Computer Organization

Douglas Comer

Computer Science Department Purdue University 250 N. University Street West Lafayette, IN 47907-2066

http://www.cs.purdue.edu/people/comer

© Copyright 2006. All rights reserved. This document may not be reproduced by any means without written consent of the author.

Ι

Course Introduction And Overview

The World Of Computers

- Computers are everywhere
 - Cell phones
 - Automobiles
 - Video games
 - Desktops
- Each uses software

Fundamental Question

Why should someone interested in building software study computer architecture to learn about the organization of the underlying hardware?

Why Study Computer Architecture?

- Makes it possible to write computer programs that are:
 - Faster
 - Smaller
 - Less prone to errors
- Allows programmers to appreciate relative cost of operations and the effect of programming choices
- Helps programmers debug

Why Study Computer Architecture?

- Makes it possible to write computer programs that are:
 - Faster
 - Smaller
 - Less prone to errors
- Allows programmers to appreciate relative cost of operations and the effect of programming choices
- Helps programmers debug
- It's a required course!

The Bad News

- Digital hardware
 - Is complex
 - Cannot be understood in one course
 - Requires background in electricity and electronics

The Good News

- It is possible to understand architectural components without knowing low-level technical details.
- Programmers only need to know the essentials
 - Characteristics of major components
 - Role in overall system
 - Consequences for programmers

Organization Of The Course

- Basics
 - A taste of digital logic
 - Data representations
- Processors
 - Types of processors
 - Instruction sets and operands
 - Assembly languages and programming

Organization Of The Course (continued)

- Memory
 - Storage mechanisms
 - Physical and virtual memories and addressing
 - Caching
- Input/Output
 - Devices and interfaces
 - Buses and bus address spaces
 - Role of device drivers

Organization Of The Course (continued)

- Advanced topics
 - Parallelism and parallel computers
 - Pipelining
 - Performance and performance assessment
 - Architectural hierarchy

What We Will Not Cover

- We choose breadth over depth
- Omissions
 - Low-level engineering details (e.g., discussion of electrical properties of resistance and the relationship to voltage and current)
 - Quantitative analysis of circuits that an engineer uses to design hardware
 - VLSI chip design

Computer Architecture

- Refers to overall organization of computer system
- Analogous to blueprint
- Specifies
 - Functionality of major components
 - Interconnection among components
- Abstracts away details

Design

- Needed before a computer can be built
- Translates architecture into practice
- Fills in details that architectural specification omits
- Specifies items such as
 - How components are grouped onto boards
 - How power is distributed to boards
- Many designs can satisfy a given architecture

Summary

- Understanding architecture helps programmers
- Course covers essentials of computer architecture
 - Digital logic
 - Processors, memory, I/O
 - Advanced topics such as parallelism and pipelining
- We will omit details and focus on concepts

Questions?