
Computer Organization

Douglas Comer

Computer Science Department
Purdue University

250 N. University Street
West Lafayette, IN 47907-2066

http://www.cs.purdue.edu/people/comer

 Copyright 2006. All rights reserved. This document may not
be reproduced by any means without written consent of the author.

XII

Caches
And

Caching

CS250 -- Chapt. 12 1 2006

Caching

d Key concept in computing

d Used in hardware and software

d Memory cache can reduce the Von Neumann bottleneck

CS250 -- Chapt. 12 2 2006

Cache

d Acts as an intermediary

d Located between source of requests and source of replies

d Contains high-speed, temporary storage

d Keeps a copy of selected items

d Answers requests from local copy when possible

CS250 -- Chapt. 12 3 2006

Illustration Of A Cache

large data storage

requester
cache

CS250 -- Chapt. 12 4 2006

Cache Characteristics

d Small (usually much smaller than storage needed for entire
set of items)

d Active (makes decisions)

d Transparent (invisible to both requester and data store)

d Automatic (uses sequence of requests; does not receive extra
instructions)

CS250 -- Chapt. 12 5 2006

Generality Of Caching

d Hardware, software, or combination

d Small or large data items (byte of memory or complete file)

d Generic data items (e.g., disk block)

d Specific data item (e.g., document from a word processor)

d Textual data (e.g., an email message)

CS250 -- Chapt. 12 6 2006

Generality Of Caching
(continued)

d Nontextual data (e.g., an image, an audio file, or a video
clip)

d A single computer system (e.g., between a processor and a
memory)

d Many computer systems (e.g., between a set of desktop
computers and a database server)

d Systems that are designed to retrieve data (e.g., the World
Wide Web)

d Systems that store as well as retrieve data (e.g., a physical
memory)

CS250 -- Chapt. 12 7 2006

The Importance Of Caching

Caching is a fundamental optimization technique used
throughout most hardware and software systems that retrieve
information. Caching is a broad concept; data items kept in a
cache are not limited to a specific type, form, or size.

CS250 -- Chapt. 12 8 2006

Cache Terminology

d Cache hit

– Request that can be satisfied from cache

– No need to access data store

d Cache miss

– Request cannot be satisfied from cache

– Cache retrieves item from data store

CS250 -- Chapt. 12 9 2006

Cache Terminology
(continued)

d Locality of reference

– Refers to repetitions of same request

– High locality means many repetitions

– Low locality means few repetitions

d Note: cache works well with high locality of reference

CS250 -- Chapt. 12 10 2006

Cache Performance

large data storagerequester cache

Ch

Cm

d Cost measured with respect to requester

CS250 -- Chapt. 12 11 2006

Worst Case Cache Performance

d Ch is the cost of an item found in the cache

d Cm is the cost of an item not found in the cache

d Average cost per request is Cm

d Worst case for sequence of N requests

Cworst = N Cm

CS250 -- Chapt. 12 12 2006

Best Case Cache Performance

d Best case for sequence of N requests is

Cbest = Cm + (N − 1) Ch

d Average cost per request is

N

Cm + (N − 1) Ch333333333333333 =
N

Cm3333 −
N

Ch333 + Ch

d As N → ∞, average cost becomes Ch

CS250 -- Chapt. 12 13 2006

Summary Of Costs

If we ignore overhead, in the worst case, the performance of
caching is no worse than if the cache were not present. In the
best case, the cost per request is approximately equal to the
cost of accessing the cache, which is lower than the cost of
accessing the data store.

CS250 -- Chapt. 12 14 2006

Definition Of Hit and Miss Ratios

d Hit ratio

– Percentage of requests satisfied from cache

– Given as value between 0 and 1

d Miss ratio

– Percentage of requests not satisfied from cache

– Equal to 1 minus hit ratio

CS250 -- Chapt. 12 15 2006

Cache Performance On A Typical Sequence

d Access cost depends on hit ratio

Cost = r Ch + (1 − r) Cm

where r is the hit ratio

d Note: performance improves if hit ratio increases or cost of
access from cache decreases

CS250 -- Chapt. 12 16 2006

Cache Replacement Policy

d Cache is smaller than data store

d Once cache is full, existing item must be ejected before
another can be inserted

d Replacement policy chooses items to eject

d Most popular replacement policy known as Least Recently
Used (LRU)

– Tends to retain items that will be requested again

CS250 -- Chapt. 12 17 2006

Multi-level Cache Hierarchy

d Can use multiple caches to improve performance

d Arranged in hierarchy by speed

CS250 -- Chapt. 12 18 2006

Illustration Of Two-Level Cache

large data storagerequester new cache original cache

CS250 -- Chapt. 12 19 2006

Analysis Of Two-Level Cache

d Cost is:

