
 1

Computer Science 483/580
Concurrent Programming

Midterm Exam
February 23, 2009

Your name __

There are 6 pages to this exam printed front and back. Please make sure that you have all
the pages now.

The exam is designed to take about 50 minutes.

This exam is open book and open notes. Cell phones, PDAs, computers, and other
electronic devices are not allowed except you may use a laptop computer to refer to an
electronic copy of the textbook if you do not have a hardcopy.

Honor statement: I have followed the above instructions regarding use of electronic
devices while taking this exam.

Signature __ Date ______________

1. Write a Java class called Semaphore that implements the basics of the semaphore
abstraction described in section 5.5.3 (pp. 98-99) using Java intrinsic synchronization. In
particular you need to implement: a constructor, taking as argument the initial number of
permits; the acquire() method and the release() method. You do not need to
implement methods that can time out nor show code related to exception handling. I just
want to see the essence of the synchronization behavior.

 2

2. “Joe Java” Programmer (JJP) has just learned about threads. He is writing a program
that will add up all the space used by the files in a directory and its subdirectories
(recursively) and he is excited to think how much faster it will be using threads because
of all the parallelism he will achieve.

a) In Joe’s first attempt, the program enumerates the given, top-level, directory
identifying the subdirectories and ordinary files. For each subdirectory a new thread is
created that enumerates that subdirectory creating a thread for each of its subdirectories
and so forth. Explain why this is a really bad approach to performing this computation.

b) Being disappointed with the results of the approach in part a) of the problem, Joe reads
Chapter 6 and uses the Executor framework to manage threads in his program, using a
fixed thread pool. What factors should Joe consider in choosing the size of the fixed
thread pool and how will each of those factors influence his choice?

 3

3. Java’s intrinsic synchronization relies on data fields in all Objects to support
synchronized blocks (and methods) and wait/notify/notifyAll. Given what
you know about Java intrinsic synchronization, describe the data fields required in every
object to support intrinsic synchronization including reentrancy; an unlimited number of
threads waiting to enter a synchronized block; an unlimited number of threads waiting for
wait(). Don’t forget that these fields may themselves be accessed concurrently.

Grads: Given the size overhead required in every Object to support intrinsic
synchronization, what is your assessment of the design decision to enable every object to
participate in intrinsic synchronization?

 4

4. The Vector class below is intended to provide a mutable, thread-safe representation of
2-D vectors.
public class Vector {

 private int x, y;

 public Vector(int x, int y) {
 this.set(x, y);
 }

 public Vector(Vector v) {
 synchronized(v) { this.set(v.x, v.y); }
 }

 public synchronized int[] get() {
 return new int[] {x, y};
 }

 public synchronized void set(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public synchronized void add(Vector v) {

 synchronized(v) {

 this.x += v.x;

 this.y += v.y;

 }

 }
}

a) The code is subject to deadlock due to the add method. Give an example of client
code that could cause a deadlock.

b) Suggest at least one way to fix the problem

c) The second constructor also acquires two locks. Even so, it is not subject to deadlock.
Explain why.

 5

5. “Joe Java” is back and is now concerned that his code will not perform well if it relies
on the Java garbage collector. JJP decides to implement his own reference counting
scheme for existing class Foo using the RefCountedFooPool class on the next page.
You should assume that class TSList is a thread-safe list implementation with thread-
safe methods isEmpty(), add() and remove().

Joe’s idea is that he will use the pool to recycle existing object instances whose ref-
counts have reached 0.

Discuss the following:
a) are instances of RefCountedFooPool properly constructed? That is, does this
escape during construction? Why or why not?

b) are instances of RefCountedFoo properly constructed? Why or why not?

c) is synchronization used correctly for the refCount field? Why or why not?

d) is synchronization used correctly for the operations on the pool object? Why or why
not?

 6

e) JJP should have in mind an invariant concerning the refCount field of objects
contained in the pool list. What would a sensible invariant be? Is this what JJP
implemented? Explain.

import java.util.*;
public final class RefCountedFooPool {
 private final class RefCountedFoo {
 public Foo o;
 private int refCount;
 public RefCountedFoo(Foo o) {
 this.refCount = 1;
 this.o = o;
 pool.add(this);
 }

 public synchronized int incrementRef() {
 return ++refCount;
 }
 public synchronized int decrementRef()
 {
 --refCount;
 if (refCount==0) pool.add(this);
 return refCount;
 }
 }

 public RefCountedFoo getFromPool() {
 if (!pool.isEmpty()) return pool.remove(0);
 return new RefCountedFoo(new Foo());
 }

 final TSList <RefCountedFoo> pool =
 new ArrayList<RefCountedFoo> ();
}

