Computer Organization

Douglas Comer

Computer Science Department
Purdue University
250 N. University Street
West Lafayette, IN 47907-2066

http://www.cs.purdue.edu/people/comer

[1 Copyright 2006. All rights reserved. This document may not
be reproduced by any means without written consent of the author.

Data And Program
Representation

CS250 -- Chapt. 3 1 2006

Digital Logic

e Built on two-valued logic system
e Can beinterpreted as

— Five volts and zero volts

— High and low

— True and false

CS250 -- Chapt. 3 2 2006

Data Representation

e Buildson digital logic

e Applies familiar abstractions

e |nterprets sets of Boolean values as
— Numbers
— Characters

— Addresses

CS250 -- Chapt. 3 3 2006

Binary Digit (Bit)

e Direct representation of digital logic values
e Assigned mathematical interpretation

— Oand 1
e Multiple bits used to represent complex data item

CS250 -- Chapt. 3 2006

Byte

e Set of multiple bits
e Size depends on computer
e Examples of byte sizes
— CDC: 6-hit byte
— BBN: 10-hit byte
— IBM: 8-bit byte
e On many computers, smallest addressable unit of storage

e Note: following most modern computers, we will assume an
8-bit byte

CS250 -- Chapt. 3 5 2006

Byte Size And Values

e Number of bits per byte determines range of values that can
be stored

e Byte of k bits can store 2K values
e Examples
— SiX-bit byte can store 64 possible values
— Eight-bit byte can store 256 possible values

CS250 -- Chapt. 3 6 2006

Binary Representation

000 010 100
001 011 101

e All possible combinations of three bits

CS250 -- Chapt. 3 7

110
111

2006

Meaning Of Bits

e Bits themselves have no intrinsic meaning
e Byte merely stores string of O'sand 1's
e All interpretation determined by use

CS250 -- Chapt. 3 8 2006

Example Of Interpretation

e Assume three bits used for status of peripheral devices
— First bit has the value 1 if a disk is connected
— Second hit has the value 1 if a printer is connected

— Third bit has the value 1 if a keyboard is connected

CS250 -- Chapt. 3 9 2006

Arithmetic Values

e Combination of bits interpreted as an integer
e Positiona representation uses base 2

e Note: interpretation must specify order of bits

CS250 -- Chapt. 3 10 2006

lllustration Of Positional Interpretation

2°=32 24=16 23=8 22=4 21=2 20=1
I T D SR SR
e Example:
010101
IS Interpreted as:

Ox22+1x2%+0x23+1x22+0x21+1x20 = 21

CS250 -- Chapt. 3 11 2006

The Range Of Values

A set of k bits can be interpreted to represent a binary integer.
When conventional positional notation is used, the values that
can be represented with k bits range from O through 2K 1.

CS250 -- Chapt. 3 12 2006

Hexadecimal Notation

e Convenient way to represent binary data
e Usesbase 16

e Each hex digit encodes four bits

CS250 -- Chapt. 3 13 2006

CS250 -- Chapt. 3

Hexadecimal Digits

Hex Digit Binary Value Decimal Equivalent
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15

14

2006

Hexadecimal Constants

e Supported in some programming languages
e Typical syntax: constant begins with 0Ox
e Example:

OxDEC90949

CS250 -- Chapt. 3 15 2006

Character Sets

e Symbols for upper and lower case letters, digits, and
punctuation marks

e Set of symbols defined by computer system
e Each symbol assigned unique bit pattern
e Typicaly, character set size determined by byte size

CS250 -- Chapt. 3 16 2006

Example Character Encodings

e EBCDIC
o ASCII

e Unicode

CS250 -- Chapt. 3 17 2006

EBCDIC

e Extended Binary Coded Decimal Interchange Code
e Defined by IBM

e Popular in 1960s

e Still used on IBM mainframe computers

e Example encoding: lower case letter a assigned binary value

10000001

CS250 -- Chapt. 3 18 2006

ASCI|

e American Standard Code for Information Interchange

e Vendor independent: defined by American National
Standards Institute (ANSI)

