WASHINGTON STATE

@UNIVERSITY

World Class. Face to Face.

Exam Question 1

e volatileis not needed if all access to the variables
IS Inside synchronized blocks or methods

* Don’t confuse the capacity of a data structure
with the number of items it currently contains

* notifyAll() vs notify() — different people got
different comments about this because of
different interpretations of the question: only wait
if the stack is full? Only wait if it is empty? Don’t
wait at all? Wait if it is either full or empty?

WASHINGTON STATE
@UNIVERSITY

World Class. Face to Face.

Exam Question 2

* Remember that all accesses to a shared variable
must be made using the same kind of
synchronization (and the same lock if the
synchronization used is based on locking)

* Multi-step operations like incr require locking

* Therefore all other operations on value require
locking

* Synchronized is therefore required for all three
methods, but volatile is not required for value

* Ifincris removed, locking is no longer needed,
but volatile Iis then required

WASHINGTON STATE
@UNIVERSITY

World Class. Face to Face.

Exam Question 3

* |If It IS to be Immutable all data fields need to be
declared final

* New constructor
private CardDeck (String [] cards, int dealPos)..

* shuffle is just

return new CardDeck ()

* deal is just

return new CardDeck (cards, dealPos+1l)

WASHINGTON STATE
@UNIVERSITY

World Class. Face to Face.

Exam Question 4

a) yes, they are properly constructed. Look at the constructor and see
that nowhere in it is there the possibility of this being leaked to an
external context

b) no, the Object array created in the constructor is published by
storing it in the public data member m_event. Storing in a public data
member does not constitute safe publishing. The data field must be
final or volatile or protected by a lock.

c) yes this is correct synchronization. All accesses to refCount take
place while holding the object’s lock. Note that synchronized(refCount)
does NOT work as refCount is not an object.

d) Update visibility concerns: yep. m_size and m_event both have
visibility concerns. Furthermore, updates to the Object array In
setObjects risk not being visible even if m_event is declared volatile;
also there is an implicit invariant regarding m_size and the number of
objects actually stored in m_event that is not sufficiently protected.

WASHINGTON STATE
@UNIVERSITY

World Class. Face to Face.

Where were we?

* Fundamental idea: compute new values rather than
assigning repeatedly to variables

* Write-once variables
* Lists
* Pattern matching

WASHINGTON STATE
@UNIVERSITY

World Class. Face to Face.

Today

* Goal: ability to read Erlang code and know what it means —
or how to find out

* Modules and compilation

* Function definitions; the idea of arity
* Higher-order functions

* List comprehensions

* Pattern matching with guards

* (read about records, section 3.9)

* Exceptions

* Next time: concurrency

WASHINGTON STATE
@EUNWEBHY

World Class. Face to Face.

Modules and Compilation

* A module lives in a file named modulename.erl

-module (geometry) .

-export([area/l]). % only exported functions can
be referenced from another module

area ({rectangle, Width, Height}) -> Width *
Height;

area({circle, R}) -> 3.14159 * R * R.

* Compile a module before use
c (geometry) .

WASHINGTON STATE
@UNIVERSITY

World Class. Face to Face.

Using functions from modules

modulename: functionname (...) % or
-import (modulename, [functionname/arity, ..])
functionname(...)

* For python programmers: don’t have to import
the module itself

WASHINGTON STATE
ggUmmmﬁw

World Class. Face to Face.

Arity

* Arity refers to the number of arguments of a
function (in other languages arity may refer to the
number and types of the function arguments).

* Two functions in the same module with the same
name but different arity are different functions.

-export([sum/1]) .
sum([], S) -> S;

sum([H|T], S) -> sum(T, S+H). % tail
recursion

sum(L) -> sum(L, 0).

WASHINGTON STATE
ggUmmmﬁw

World Class. Face to Face.

Anonymous functions

* Functions as seen so far can only be defined Iin
modules

* Anonymous functions can be defined in the shell
or in modules

fun (X) -> 2*X end.
* Assign it or pass it as an argument
Double = fun(X) -> 2*X end.

DoublelList = map(fun(X) -> 2*X end,
[1,2,3]). % or
Doublelist = map (Double, [1,2,3]).

WASHINGTON STATE
@UNIVERSITY

World Class. Face to Face.

List processing (review 355)

* Processing one element at atime

squares ([]) -> [1];

squares ([H|T]) -> [H*H|squares(T)].% use map
* Combining all the elements

product([]) -> 1;

product ([H|T]) -> H * product(T) .s use fold
* Combining using an accumulator

product([], A) -> A;

product ([H|T], A) -> product(T, H*A).
product (L) -> product(L, 1).

WASHINGTON STATE
ggUmmmﬁw

World Class. Face to Face.

Higher-order functions

* Functions taking functions as arguments or
returning functions as results

% erl -man lists

* map/2

squares (L) -> map(fun (X) -> X*X end, L).
* foldr/3, foldl/3

product (L) -> foldl (fun (Elem, Acc) ->
Elem*Acc end, 1, L).

WASHINGTON STATE

@ﬁﬂwmmnY

World Class. Face to Face.

Functions as results

mult (N) -> fun (M) -> N*M end.

Test your understanding: what’s different between
the above and

Mult = fun(N) -> (fun(M) -> N*M end) end.

WASHINGTON STATE
ggUmmmﬁw

World Class. Face to Face.

List Comprehensions

* Even more convenient way to write map-ish things

squares (L) -> [X*X || X <- L]. % read X*X
for X i1in L

* Similarly, if L is a list of numeric tuples, to compute
the list of products

products (L) -> [X*Y || {X,Y} <- L].

* Can make inclusion dependent on the data values
with filters

sgrts (L) -> [sqgrt(X) || X <- L, X>=0].

WASHINGTON STATE
ggUmmmﬁw

World Class. Face to Face.

Pythagorean Triples

pythag(N) ->
[{A,B,C} ||
A <- lists:seq(l,N),
B <- lists:seq(1,N),
C <- lists:seq(l1l,N),
A+B+C =< N,
A*A+B*B =:= C*C

WASHINGTON STATE
@UNIVERSITY

World Class. Face to Face.

Permutations

perms ([]) -> [[]]’
perms (L) ->
[[H|T] ||
H <- L,
T <- perms (L--[H])

WASHINGTON STATE

ggUmmmﬁw

World Class. Face to Face.

Pattern matching with guards

* Just as list comprehensions combined generators
and filters, in function definitions we can use
guards to further limit matching

max (X,Y) when X>Y -> X;
max(X,Y) -> Y.

* Guards may be conjunctive (and) — combine with ,
or

* disjunctive(or) — combine with ;
* Side-effects In guards are not allowed

WASHINGTON STATE
@UNIVERSITY

World Class. Face to Face.

Raising Exceptions

* exit(Why) % current process exits
* throw(Why) %
* erlang:error(Why)

* Have to go to extra effort to handle an exit() or
erlang:error(). Otherwise similar.

WASHINGTON STATE
@EUNWEBHY

World Class. Face to Face.

Catching Exceptions

try FuncOrExpressionSequence of
Patternl [when Guardl] -> Expressionsl;

catch
ExType: ExPatternl [when exGuardl] ->
ExExpressionsl;
after
AfterExpressions

end

WASHINGTON STATE

@UNIVERSITY

World Class. Face to Face.

Try notes

* You can omit the “of Patterni -> Expressionsi” part
entirely

°* You can omit the “after AfterExpressions” part
entirely — they act like finally in Java

* Question

* Do the catch phrases handle exceptions occuring
during the Expressionsi?

