
Registered Processes
• A perennial problem in client-server computing is “How do 

clients find the server?”
• Two possible answers:

Clients are told about the servers as parameters when the 
clients are started 
• Lots of parameters; startup order dependency
Clients use a name service to locate the servers

• Erlang answer: registered processes
register(AnAtom, Pid)
Can then send to the atom as if it were a Pid.

• Note: mutable global state!



Concurrency and Error Handling
• Linked processes
• Monitored processes
• System processes
• Error handling idioms
• Fault tolerance 101
• Keep-alive process



Linked Processes
• link(Pid)
• spawn_link(Fun)

Not the same as Pid = spawn(Fun), link(Pid)

• The set of links partitions the set of processes into a 
collection of equivalence classes

Equiv. classes == symmetric, transitive, and reflexive
If any process in a class exits abnormally (other than by 
returning from its top function or by explicit normal exit) 
all the processes exit
Mechanism is called exit signals {‘EXIT’, Pid, Reason}



Monitored Processes
• Not symmetric or transitive
• Instance of a more general mechanism for 

notifying processes of system state changes
• Not considered further



System Processes
• I lied: if all linked processes died together there’d 

be no opportunity to recover – no process that 
continued to live would know about the failure

•process_flag(trap_exit, true) turns the 
calling process into a system process that instead 
of dying, receives a message in its mailbox when a 
linked sibling dies
{‘EXIT’, Pid, Reason } is the message 
format



Explicit exit
• exit/1 – exit(Reason) – a process is exiting and 

telling its linked siblings why
• exit/2 – exit(Pid2, Reason) – fake death: if 

caller has Pid1, this sends an exit signal to Pid2 as 
if Pid1 had died (but it doesn’t die) 

•kill as Reason: die and send killed as reason 
to link set. kill cannot be caught, even by 
system processes



Error Handling Idioms
• Don’t care about child’s fate

Pid = spawn(Fun)
• Die with child

Pid = spawn_link(Fun)
• Be notified if child dies
process_flag(trap_exit, true),
Pid = spawn_link(Fun),
loop() -> 

receive
{‘EXIT’, SomePid, Reason} -> % handle it
…

end



Fault tolerance 101
• Key idea: redundancy – some resource must take 

over for another one that fails
Taking over means you have to know about the 
failure
• Language-level link and monitor mechanisms
Being ready to take over means knowing 
something about the state of the failed resource 
as of the time of failure
• Parallel execution, periodic state update, …



Keep-alive
• Common problem: ensure that a service is 

“continuously” available, even if it sometimes 
crashes

• An Erlang service is typically provided by a 
process whose body is a function and is registered 
under some name

• Thus, we’d like an encapsulated solution to the 
problem: spawn an arbitrary function, register it, 
monitor its existence, and respawn it if it crashes
keep_alive(Name, Fun)



Proposed solution, Part 1
on_exit(Pid, Fun) ->

spawn(fun() ->
process_flag(trap_exit, true),
link(Pid),
receive

{‘EXIT’, Pid, Why } ->
Fun(Why)

end
end).

• A new process linked to Pid
• Fun(Why) is called in that new process



Proposed solution, Part 2
keep_alive(Name, Fun) ->

register(Name, Pid = spawn(Fun)),
on_exit(Pid, fun(_Why) ->

keep_alive(Name, Fun) end).

• Shared state rears its ugly head
Race between multiple registerers
Race between register and link
Race between dying spawned process and link 
operation



How can it be fixed
• Can’t use on_exit
• spawn_link apparently has to occur in the process 

that will do the monitoring



A better solution
keep_alive(Name, Fun) -> 

spawn(fun () -> 
process_flag(trap_exit, true),
ka_helper(Name, Fun) end).

ka_helper(Name, Fun) -> 
register(Name, Pid = spawn_link(Fun)),
receive

{‘EXIT’, Pid, _Why } -> 
ka_helper(Name, Fun)

end.
• Still have the registration race but the link race is gone.


	Registered Processes
	Concurrency and Error Handling
	Linked Processes
	Monitored Processes
	System Processes
	Explicit exit
	Error Handling Idioms
	Fault tolerance 101
	Keep-alive
	Proposed solution, Part 1
	Proposed solution, Part 2
	How can it be fixed
	A better solution

