
Computer Organization

Douglas Comer

Computer Science Department
Purdue University

250 N. University Street
West Lafayette, IN 47907-2066

http://www.cs.purdue.edu/people/comer

 Copyright 2006. All rights reserved. This document may not
be reproduced by any means without written consent of the author.

III

Data And Program
Representation

CS250 -- Chapt. 3 1 2006

Digital Logic

d Built on two-valued logic system

d Can be interpreted as

– Five volts and zero volts

– High and low

– True and false

CS250 -- Chapt. 3 2 2006

Data Representation

d Builds on digital logic

d Applies familiar abstractions

d Interprets sets of Boolean values as

– Numbers

– Characters

– Addresses

CS250 -- Chapt. 3 3 2006

Binary Digit (Bit)

d Direct representation of digital logic values

d Assigned mathematical interpretation

– 0 and 1

d Multiple bits used to represent complex data item

CS250 -- Chapt. 3 4 2006

Byte

d Set of multiple bits

d Size depends on computer

d Examples of byte sizes

– CDC: 6-bit byte

– BBN: 10-bit byte

– IBM: 8-bit byte

d On many computers, smallest addressable unit of storage

d Note: following most modern computers, we will assume an
8-bit byte

CS250 -- Chapt. 3 5 2006

Byte Size And Values

d Number of bits per byte determines range of values that can
be stored

d Byte of k bits can store 2k values

d Examples

– Six-bit byte can store 64 possible values

– Eight-bit byte can store 256 possible values

CS250 -- Chapt. 3 6 2006

Binary Representation

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

d All possible combinations of three bits

CS250 -- Chapt. 3 7 2006

Meaning Of Bits

d Bits themselves have no intrinsic meaning

d Byte merely stores string of 0’s and 1’s

d All interpretation determined by use

CS250 -- Chapt. 3 8 2006

Example Of Interpretation

d Assume three bits used for status of peripheral devices

– First bit has the value 1 if a disk is connected

– Second bit has the value 1 if a printer is connected

– Third bit has the value 1 if a keyboard is connected

CS250 -- Chapt. 3 9 2006

Arithmetic Values

d Combination of bits interpreted as an integer

d Positional representation uses base 2

d Note: interpretation must specify order of bits

CS250 -- Chapt. 3 10 2006

Illustration Of Positional Interpretation

2 0 = 12 1 = 22 2 = 42 3 = 82 4 = 162 5 = 32

d Example:

0 1 0 1 0 1

is interpreted as:

0 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20 = 21

CS250 -- Chapt. 3 11 2006

The Range Of Values

A set of k bits can be interpreted to represent a binary integer.
When conventional positional notation is used, the values that
can be represented with k bits range from 0 through 2k– 1.

CS250 -- Chapt. 3 12 2006

Hexadecimal Notation

d Convenient way to represent binary data

d Uses base 16

d Each hex digit encodes four bits

CS250 -- Chapt. 3 13 2006

Hexadecimal Digits

Hex Digit Binary Value Decimal Equivalent22

0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 2
3 0 0 1 1 3
4 0 1 0 0 4
5 0 1 0 1 5
6 0 1 1 0 6
7 0 1 1 1 7
8 1 0 0 0 8
9 1 0 0 1 9
A 1 0 1 0 10
B 1 0 1 1 11
C 1 1 0 0 12
D 1 1 0 1 13
E 1 1 1 0 14
F 1 1 1 1 15

CS250 -- Chapt. 3 14 2006

Hexadecimal Constants

d Supported in some programming languages

d Typical syntax: constant begins with 0x

d Example:

0xDEC90949

CS250 -- Chapt. 3 15 2006

Character Sets

d Symbols for upper and lower case letters, digits, and
punctuation marks

d Set of symbols defined by computer system

d Each symbol assigned unique bit pattern

d Typically, character set size determined by byte size

CS250 -- Chapt. 3 16 2006

Example Character Encodings

d EBCDIC

d ASCII

d Unicode

CS250 -- Chapt. 3 17 2006

EBCDIC

d Extended Binary Coded Decimal Interchange Code

d Defined by IBM

d Popular in 1960s

d Still used on IBM mainframe computers

d Example encoding: lower case letter a assigned binary value

10000001

CS250 -- Chapt. 3 18 2006

ASCII

d American Standard Code for Information Interchange

d Vendor independent: defined by American National
Standards Institute (ANSI)

d Adopted by PC manufacturers

d Specifies 128 characters

d Example encoding: lower case letter a assigned binary value

01100001

CS250 -- Chapt. 3 19 2006

Full ASCII Character Set

00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel

08 bs 09 ht 0A lf 0B vt 0C np 0D cr 0E so 0F si

10 dle 11 dc1 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb

18 can 19 em 1A sub 1B esc 1C fs 1D gs 1e rs 1F us

20 sp 21 ! 22 " 23 # 24 $ 25 % 26 & 27 ’

28 (29) 2A * 2B + 2C , 2D – 2E . 2F /

30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7

38 8 39 9 3A : 3B ; 3C < 3D = 3E > 3F ?

