Computer Organization

Douglas Comer

Computer Science Department Purdue University 250 N. University Street West Lafayette, IN 47907-2066

http://www.cs.purdue.edu/people/comer

© Copyright 2006. All rights reserved. This document may not be reproduced by any means without written consent of the author.

IX

Memory And Storage

Key Aspects Of Memory

- Technology
 - Type of underlying hardware
 - Many technologies available
 - Differ in cost, persistence, performance
- Organization
 - How underlying hardware used to build memory system
 - Directly visible to programmer

Memory Characteristics

- Volatile or nonvolatile
- Random or sequential access
- Read-write or read-only
- Primary or secondary

Memory Volatility

- Volatile memory
 - Contents disappear when power is removed
 - Least expensive
- Nonvolatile memory
 - Contents remain without power
 - More expensive than volatile memory
 - May have slower access times
 - Variants "cheat" by using battery to keep contents

Memory Access Paradigm

- Random access
 - Typical
- Sequential access
 - Special purpose memory
 - Hardware known as *FIFO* (*First-In-First-Out*)

Permanence Of Values

- ROM (Read Only Memory)
 - Values can be read, but not changed
 - Useful for firmware
- PROM (Programmable Read Only Memory)
 - Contents can be altered, but doing so is time-consuming
 - Change may involve removal from a circuit and exposure to ultraviolet light

Permanence Of Values (continued)

- EEPROM
 - Form of PROM that can be changed while installed
 - Variants such as *Flash ROM* used in digital cameras

Primary And Secondary Memory

- Broad classification of memory technologies
- Terminology is qualitative

Traditional Terminology

- Primary memory
 - Highest speed
 - Most expensive, therefore smallest
 - Typically solid state technology
- Secondary memory
 - Lower speed
 - Less expensive, therefore can be larger
 - Typically magnetic media and electromechanical drive mechanism

In Practice

- Distinction between primary and secondary storage blurred
- Solid state technology replacing electromechanical technology
- Example: *microdrive* that uses flash memory

Memory Hierarchy

- Key concept to memory designer
- Related to definitions of *primary/secondary* memory
- Arise as tradeoff
 - Highest performance memory costs the most
 - Architect chooses set of memories to satisfy both performance and cost constraints

Memory Hierarchy (continued)

- Small amount of memory has highest performance
- Slightly larger amount of memory has somewhat lower performance
- Large amount of memory has lowest performance
- Example hierarchy
 - Dozens of general-purpose registers
 - Megabytes of main memory
 - Gigabytes of secondary storage

General Principle

To optimize memory performance for a given cost, a set of technologies are arranged in a hierarchy that contains a relatively small amount of fast memory and larger amounts of less expensive, but slower memory.

How Should Memory Be Designed?

- Separate memories, one for programs and another for data
- One memory that holds both programs and data

Instruction Store And Data Store

- Early computers had separate memories known as
 - Instruction store
 - Data store
- Most modern computers
 - One memory for both instructions and data
- Note single memory design is known as a *Von Neumann architecture*

A Note About Memory Types

- Some special-purpose computers use separate memories
- Motivation: choose memory technology that is optimized for pattern of use
 - Instruction store: typically sequential
 - Data store: typically random

The Fetch-Store Paradigm

- Access paradigm used by memory
- Two operations
 - *Fetch* the value from a specified location
 - Store a value into a specified location
- Two operations also called
 - Read
 - Write
- We will discuss implementation of fetch/store later

Summary

- Two key aspects of memory are
 - Technology
 - Organization
- Memory can be characterized as
 - Volatile or nonvolatile
 - Random or sequential access
 - Permanent or nonpermanent
 - Primary or secondary

Summary (continued)

- Memory systems use fetch/store paradigm
- Two operations are known as
 - Fetch (Read)
 - Store (Write)

Questions?