e Adopted by PC manufacturers
e Specifies 128 characters

e Example encoding: lower case letter a assigned binary value

01100001

CS250 -- Chapt. 3 19 2006

Full ASCII| Character Set

O0 nul [01 soh [02 stx [03 etx | 04 eot [O5 eng | 06 ack | 07 Dbel
08 bs 09 ht OA If OB vt 0OC np OD cr OE so OF si
10 dle 11 dcl | 12 dc2 | 13 dc3 | 14 dc4 | 15 nak | 16 syn | 17 etb
18 can | 19 em 1A sub | 1B esc | 1C fs 1D gs le rs 1F us
20 sp 21 ! 22 " 23 # 24 $ 25 % 26 & 27
28 (29) 2A * | 2B + |2c 2D - | 2E 2F |/
30 0 31 1 32 2 33 34 4 35 5 36 6 37 7
38 8 39 9 3A 3B 3C < 3b = 3E > 3F 2
40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 I 4A 4B K 4C L 4D M 4E N 4F O
50 P 51 Q 52 R 53 S 54 T 5 U 56 V 57 W
58 X |59 Y [5A z |5B | 5C \ 5D] 5E A 5F
60 61 a 62 b 63 ¢ 64 d 65 e 66 f 67 g
68 h 69 i 6A] 6B Kk 6C | 6D m 6E n 6F o
70 p 71 q 72 73 s 74t 75 U 76 v 77w
78 X 79 y | 7A z | 7B { 7C | 7D} 7E ~ | 7F del
CS250 -- Chapt. 3 20

2006

Unicode

e Each character is 16 bits long
e Can represent larger set of characters

e Motivation: accommodate |languages such as Chinese

CS250 -- Chapt. 3 21 2006

Integer Representation In Binary

e Each binary integer represented in k bits
e Computers have used k=8, 16, 32, 60, and 64

e Many computers support multiple integer sizes (e.g., 16 and
32 bit integers)

o 0K possible bit combinations exist for k bits

e Positional interpretation produces unsigned integers

CS250 -- Chapt. 3 22 2006

Unsigned Integers

e Straightforward positional interpretation
e Each successive bit represents next power of 2
e No provision for negative values

e Arithmetic operations can produce overflow or underflow
(result cannot be represented in k bits)

e Handled with wraparound and carry bit

CS250 -- Chapt. 3 23 2006

| llustration Of Overflow

1 00
+ 110

1 010

/N

overflow result

e Values wrap around address space

e Hardware records overflow in separate carry indicator

CS250 -- Chapt. 3 24 2006

Signed Values

e Most programs need signed values

e Severa representations possible

e Each has been used in at least one computer

e Some bit patterns used for negative values (typically half)

e Tradeoff: unsigned representation cannot store negative
values, but can store integers that are twice as large as a
signed representation

CS250 -- Chapt. 3 25 2006

Example Signed Integer Representations

e Sign magnitude
e One's complement
e Two's complement

e Note: each has interesting quirks

CS250 -- Chapt. 3 26 2006

Sign Magnitude Representation

e Familiar to humans
e First bit represents sign
e Successive hits represent absolute value of integer

e Interesting quirk: can create negative zero

CS250 -- Chapt. 3 27 2006

One's Complement Representation

e Positive number uses positional representation

e Negative number formed by inverting all bits of positive
value

e Example: 4-bit representation
— 0010 represents 2
— 1101 represents -2

e Interesting quirk: two representations for zero (all 0's and
al 1's)

CS250 -- Chapt. 3 28 2006

Two’'s complement Representation

e Positive number uses positional representation

e Negative number formed by subtracting 1 from positive
value and inverting all bits of result

e Example: 4-bit representation
— 0010 represents 2
— 1110 represents -2
— High-order bit is set if number is negative

e |nteresting quirk: one more negative values than positive
values

CS250 -- Chapt. 3 29 2006

Example Of Values In Unsigned
And Two’s Complement Representations

Binary Unsigned Two’s Complement

Value Equivalent Equivalent
1111 15 -1
1110 14 -2
1101 13 -3
1100 12 -4
1011 11 -5
1010 10 -6
1001 9 -7
1000 8 -8
0111 7 7
0110 6 6
0101 5 5
0100 4 4
0011 3 3
0010 2 2
0001 1 1
0000 0 0

CS250 -- Chapt. 3 30 2006

| mplementation Of Unsigned
And Two's Complement

A computer can use a single piece of hardware to provide
unsigned or two's complement integer arithmetic, software

running on the computer can choose an interpretation for each
Integer.

e Example (k=4)
— Adding 1 to binary 1001 produces 1010
— Unsigned interpretation goes from 9 to 10

— Twao's complement interpretation goes from -7 to -6

CS250 -- Chapt. 3 31 2006

Sign Extension

e Needed when computer has multiple sizes of integers
e Works for unsigned and two’s complement representations

e Extends high-order bit (known as sign bit)

CS250 -- Chapt. 3 32 2006

Sign Extension

e AsSsume computer
— Supports 32-bit and 64-bit integers
— Uses two’s complement representation

e When 32-bit integer assigned to 64-bit integer, correct
numeric value requires upper sixteen bits to be filled with
zeroes for positive number or ones for negative number

e |n essence, sign bit from short integer must be extended

CS250 -- Chapt. 3 33 2006

Example Of Sign Extension During Assignment

e The 8-hit version of integer -3 is:

11111101

e The 16-bit version of integer -3 Is.