40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G

48 H 49 I 4A J 4B K 4C L 4D M 4E N 4F O

50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W

58 X 59 Y 5A Z 5B [5C \ 5D] 5E ^ 5F _

60 ‘ 61 a 62 b 63 c 64 d 65 e 66 f 67 g

68 h 69 i 6A j 6B k 6C l 6D m 6E n 6F o

70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w

78 x 79 y 7A z 7B { 7C | 7D } 7E ~ 7F del

CS250 -- Chapt. 3 20 2006

Unicode

d Each character is 16 bits long

d Can represent larger set of characters

d Motivation: accommodate languages such as Chinese

CS250 -- Chapt. 3 21 2006

Integer Representation In Binary

d Each binary integer represented in k bits

d Computers have used k = 8, 16, 32, 60, and 64

d Many computers support multiple integer sizes (e.g., 16 and
32 bit integers)

d 2k possible bit combinations exist for k bits

d Positional interpretation produces unsigned integers

CS250 -- Chapt. 3 22 2006

Unsigned Integers

d Straightforward positional interpretation

d Each successive bit represents next power of 2

d No provision for negative values

d Arithmetic operations can produce overflow or underflow
(result cannot be represented in k bits)

d Handled with wraparound and carry bit

CS250 -- Chapt. 3 23 2006

Illustration Of Overflow

1 0 0

+ 1 1 0

1 0 1 0

overflow result

d Values wrap around address space

d Hardware records overflow in separate carry indicator

CS250 -- Chapt. 3 24 2006

Signed Values

d Most programs need signed values

d Several representations possible

d Each has been used in at least one computer

d Some bit patterns used for negative values (typically half)

d Tradeoff: unsigned representation cannot store negative
values, but can store integers that are twice as large as a
signed representation

CS250 -- Chapt. 3 25 2006

Example Signed Integer Representations

d Sign magnitude

d One’s complement

d Two’s complement

d Note: each has interesting quirks

CS250 -- Chapt. 3 26 2006

Sign Magnitude Representation

d Familiar to humans

d First bit represents sign

d Successive bits represent absolute value of integer

d Interesting quirk: can create negative zero

CS250 -- Chapt. 3 27 2006

One’s Complement Representation

d Positive number uses positional representation

d Negative number formed by inverting all bits of positive
value

d Example: 4-bit representation

– 0 0 1 0 represents 2

– 1 1 0 1 represents -2

d Interesting quirk: two representations for zero (all 0’s and
all 1’s)

CS250 -- Chapt. 3 28 2006

Two’s complement Representation

d Positive number uses positional representation

d Negative number formed by subtracting 1 from positive
value and inverting all bits of result

d Example: 4-bit representation

– 0 0 1 0 represents 2

– 1 1 1 0 represents -2

– High-order bit is set if number is negative

d Interesting quirk: one more negative values than positive
values

CS250 -- Chapt. 3 29 2006

Example Of Values In Unsigned
And Two’s Complement Representations

Binary Unsigned Two’s Complement
Value Equivalent Equivalent222

1 1 1 1 15 -1
1 1 1 0 14 -2
1 1 0 1 13 -3
1 1 0 0 12 -4
1 0 1 1 11 -5
1 0 1 0 10 -6
1 0 0 1 9 -7
1 0 0 0 8 -8
0 1 1 1 7 7
0 1 1 0 6 6
0 1 0 1 5 5
0 1 0 0 4 4
0 0 1 1 3 3
0 0 1 0 2 2
0 0 0 1 1 1
0 0 0 0 0 0

CS250 -- Chapt. 3 30 2006

Implementation Of Unsigned
And Two’s Complement

A computer can use a single piece of hardware to provide
unsigned or two’s complement integer arithmetic; software
running on the computer can choose an interpretation for each
integer.

d Example (k = 4)

– Adding 1 to binary 1 0 0 1 produces 1 0 1 0

– Unsigned interpretation goes from 9 to 10

– Two’s complement interpretation goes from -7 to -6

CS250 -- Chapt. 3 31 2006

Sign Extension

d Needed when computer has multiple sizes of integers

d Works for unsigned and two’s complement representations

d Extends high-order bit (known as sign bit)

