
Computer Organization

Douglas Comer

Computer Science Department

Purdue University

250 N. University Street

West Lafayette, IN 47907-2066

http://www.cs.purdue.edu/people/comer

 Copyright 2006. All rights reserved. This document may not
be reproduced by any means without written consent of the author.

V

Processor Types

And

Instruction Sets

CS250 -- Chapt. 5 1 2006

What Instructions Should

A Processor Offer?

d Minimum set is sufficient, but inconvenient

d Extremely large set is convenient, but inefficient

d Architect must consider additional factors

– Physical size of processor

– Expected use

– Power consumption

CS250 -- Chapt. 5 2 2006

The Point About Instruction Sets

The set of operations a processor provides represents a tradeoff

among the cost of the hardware, the convenience for a

programmer, and engineering considerations such as power

consumption.

CS250 -- Chapt. 5 3 2006

Representation

d Architect must choose

– Set of instructions

– Exact representation hardware uses for each instruction

(instruction format)

– Precise meaning when instruction executed

d Above items define the instruction set

CS250 -- Chapt. 5 4 2006

Parts Of An Instruction

d Opcode specifies instruction to be performed

d Operands specify data values on which to operate

d Result location specifies where result will be placed

CS250 -- Chapt. 5 5 2006

Instruction Format

d Instruction represented as binary string

d Typically

– Opcode at beginning of instruction

– Operands follow opcode

CS250 -- Chapt. 5 6 2006

Illustration Of Typical

Instruction Format

opcode operand 1 operand 2 . . .

CS250 -- Chapt. 5 7 2006

Instruction Length

d Fixed-length

– Every instruction is same size

– Hardware is less complex

– Hardware can run faster

d Variable-length

– Some instructions shorter than others

– Appeals to programmers

– More efficient use of memory

CS250 -- Chapt. 5 8 2006

The Point About Fixed-Length Instructions

When a fixed-length instruction set is employed, some

instructions contain extra fields that the hardware ignores. The

unused fields should be viewed as part of a hardware

optimization, not as an indication of a poor design.

CS250 -- Chapt. 5 9 2006

General-Purpose Registers

d High-speed storage device

d Typically part of the processor

d Each register small size (typically, each register can

accommodate an integer)

d Basic operations are fetch and store

d Numbered from 0 through N–1

d Many processors require operands for arithmetic operations

to be placed in general-purpose registers

CS250 -- Chapt. 5 10 2006

Floating Point Registers

d Usually separate from general-purpose registers

d Each holds one floating-point value

d Many processors require operands for floating point

operations to be placed in floating point registers

CS250 -- Chapt. 5 11 2006

Example Of Programming With Registers

d Add X and Y, and place result in Z

d Steps

– Load a copy of X into register 3

– Load a copy of Y into register 4

– Add the value in register 3 to the value in register 4, and

direct the result to register 5

– Store a copy of the value in register 5 in Z

d Note: assumes registers 3, 4, and 5 are free

CS250 -- Chapt. 5 12 2006

Terminology

d Register spilling

– Refers to placing current contents of registers in memory

for later recall

– Occurs when registers needed for other computation

d Register allocation

– Choose which values to keep in registers at any time

– Programmer or compiler decides

CS250 -- Chapt. 5 13 2006

Double Precision

d Refers to value that is twice as large as usual

d Hardware often uses a contiguous pair of registers to hold a

double precision value

CS250 -- Chapt. 5 14 2006

Types Of Instruction Sets

d Two basic forms

– Complex Instruction Set Computer (CISC)

– Reduced Instruction Set Computer (RISC)

CS250 -- Chapt. 5 20 2006

CISC Instruction Set

d Many instructions (often hundreds)

d Given instruction can require arbitrary time to compute

d Examples of CISC instructions

– Move graphical item on bitmapped display

– Memory copy or clear

– Floating point computation

CS250 -- Chapt. 5 21 2006

RISC Instruction Set

d Few instructions (typically 32 or 64)

d Each instruction executes in one clock cycle

d Example: MIPS instruction set

CS250 -- Chapt. 5 22 2006

Summary Of Instruction Sets

A processor is classified as CISC if the instruction set contains

instructions that perform complex computations that can

require long times; a processor is classified as RISC if it

contains a small number of instructions that can each execute

in one clock cycle.

CS250 -- Chapt. 5 23 2006

Execution Pipeline

d Hardware optimization technique

d Allows processor to complete instructions faster

d Typically used with RISC instruction set

CS250 -- Chapt. 5 24 2006

Typical Instruction Cycle

d Fetch the next instruction

d Examine the opcode to determine how many operands are

needed

d Fetch each of the operands (e.g., extract values from

registers)

d Perform the operation specified by the opcode

d Store the result in the location specified (e.g., a register)

