
Registered Processes
• A perennial problem in client-server computing is “How do 

clients find the server?”
• Two possible answers:

Clients are told about the servers as parameters when the 
clients are started 
• Lots of parameters; startup order dependency
Clients use a name service to locate the servers

• Erlang answer: registered processes
register(AnAtom, Pid)
Can then send to the atom as if it were a Pid.

• Note: mutable global state!



Concurrency and Error Handling
• Linked processes
• Monitored processes
• System processes
• Error handling idioms
• Fault tolerance 101
• Keep-alive process



Linked Processes
• link(Pid)
• spawn_link(Fun)

Not the same as Pid = spawn(Fun), link(Pid)

• The set of links partitions the set of processes into a 
collection of equivalence classes

Equiv. classes == symmetric, transitive, and reflexive
If any process in a class exits abnormally (other than by 
returning from its top function or by explicit normal exit) 
all the processes exit
Mechanism is called exit signals {‘EXIT’, Pid, Reason}



Monitored Processes
• Not symmetric or transitive
• Instance of a more general mechanism for 

notifying processes of system state changes
• Not considered further



System Processes
• I lied: if all linked processes died together there’d 

be no opportunity to recover – no process that 
continued to live would know about the failure

•process_flag(trap_exit, true) turns the 
calling process into a system process that instead 
of dying, receives a message in its mailbox when a 
linked sibling dies
{‘EXIT’, Pid, Reason } is the message 
format



Explicit exit
• exit/1 – exit(Reason) – a process is exiting and 

telling its linked siblings why
• exit/2 – exit(Pid2, Reason) – fake death: if 

caller has Pid1, this sends an exit signal to Pid2 as 
if Pid1 had died (but it doesn’t die) 

•kill as Reason: die and send killed as reason 
to link set. kill cannot be caught, even by 
system processes



Error Handling Idioms
• Don’t care about child’s fate

Pid = spawn(Fun)
• Die with child

Pid = spawn_link(Fun)
• Be notified if child dies
process_flag(trap_exit, true),
Pid = spawn_link(Fun),
loop() -> 

receive
{‘EXIT’, SomePid, Reason} -> % handle it
…

end



Fault tolerance 101
• Key idea: redundancy – some resource must take 

over for another one that fails
Taking over means you have to know about the 
failure
• Language-level link and monitor mechanisms
Being ready to take over means knowing 
something about the state of the failed resource 
as of the time of failure
• Parallel execution, periodic state update, …



Keep-alive
• Common problem: ensure that a service is 

“continuously” available, even if it sometimes 
crashes

• An Erlang service is typically provided by a 
process whose body is a function and is registered 
under some name

• Thus, we’d like an encapsulated solution to the 
problem: spawn an arbitrary function, register it, 
monitor its existence, and respawn it if it crashes
keep_alive(Name, Fun)



Proposed solution, Part 1
on_exit(Pid, Fun) ->

spawn(fun() ->
process_flag(trap_exit, true),
link(Pid),
receive

{‘EXIT’, Pid, Why } ->
Fun(Why)

end
end).

• A new process linked to Pid
• Fun(Why) is called in that new process



Proposed solution, Part 2
keep_alive(Name, Fun) ->

register(Name, Pid = spawn(Fun)),
on_exit(Pid, fun(_Why) ->

keep_alive(Name, Fun) end).

• Shared state rears its ugly head
Race between multiple registerers
Race between register and link
Race between dying spawned process and link 
operation



How can it be fixed
• Can’t use on_exit
• spawn_link apparently has to occur in the process 

that will do the monitoring



A better solution
keep_alive(Name, Fun) -> 

spawn(fun () -> 
process_flag(trap_exit, true),
ka_helper(Name, Fun) end).

ka_helper(Name, Fun) -> 
register(Name, Pid = spawn_link(Fun)),
receive

{‘EXIT’, Pid, _Why } -> 
ka_helper(Name, Fun)

end.
• Still have the registration race but the link race is gone.
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