CS250 -- Chapt. 3 32 2006

Sign Extension

d Assume computer

– Supports 32-bit and 64-bit integers

– Uses two’s complement representation

d When 32-bit integer assigned to 64-bit integer, correct
numeric value requires upper sixteen bits to be filled with
zeroes for positive number or ones for negative number

d In essence, sign bit from short integer must be extended

CS250 -- Chapt. 3 33 2006

Example Of Sign Extension During Assignment

d The 8-bit version of integer -3 is:

1 1 1 1 1 1 0 1

d The 16-bit version of integer -3 is:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

d During assignment to a larger integer, hardware copies all
bits of smaller integer and then replicates the high-order
(sign) bit in remaining bits

CS250 -- Chapt. 3 34 2006

Example Of Sign Extension During Shift

d Right shift of a negative value should produce a negative
value

d Example

– Shifting -4 one bit should produce -2 (divide by 2)

– Using sixteen-bit representation, -4 is:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

d After right shift of one bit, value is -2:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

d Solution: replicate high-order bit during right shift

CS250 -- Chapt. 3 35 2006

Summary Of Sign Extension

Sign extension: in two’s complement arithmetic, when an
integer Q composed of K bits is copied to an integer of more
than K bits, the additional high-order bits are made equal to
the top bit of Q. Extending the sign bit means the numeric
value remains the same.

CS250 -- Chapt. 3 36 2006

A Consequence For Programmers

Because two’s complement hardware performs sign extension,
copying an unsigned integer to a larger unsigned integer
changes the value; to prevent such errors from occurring, a
programmer or a compiler must add code to mask off the
extended sign bits.

CS250 -- Chapt. 3 37 2006

Numbering Bits And Bytes

d Need to choose order for

– Storage in physical memory system

– Transmission over serial medium (e.g., a data network)

d Bit order

– Handled by hardware

– Usually hidden from programmer

d Byte order

– Affects multi-byte data items such as integers

– Visible and important to programmer

CS250 -- Chapt. 3 38 2006

Possible Byte Order

d Least significant byte of integer in lowest memory location

– Known as little endian

d Most significant byte of integer in lowest memory location

– Known as big endian

d Other orderings

– Digital Equipment Corporation once used an ordering
with sixteen-bit words in big endian order and bytes
within the words in little endian order.

d Note: only big and little endian storage are popular

CS250 -- Chapt. 3 39 2006

Illustration Of Big And
Little Endian Byte Order

Little Endian

Big Endian

0123

0 1 2 3

0x010x000x000x00

0x00 0x00 0x00 0x01

d Note: difference is especially important when transferring
data between computers for which the byte ordering differs

CS250 -- Chapt. 3 40 2006

Floating Point

d Basic idea: follow standard scientific representation

d Store two basic items

d Example: Avogadro’s number

6.022 × 1023

CS250 -- Chapt. 3 41 2006

Floating Point Representation

d Use base 2 instead of base 10

d Keep two conceptual items

– Exponent that specifies the order of magnitude in a base

– Mantissa that specifies most significant part of value

CS250 -- Chapt. 3 42 2006

Optimizing Floating Point

d Value is normalized

d Leading bit is implicit

d Exponent is biased to allow negative values

d Normalization eliminates leading zeroes

d No need to store leading bit (0 is special case)

CS250 -- Chapt. 3 43 2006

Example Floating Point Representation:
IEEE Standard 754

d Specifies single-precision and double-precision
representations

d Widely adopted by computer architects

02331

05263

S expon. mantissa (bits 0 - 22)

S exponent mantissa (bits 0 - 51)

CS250 -- Chapt. 3 44 2006

Special Values In IEEE Floating Point

d Zero

d Positive infinity

d Negative infinity

d Note: infinity values handle cases such as divide by zero

CS250 -- Chapt. 3 45 2006

Range Of Values In IEEE Floating Point

d Single precision range is:

2–126 to 2127

d Decimal equivalent is approximately:

10–38 to 1038

d Double precision range is:

10–308 to 10308

CS250 -- Chapt. 3 46 2006

Data Aggregates

d Typically arranged in contiguous memory

d Example: three integers

0 1 2 3 4 5

integer #1 integer #2 integer #3

d More details later in the course

CS250 -- Chapt. 3 47 2006

Summary

d Basic output from digital logic is a bit

d Bits grouped into sets to represent

– Integers

– Characters

– Floating point values

d Integers can be represented as

– Sign magnitude

– One’s complement

– Two’s complement

CS250 -- Chapt. 3 48 2006

Summary

d One piece of hardware can be used for both

– Two’s complement arithmetic

– Unsigned arithmetic

d Bytes of integer can be numbered in

– Big-endian order

– Little-endian order

d Organizations such as ANSI and IEEE define standards for
data representation

CS250 -- Chapt. 3 49 2006

Questions?

