Computer Science 483/580
Concurrent Programming
Midterm Exam
February 23, 2009

Your name

There are 6 pages to this exam printed front ac#.lRRlease make sure that you have all
the pages now.

The exam is designed to take about 50 minutes.

This exam ipen book and open notes. Cell phones, PDAs, computers, and other
electronic devices ampot allowed except you may use a laptop computer to refer to an
electronic copy of the textbook if you do not haveardcopy.

Honor statement: | have followed the above instructions regardisg af electronic
devices while taking this exam.

Signature Date

1. Write a Java class call&maphor e that implements the basics of the semaphore
abstraction described in section 5.5.3 (pp. 9848®)g Java intrinsic synchronization. In
particular you need to implement: a constructdifigaas argument the initial number of
permits; theacqui r e() method and theel ease() method. You dmot need to
implement methods that can time out nor show cet#ged to exception handling. | just
want to see the essence of the synchronizatiorvimeha



2. “Joe Java”’ Programmer (JJP) has just learnedtdbreads. He is writing a program
that will add up all the space used by the filea olirectory and its subdirectories
(recursively) and he is excited to think how muastér it will be using threads because
of all the parallelism he will achieve.

a) In Joe’s first attempt, the program enumerdtegiven, top-level, directory
identifying the subdirectories and ordinary filesr each subdirectory a new thread is
created that enumeratigt subdirectory creating a thread for eaclit®fubdirectories
and so forth. Explain why this israally bad approach to performing this computation.

b) Being disappointed with the results of the apploin part a) of the problem, Joe reads
Chapter 6 and uses the Executor framework to mathagads in his program, using a
fixed thread pool. What factors should Joe condidehoosing the size of the fixed
thread pool and how will each of those factorsuefice his choice?



3. Java’s intrinsic synchronization relies on dathils in all Objects to support
synchroni zed blocks (and methods) améi t / noti fy/ noti fyAl | . Given what
you know about Java intrinsic synchronization, descthe data fields required in every
object to support intrinsic synchronization incluglireentrancy; an unlimited number of
threads waiting to enter a synchronized block; @imited number of threads waiting for
wai t (). Don't forget that these fields may themselves lessed concurrently.

Grads: Given the size overhead required in every Obpesupport intrinsic
synchronization, what is your assessment of thggydekecision to enable every object to
participate in intrinsic synchronization?



4. The Vector class below is intended to proviseutable, thread-safe representation of
2-D vectors.

public class Vector {
private int x, vy;

public Vector(int x, int y) {
this.set(x, y);
}

public Vector(Vector v) {
synchroni zed(v) { this.set(v.x, v.y); }
}

public synchronized int[] get() {
return newint[] {x, y};

}

public synchronized void set(int x, int y) {
this.x = x;
this.y =vy;

}

public synchroni zed void add(Vector v) {
synchroni zed(v) {
this.x += v.Xx;
this.y += v.y;

}
}

a) The code is subject to deadlock due tcaithe method. Give an example of client
code that could cause a deadlock.

b) Suggest at least one way to fix the problem

c) The second constructor also acquires two Idgken so, it is not subject to deadlock.
Explain why.



5. “Joe Java” is back and is now concerned thatdae will not perform well if it relies
on the Java garbage collector. JJP decides to ingplehis own reference counting
scheme for existing clag®o0 using theRef Count edFooPool class on the next page.
You should assume that claBSLi st is a thread-safe list implementation with thread-
safe methodssEnpty(), add() andrenove().

Joe’s idea is that he will use the pool to recyalsting object instances whose ref-
counts have reached O.

Discussthe following:

a) are instances &f Count edFooPool properly constructed? That is, dads s
escape during construction? Why or why not?

b) are instances &ef Count edFoo properly constructed? Why or why not?

C) is synchronization used correctly for thef Count field? Why or why not?

d) is synchronization used correctly for the operat on thgpool object? Why or why
not?



e) JJP should have in mind an invariant concertiieg ef Count field of objects
contained in the pool list. What would a sensibleariant be? Is this what JJP
implemented? Explain.

import java.util.*;
public final class RefCountedFooPool ({
private final class RefCountedFoo {
public Foo o;
private int refCount;
publ i ¢ Ref Count edFoo(Foo 0) {
this.ref Count = 1;
this.o = o;
pool . add(t hi s);
}

publ i c synchroni zed int increnentRef() {
return ++ref Count;

}
publi ¢ synchroni zed i nt decrenent Ref ()
{
--ref Count ;
i f (refCount==0) pool.add(this);
return refCount;
}

}

publ i ¢ Ref Count edFoo get FronPool () {
if (!pool.isEmpty()) return pool.renmove(0);
return new Ref Count edFoo(new Foo());

}

final TSList <RefCountedFoo> pool =
new ArraylLi st <Ref Count edFoo> ();



