
Exam Question 1

• volatile is not needed if all access to the variables
is inside synchronized blocks or methods

• Don’t confuse the capacity of a data structure
with the number of items it currently contains

• notifyAll() vs notify() – different people got
different comments about this because of
different interpretations of the question: only wait
if the stack is full? Only wait if it is empty? Don’t
wait at all? Wait if it is either full or empty?

Exam Question 2
• Remember that all accesses to a shared variable

must be made using the same kind of
synchronization (and the same lock if the
synchronization used is based on locking)

• Multi-step operations like incr require locking

• Therefore all other operations on value require
locking

• Synchronized is therefore required for all three
methods, but volatile is not required for value

• If incr is removed, locking is no longer needed,
but volatile is then required

Exam Question 3

• If it is to be immutable all data fields need to be
declared final

• New constructor
private CardDeck (String [] cards, int dealPos)…

• shuffle is just
return new CardDeck()

• deal is just
return new CardDeck(cards, dealPos+1)

Exam Question 4

• a) yes, they are properly constructed. Look at the constructor and see
that nowhere in it is there the possibility of this being leaked to an
external context

• b) no, the Object array created in the constructor is published by
storing it in the public data member m_event. Storing in a public data
member does not constitute safe publishing. The data field must be
final or volatile or protected by a lock.

• c) yes this is correct synchronization. All accesses to refCount take
place while holding the object’s lock. Note that synchronized(refCount)
does NOT work as refCount is not an object.

• d) Update visibility concerns: yep. m_size and m_event both have
visibility concerns. Furthermore, updates to the Object array in
setObjects risk not being visible even if m_event is declared volatile;
also there is an implicit invariant regarding m_size and the number of
objects actually stored in m_event that is not sufficiently protected.

Where were we?

• Fundamental idea: compute new values rather than
assigning repeatedly to variables

• Write-once variables

• Lists

• Pattern matching

Today

• Goal: ability to read Erlang code and know what it means –
or how to find out

• Modules and compilation

• Function definitions; the idea of arity

• Higher-order functions

• List comprehensions

• Pattern matching with guards

• (read about records, section 3.9)

• Exceptions

• Next time: concurrency

Modules and Compilation

• A module lives in a file named modulename.erl

geometry.erl

-module(geometry).

-export([area/1]). % only exported functions can

be referenced from another module

area({rectangle, Width, Height}) -> Width *

Height;

area({circle, R}) -> 3.14159 * R * R.

• Compile a module before use

c(geometry).

Using functions from modules

modulename:functionname(…) % or

-import(modulename, [functionname/arity, …])

functionname(…)

 For python programmers: don’t have to import
the module itself

Arity

• Arity refers to the number of arguments of a
function (in other languages arity may refer to the
number and types of the function arguments).

• Two functions in the same module with the same
name but different arity are different functions.

-export([sum/1]).

sum([], S) -> S;

sum([H|T], S) -> sum(T, S+H). % tail
recursion

sum(L) -> sum(L, 0).

Anonymous functions

• Functions as seen so far can only be defined in
modules

• Anonymous functions can be defined in the shell
or in modules

fun(X)-> 2*X end.

• Assign it or pass it as an argument

Double = fun(X) -> 2*X end.

DoubleList = map(fun(X) -> 2*X end,
[1,2,3]). % or

DoubleList = map(Double, [1,2,3]).

List processing (review 355)
• Processing one element at a time

squares([]) -> [];

squares([H|T]) -> [H*H|squares(T)].% use map

• Combining all the elements

product([]) -> 1;

product([H|T]) -> H * product(T).% use fold

• Combining using an accumulator

product([], A) -> A;

product([H|T], A) -> product(T, H*A).

product(L) -> product(L, 1).

Higher-order functions

• Functions taking functions as arguments or
returning functions as results

% erl –man lists

• map/2

squares(L) -> map(fun (X) -> X*X end, L).

• foldr/3, foldl/3

product(L) -> foldl(fun (Elem, Acc) ->

Elem*Acc end, 1, L).

Functions as results

mult(N)-> fun(M)-> N*M end.

Test your understanding: what’s different between
the above and

Mult = fun(N) -> (fun(M) -> N*M end) end.

List Comprehensions

• Even more convenient way to write map-ish things

squares(L) -> [X*X || X <- L]. % read X*X

for X in L

• Similarly, if L is a list of numeric tuples, to compute
the list of products

products(L) -> [X*Y || {X,Y} <- L].

• Can make inclusion dependent on the data values
with filters

sqrts(L) -> [sqrt(X) || X <- L, X>=0].

Pythagorean Triples

pythag(N) ->

 [{A,B,C} ||

 A <- lists:seq(1,N),

 B <- lists:seq(1,N),

 C <- lists:seq(1,N),

 A+B+C =< N,

 A*A+B*B =:= C*C

].

Permutations

perms([]) -> [[]];

perms(L) ->

 [[H|T] ||

 H <- L,

 T <- perms(L--[H])

].

Pattern matching with guards

• Just as list comprehensions combined generators
and filters, in function definitions we can use
guards to further limit matching

max(X,Y) when X>Y -> X;

max(X,Y) -> Y.

• Guards may be conjunctive (and) – combine with ,
or

• disjunctive(or) – combine with ;

• Side-effects in guards are not allowed

Raising Exceptions

• exit(Why) % current process exits

• throw(Why) %

• erlang:error(Why)

• Have to go to extra effort to handle an exit() or
erlang:error(). Otherwise similar.

Catching Exceptions

try FuncOrExpressionSequence of

 Pattern1 [when Guard1] -> Expressions1;

 …

catch

 ExType: ExPattern1 [when exGuard1] ->

 ExExpressions1;

 …

after

 AfterExpressions

end

Try notes

• You can omit the “of Patterni -> Expressionsi” part
entirely

• You can omit the “after AfterExpressions” part
entirely – they act like finally in Java

• Question

 Do the catch phrases handle exceptions occuring
during the Expressionsi?

