
Questions about Assignment
• Interpreting error messages:
Error in process <0.38.0> with exit value:

{function_clause,[{ring,waitSend,[<0.39.0>]}]}
Exit values are documented in the Erlang manual

online.
This one means: died trying to call ring:waitSend

with argument <0.39.0> (a Pid) because there was
no matching function clause. Problem: the
argument name began with a lowercase letter.

Objects simulated in C
• In C, objects can be emulated by using structs
typedef obj = struct {m1type *m1; m2type *m2;
d1type d1… }

obj *o1 = oFactory(…init values);
o1->m1(o1, …);

• C function pointers refer only to function code; not function
closures (code together with lookup environment) so all
data needed to specialize the code has to be included in the
struct

• Conceptually not hard, but requires explicit code to do it

Objects simulated in functional style
• Objects can be simulated using records that contain

function closures
• Example: single method that returns previous state and

sets new state:
newFoo(InitState) -> (fun(NewState)->

{InitState, newFoo(NewState)}
end).

F0 = newFoo(3).
{V1, F1} = F0(hi).
{V2, F2} = F1(6).

Generalizing
• Now both result and new state are functions of

previous state and args.
newFoo(InitState) -> (fun(Args)->

{f1(InitState, Args),
newFoo(f2(InitState, Args))}

end).
F0 = newFoo(3).
{V1, F1} = F0(hi).
{V2, F2} = F1(6).

Using a tuple for multiple methods (easily
extend to record so methods have names)

newFoo(InitState) -> {
fun (Args1) ->

{f11(InitState, Args1),
newFoo(f12(InitState, Args1))}

end,
fun (Args2) ->

{f21(InitState, Args2),
newFoo(f22(InitState, Args2))}

end,
…

}.

Using Processes its clearer and easier
newServer(InitState) ->

Server = spawn(server),
{fun(Args1) ->

rpc(Server, {f1, Args1}),
fun(Args2) ->

rpc(Server, {f2, Args2}),
…
}
end.

• rpc here is just the same rpc function we’ve seen before
• f1 and f2 are atoms in this context

The server
server(State) ->

receive
{From, {f1, Args1}} ->

From ! f11(State, Args1),
server(f12(State, Args1));

{From, {f2, Args2}} ->
From ! f21(State, Args2),
server(f22(State, Args2))

…
end.

• f11, f12, f21, and f22 are the same functions as in the purely
sequential simulation

The client
Server1 = newServer(SomeState),
{S1F1, S1F2} = Server1,
V1 = S1F1(Args1),
V2 = S1F2(Args2), % note V2 depends on
both Args1 and Args2 as well as
SomeState

{S2F1, S2F2} = newServer(SomeOtherState),
V3 = S2F1(OtherArgs1),
V4 = S2F2(OtherArgs2), % note V4 depends
on OtherArgs1 and 2 and SomeOtherState
but not on SomeState, Args1 and Args2

The behavior is not quite the same
• If the sequential simulation is used from multiple

processes each gets its own “fork” of the object
history

Because the way it is used results in a new object
every time a method is called

• The process simulation involves only a single
object that, oh by the way, has synchronized
access

A process, inherently, does only one thing at a
time

A complete, simple example
-module(tester).
-export([start/1]).
start(Id) ->

Server = spawn(fun () -> serverloop(Id, []) end),
fun(Item) -> rpc(Server, Item) end
.

serverloop(Id, History) ->
receive

{ From, Something } ->
io:format("Server ~p: Got ~p from ~p with history ~p~n", [Id,

Something, From, History]),
From ! { self(), ok },
serverloop(Id, [Something|History])

end.

	Questions about Assignment
	Objects simulated in C
	Objects simulated in functional style
	Generalizing
	Using a tuple for multiple methods (easily extend to record so methods have names)
	Using Processes its clearer and easier
	The server
	The client
	The behavior is not quite the same
	A complete, simple example