1111111111111101

e During assignment to a larger integer, hardware copies all
bits of smaller integer and then replicates the high-order
(sign) bit in remaining bits

CS250 -- Chapt. 3 34 2006

Example Of Sign Extension During Shift

e Right shift of a negative value should produce a negative
value

e Example
— Shifting -4 one bit should produce -2 (divide by 2)
— Using sixteen-bit representation, -4 is.
1111111111111100

e After right shift of one bit, value is -2:
1111111111111110

e Solution: replicate high-order bit during right shift

CS250 -- Chapt. 3 35 2006

Summary Of Sign Extension

Sgn extension: In two's complement arithmetic, when an
Integer Q composed of K bits is copied to an integer of more
than K bits, the additional high-order bits are made equal to
the top bit of Q. Extending the sign bit means the numeric
value remains the same.

CS250 -- Chapt. 3 36 2006

A Consequence For Programmers

Because two’s complement hardware performs sign extension,
copying an unsigned integer to a larger unsigned integer
changes the value; to prevent such errors from occurring, a
programmer or a compiler must add code to mask off the

extended sign bits.

CS250 -- Chapt. 3 37 2006

Numbering Bits And Bytes

e Need to choose order for

— Storage in physical memory system

— Transmission over serial medium (e.g., a data network)
e Bit order

— Handled by hardware

— Usually hidden from programmer
e Byte order

— Affects multi-byte data items such as integers

— Visible and important to programmer

CS250 -- Chapt. 3 38 2006

Possible Byte Order

e | east significant byte of integer in lowest memory location
— Known as little endian

e Most significant byte of integer in lowest memory location
— Known as big endian

e Other orderings

— Digital Equipment Corporation once used an ordering
with sixteen-bit words in big endian order and bytes
within the words in little endian order.

e Note: only big and little endian storage are popular

CS250 -- Chapt. 3 39 2006

lllustration Of Big And
Little Endian Byte Order

0 1 2 3
0x00 0x00 0x00 0x01
Big Endian
3 2 1 0
0x00 0x00 0x00 0x01

Little Endian

e Note: difference is especially important when transferring
data between computers for which the byte ordering differs

CS250 -- Chapt. 3 40 2006

Floating Point

e Basic idea: follow standard scientific representation
e Storetwo basic items

e Example: Avogadro’s number

6.022 x 1023

CS250 -- Chapt. 3 41 2006

Floating Point Representation

e Use base 2 instead of base 10
e Keep two conceptual items

— Exponent that specifies the order of magnitude in a base

— Mantissa that specifies most significant part of value

CS250 -- Chapt. 3 42 2006

Optimizing Floating Point

e Valueis normalized

e |eading bit isimplicit

e EXxponent is biased to allow negative values
e Normalization eliminates leading zeroes

e No need to store leading bit (O is special case)

CS250 -- Chapt. 3 43 2006

Example Floating Point Representation:
|EEE Standard 754

e Specifies single-precision and double-precision
representations

e Widely adopted by computer architects

31 23 0

S expon. mantissa (bits 0 - 22)

63 52 0

S exponent mantissa (bits 0 - 51)

CS250 -- Chapt. 3 a4 2006

Special Values In |EEE Floating Point
e Z&o
e Poditive infinity
e Negative infinity

e Note: infinity values handle cases such as divide by zero

CS250 -- Chapt. 3 45 2006

Range Of Values In |IEEE Floating Point

e Single precision range is.

2—126 to 2127

e Decimal eguivalent is approximately:

10~38 to 1038

e Double precision range is:

10398 g 10308

CS250 -- Chapt. 3 46 2006

Data Aggregates

e Typicaly arranged in contiguous memory
e Example: three integers

0 1 2 3 4 5
T T T

integer #1 integer #2 integer #3
x x x

e More detalls later in the course

CS250 -- Chapt. 3 47 2006

Summary

e Basic output from digital logic is a bit
e Bits grouped into sets to represent

— Integers

— Characters

— Floating point values
e Integers can be represented as

— Sign magnitude

— On€e's complement

— Two’s complement

CS250 -- Chapt. 3 48 2006

Summary

e One piece of hardware can be used for both
— Twao's complement arithmetic
— Unsigned arithmetic
e Bytes of integer can be numbered in
— Big-endian order
— Little-endian order

e Organizations such as ANSI and |EEE define standards for
data representation

CS250 -- Chapt. 3 49 2006

Questions?

