTON STATE
@UNIVERSH‘Y

'ltlﬁr!d Class. Face to Face,

Don’t swallow InterruptedException (Fig.
5.10)

* Methods that call things that can raise
InterruptedException must either

» Be declared as throw’ing InterruptedException,
or

» Catch InterruptedException
e Clean up local state

e Thread.currentThread.interrupt() // restore interrupt
status If InterruptedException cannot be re-raised

= Or both

* Re-raising InterruptedException after cleaning up local
State



WASHINGTON STATE
@UNIVERSH‘Y

World Class. Face to Face.

Other fun synchronizers - Latches

= CountDownLatch — initial non-zero value

» Blocks threads calling latch.await() until latch
value is O; once O value never changes — “sticky
“monotonic property”

= latch.countDown() reduces the latch value

» Co-ordinated starting and ending points
e Create N tasks that walit on a startingLatch (value 1)
e startingLatch.countDown()
e endingLatch.await() // endingLatch initial value N
e Each of N threads calls endingLatch.countDown()



WASHINGTON STATE
@UNIVERSH‘Y

'ltlﬁr!d Class. Face to Face,

FutureTask

* Think of it as a thread body that computes a result
value

* th = new Thread(future); // different constructor
than Thread(runnable)

* future.get() returns the result of the execution —
complicated by how to handle exceptions. Not very
elegant to my mind



WASHINGTON STATE
@UNIVERSH‘Y

'ltlﬁr!d Class. Face to Face,

Semaphores

* Like latches, an integer value

e acquire(): iIf value is 0 wait, otherwise reduce the
value by 1

* release(): increase the value by 1



WASHINGTON STATE
@UNIVERSH‘Y

'ltlﬁr!d Class. Face to Face,

Barriers

* CyclicBarrier —allow N threads to repeatedly all
gather at the barrier

* Think about rewriting the example used in Hwk1 to
use latches and/or barriers in place of the
homegrown barriers that | used.



WASHINGTON STATE
@UNIVERSH‘Y

'ltlﬁr!d Class. Face to Face,

Results cache (5.6)

* \Very interesting example
* Sometimes called a “memo” cache
* [llustrates implementation of caching —a common

technique to increase performance

» |dea: If It takes a long time to get an answer, save
It for awhile Iin case you need it again
« Memory caches, disk caches, results caches



WASHINGTON STATE
@UNIVERSH‘Y

'ltlﬁr!d Class. Face to Face,

Stages in Cache Design

= Cache for concurrent use is

trick

« Obvious, use intrinsic lock="
around everything. Problem:
lock held during long
computation limits concurrency

 Use ConcurrentHashMap —
better concurrency but
unsynchronized check-then-act
with long “act” potentially allows
unneeded work

e Cache a FutureTask in the
ConcurrentHashMap — still
unsynchronized check-then-act
but now the “act” is just
inserting a FutureTask rather
than the long expensive
computation

» Use putifAbsent to eliminate this
final race