CS250 -- Chapt. 5 25 2006

To Optimize Instruction Cycle

d Build separate hardware block for each step

d Arrange to pass instruction through sequence of hardware

blocks

CS250 -- Chapt. 5 26 2006

Illustration Of Execution Pipeline

fetch
instruction

stage 1

examine
opcode

stage 2

fetch
operands

stage 3

perform
operation

stage 4

store
result

stage 5

d Example pipeline has five stages

CS250 -- Chapt. 5 27 2006

Pipeline Speed

d All stages operate in parallel

d Given stage can start to process a new instruction as soon as

current instruction finishes

d Effect: N-stage pipeline can operate on N instructions

simultaneously

CS250 -- Chapt. 5 28 2006

Illustration Of Instructions In A Pipeline

stage 5stage 4stage 3stage 2stage 1clock

1

2

3

4

5

6

7

8

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

inst. 6

inst. 7

inst. 8

-

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

inst. 6

inst. 7

-

-

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

inst. 6

-

-

-

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

-

-

-

-

inst. 1

inst. 2

inst. 3

inst. 4

Time

CS250 -- Chapt. 5 29 2006

RISC Processors And Pipelines

Although a RISC processor cannot perform all steps of the

fetch-execute cycle in a single clock cycle, an instruction

pipeline with parallel hardware provides approximately the

same performance: once the pipeline is full, one instruction

completes on every clock cycle.

CS250 -- Chapt. 5 30 2006

Using A Pipeline

d Pipeline is transparent to programmer

d Disadvantage: programmer who does not understand

pipeline can produce inefficient code

d Reason: hardware automatically stalls pipeline if items are

not available

CS250 -- Chapt. 5 31 2006

Example Of Instruction Stalls

d Assume

– Need to perform addition and subtraction operations

– Operands and results in registers A through E

– Code is:

Instruction K: C ← add A B

Instruction K+1: D ← subtract E C

d Second instruction stalls to wait for operand C

CS250 -- Chapt. 5 32 2006

Effect Of Stall On Pipeline

stage 5stage 4stage 3stage 2stage 1clock

1

2

3

4

5

6

7

8

inst. K

inst. K+1

inst. K+2

inst. K+3

-

-

inst. K+4

inst. K+5

inst. K-1

inst. K

inst. K+1

inst. K+2

-

-

inst. K+3

inst. K+4

inst. K-2

inst. K-1

inst. K

(inst. K+1)

(inst. K+1)

inst. K+1

inst. K+2

inst. K+3

inst. K-3

inst. K-2

inst. K-1

inst. K

-

-

inst. K+1

inst. K+2

inst. K-4

inst. K-3

inst. K-2

inst. K-1

inst. K

-

-

inst. K+1

Time

d Bubble passes through pipeline

CS250 -- Chapt. 5 33 2006

Potential Causes Of A Pipeline Stall

d Access external storage

d Invoke a coprocessor

d Branch to a new location

d Call a subroutine

CS250 -- Chapt. 5 34 2006

Achieving Maximum Speed

d Program must be written to accommodate instruction

pipeline

d To minimize stalls

– Avoid introducing unnecessary branches

– Delay references to result register(s)

CS250 -- Chapt. 5 35 2006

Example Of Avoiding Stalls

C ← add A B C ← add A B

D ← subtract E C F ← add G H

F ← add G H M ← add K L

J ← subtract I F D ← subtract E C

M ← add K L J ← subtract I F

P ← subtract M N P ← subtract M N

(a) (b)

d Stalls eliminated by rearranging (a) to (b)

CS250 -- Chapt. 5 36 2006

A Note About Pipelines

Although hardware that uses an instruction pipeline will not

run at full speed unless programs are written to accommodate

the pipeline, a programmer can choose to ignore pipelining and

assume the hardware will automatically increase speed

whenever possible.

CS250 -- Chapt. 5 37 2006

No-Op Instructions

d Have no effect on

– Registers

– Memory

– Program counter

– Computation

d Can be inserted to avoid instruction stalls

d Often used by a compiler

CS250 -- Chapt. 5 38 2006

Use Of No-OP

d Example

Instruction K: C ← add A B

Instruction L+1: no-op

Instruction K+2: D ← subtract E C

d No-op allows time for result from register C to be fetched

for subtract operation

CS250 -- Chapt. 5 39 2006

Forwarding

d Hardware optimization to avoid stall

d Allows ALU to reference result in next instruction

d Example

Instruction K: C ← add A B

Instruction K+1: D ← subtract E C

d Forwarding hardware passes result of add operation directly

to next instruction

CS250 -- Chapt. 5 40 2006

Aesthetic Aspects Of Instruction Sets

d Elegance

– Balanced

– No frivolous or useless instructions

d Orthogonality

– No unnecessary duplication

– No overlap among instructions

CS250 -- Chapt. 5 53 2006

Principle Of Orthogonality

The principle of orthogonality specifies that each instruction

should perform a unique task without duplicating or

overlapping the functionality of other instructions.

CS250 -- Chapt. 5 54 2006

Condition Codes

d Hardware bits

d Set by ALU

d Tested in conditional branch instruction

CS250 -- Chapt. 5 55 2006

Example Of Condition Code

cmp r4, r5 # compare regs. 4 & 5, and set condition code

be lab1 # branch to lab1 if cond. code specifies equal

mov r3, 0 # place a zero in register 3

lab1: . . .program continues at this point

CS250 -- Chapt. 5 56 2006

Questions?

