
Parallelizing Computations (Ch. 26)

• Parallel map

• MapReduce

• Idea 1: take advantage of side-effect-free
computation

• Idea 2 (again): embody the parallel implementation
details in a higher-order function (or module) so
the hard stuff is only done once

Map

• Recall the common code pattern, for some function
f1, that from one list builds another list consisting
of f1 applied to each of the elements.

f([]) -> [];

f([H|T) -> [f1(H) | f(T)].

• We can rewrite this using the higher-order function
map

f(L) = map(f1, L).

Map is an opportunity for parallelizing
• map definition

map(_, []) -> [];

map(F1, [H|T]) -> [F1(H)|map(F1,T)].

• F1(H) doesn’t depend on other list elements

pmap(F, L) ->

 S = self(),
 Ref = erlang:make_ref(),
 Pids = map(fun(I) ->

 spawn(fun() -> do_f(S, Ref, F, I) end)

 end, L),
 map(fun (Pid) ->

 receive {Pid, Ref, Ret} -> Ret end

 end, Pids)

% what is the type of Pids?

What is the overhead of pmap?

• Cost of spawning all the processes

• Cost of constructing the Pids list (== cost of
constructing the result list)

• Cost of sending and receiving each of the Ret
values from the spawned processes

• Worthwhile:

 Enough processors

 Enough work in each process

reduce in functional programming

• Also known as “fold” it captures the second main recurring
pattern in fp

count([]) = 0;

count([H|T]) = 1 + count(T).

• Reduce definition

reduce(_, Acc0, []) = Acc0;

reduce(F, Acc, [H|T]) =

 reduce(F, F(Acc, H), T).

count(L) = reduce(fun(A,H) -> A+1 end, 0, L).

sum(L) = reduce(fun(A,H) -> A+H end, 0, L).

prod(L) = reduce(fun(A,H) -> A*H end, 1, L).

MapReduce

• Invented by Jeffrey Dean and Sanjay Ghemawat at Google

• Idea: mapreduce(F1, F2, L, Acc0)
 call F1 on each element of L. F1 produces as its result a

list of pairs [{key, val}]
 mapreduce gathers all the vals produced for a given key

and
 calls F2(key, [vals], Acc0) for each key, producing the

final result

• Poor choice of name(?)
 They call F1 “map” and pass it a pair that they call {key,

val}. Using a pair for this argument is not essential
 “reduce” is an ok name

What’s cool about MapReduce

• It encapsulates the pmap idea and the distribution
of the spawned processes to different processors

• It encapsulates gathering all of the intermediate
results with each key into one list (this is tricky to
do well on a cluster so doing it once is good)

• It encapsulates the distribution of the reduce
actions across the cluster

• It encapsulates error handling and recovery
(processor failures are not rare in large clusters!)

Use of MapReduce

listwords(Filename) ->

 % foreach word, w, in the file emit

 % {w, 1}.

reduceCounts(W, L, _Acc0) = {w, length(L)}.

wordCount(Filenames) -> mapreduce(listwords,

reduceCounts, 0, Filenames).

• The Google paper is linked on the website.

• Note the use of FP ideas in a system implemented in C++;
and note that it is a little clunky around the edges but the
key ideas are clear.

Another Use – Word index for set of
documents

• Want: a list of all the documents that contain each
word

listwords(Filename) ->

 % foreach word, W, in the file emit

 % {W, Filename}.

ident(W, L, _Acc0) -> {W, L}.

createIndex(Filenames) ->

 mapreduce(listwords, ident, 0,

Filenames).

