WASHINGTON STATE
@UNIVERSITY

World Class. Face to Face.

Parallelizing Computations (Ch. 26)

* Parallel map
* MapReduce

* |[dea 1: take advantage of side-effect-free
computation

* |[dea 2 (again). embody the parallel implementation
details in a higher-order function (or module) so
the hard stuff is only done once

WASHINGTON STATE

ggUmmmﬁw

World Class. Face to Face.

Map

* Recall the common code pattern, for some function
f1, that from one list builds another list consisting
of f1 applied to each of the elements.

£([1) -> [I1-

£([HIT) -> [£f1(H) | £(T)].

* We can rewrite this using the higher-order function
map

f(L) = map(fl, L).

WASHINGTON STATE

@UNIVERSITY

World Class. Face to Face.

Map Is an opportunity for parallelizing

* map definition

map(_, [1) -> [1’

map (Fl1, [H|T]) -> [F1l(H) |map(Fl1,T)].
* F1 (H) doesn’t depend on other list elements

pmap (F, L) ->
S = self(),
Ref = erlang:make ref(),
Pids = map (fun(I) ->
spawn (fun() -> do f(S, Ref, F, I) end)
end, L),
map (fun (Pid) ->
receive {Pid, Ref, Ret} -> Ret end
end, Pids)
% what is the type of Pids?

(o]

WASHINGTON STATE
@UNIVERSITY

World Class. Face to Face.

What is the overhead of pmap?

* Cost of spawning all the processes

* Cost of constructing the Pids list (== cost of
constructing the result list)

* Cost of sending and receiving each of the Ret
values from the spawned processes

* Worthwhile:
* Enough processors
* Enough work in each process

WASHINGTON STATE

@UNIVERSITY

World Class. Face to Face.

reduce in functional programming

* Also known as “fold” it captures the second main recurring
pattern in fp

count([]) = O0;
count ([H|T]) = 1 + count(T).
* Reduce definition
reduce(, AccO, []) = AccO;
reduce (F, Acc, [H|T]) =
reduce (FF, F(Acc, H), T).
count (L) = reduce(fun(A,H) -> A+l end, O, L).
sum(L) = reduce(fun(A,H) -> A+H end, 0, L).
prod (L) = reduce(fun(A,H) -> A*H end, 1, L).

WASHINGTON STATE

@UNIVERSITY

World Class. Face to Face.

MapReduce

* Invented by Jeffrey Dean and Sanjay Ghemawat at Google

* |dea: mapreduce(F1, F2, L, AccO)
» call F1 on each element of L. F1 produces as its result a
list of pairs [{key, val}]
* mapreduce gathers all the vals produced for a given key
and
= calls F2(key, [vals], AccO) for each key, producing the
final result
* Poor choice of name(?)

* They call F1 “map” and pass it a pair that they call {key,
val}. Using a pair for this argument is not essential

= “reduce” is an ok name

WASHINGTON STATE
@UNIVERSITY

World Class. Face to Face.

What’s cool about MapReduce

* [t encapsulates the pmap idea and the distribution
of the spawned processes to different processors

* It encapsulates gathering all of the intermediate
results with each key into one list (this is tricky to
do well on a cluster so doing it once is good)

* [t encapsulates the distribution of the reduce
actions across the cluster

* It encapsulates error handling and recovery
(processor failures are not rare in large clusters!)

WASHINGTON STATE
@UNIVERSITY

World Class. Face to Face.

Use of MapReduce

listwords (Filename) ->
% foreach word, w, in the file emit
$ {w, 1}.
reduceCounts (W, L, Acc0O) = {w, length(L)}.

wordCount (Filenames) -> mapreduce (listwords,
reduceCounts, 0, Filenames).

* The Google paper is linked on the website.

* Note the use of FP ideas in a system implemented in C++;
and note that it is a little clunky around the edges but the
key ideas are clear.

WASHINGTON STATE
ggUmmmﬁw

World Class. Face to Face.

Another Use — Word index for set of
documents

* Want: a list of all the documents that contain each
word

listwords (Filename) ->
% foreach word, W, in the file emit
% {W, Filename}.
ident (W, L, AccO) -> {W, L}.
createIndex (Filenames) ->

mapreduce (listwords, ident, O,
Filenames) .