Cost = r 1 Ch 1 + r 2 Ch 2 + (1 − r 1 − r 2)Cm

d r 1 is fraction of hits for the new cache

d r 2 is fraction of hits for the original cache

d Ch 1 is cost of accessing the new cache

d Ch 2 is cost of accessing the original cache

CS250 -- Chapt. 12 20 2006

Preloading Caches

d Optimization technique

d Stores items in cache before requests arrive

d Works well if data accessed in related groups

d Examples

– When web page is fetched, web cache preloads images

– When byte of memory is fetched, memory cache can
preload succeeding bytes

CS250 -- Chapt. 12 21 2006

Memory Cache

d Several memory mechanisms operate as a cache

– TLB

– Demand paging

– Physical memory cache

CS250 -- Chapt. 12 22 2006

Demand Paging Performance

Cache analysis shows that using demand paging on a computer
system with a small physical memory can perform almost as
well as if the computer had a physical memory large enough for
the entire virtual address space.

CS250 -- Chapt. 12 23 2006

Physical Memory Cache

d Located between processor and physical memory

d Smaller than physical memory

d Note: sophisticated cache hardware operates in parallel to
achieve high performance:

– Search local cache

– Send request to underlying memory

d If answer found in cache, cancel request to memory

CS250 -- Chapt. 12 24 2006

Two Basic Types Of Cache

d Differ in how they handle write operation

d Write-through

– Keep copy of item in cache

– Send write request on to physical memory

d Write-back

– Keep copy of item in cache

– Only write copy to physical memory when necessary

– Works well for frequent updates (e.g., a loop increments
a value)

CS250 -- Chapt. 12 25 2006

Illustration Of System With Multiple Caches

processor
1

processor
2

cache 1 cache 2

physical memory

d Write-back means each cache can retain copy of item

d Cache coherence needed to ensure correctness

CS250 -- Chapt. 12 26 2006

Motivation For Multi-Level Memory Cache

d Traditional memory cache was separate from both the
memory and the processor

d To access traditional memory cache, a processor used pins
that connect the processor chip to the rest of the computer

d Using pins to access external hardware takes much longer
than accessing functional units that are internal to the
processor chip

d Advances in technology have made it possible to increase
the number of transistors per chip, which means a processor
chip can contain a larger cache

CS250 -- Chapt. 12 27 2006

Multi-Level Memory Cache Terminology

d Level 1 cache (L1 cache) on the processor chip

d Level 2 cache (L2 cache) external to the processor

d Level 3 cache (L3 cache) built into the physical memory

CS250 -- Chapt. 12 28 2006

Cost Of Accessing Memory

Computer systems use a multi-level cache hierarchy in which an
L1 cache is embedded on the processor chip, an L2 cache is
external to the processor, and an L3 cache is built into the
physical memory. In the best case, a multi-level cache makes
the cost of accessing memory approximately the same as the
cost of accessing a register.

CS250 -- Chapt. 12 29 2006

Instruction And Data Caches

d Instruction references are typically sequential

– High locality of reference

d Data references are more random

– Lower locality of reference

d Question: does performance improve with separate caches
for data and instructions?

CS250 -- Chapt. 12 30 2006

Instruction And Data Caches
(continued)

d Random references tend to lower cache performance

d Separating instruction and data caches can improve
performance

d However: if cache is ‘‘large enough’’, separation doesn’t
help

CS250 -- Chapt. 12 31 2006

Virtual Memory Caching

d Can choose to cache

– Physical memory address and contents

– Virtual memory address and contents

d Notes

– If MMU is off-chip, L1 cache must use virtual addresses

– Multiple applications use same virtual address space

CS250 -- Chapt. 12 32 2006

Caching Virtual Addresses

d OS performs cache flush operation when changing
applications

d Cache includes disambiguating tag with each entry
(e.g., application ID)

CS250 -- Chapt. 12 33 2006

Illustration Of ID Register

address used by cache

ID virtual address

CS250 -- Chapt. 12 34 2006

Two Technologies For Memory Caching

d Direct mapping memory cache

d Set associative memory cache

CS250 -- Chapt. 12 35 2006

Direct mapping memory cache

d Divides memory into numbered blocks

d Tag used to distinguish among blocks

CS250 -- Chapt. 12 36 2006

Illustration Of Direct Mapping Cache

memory block

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

1

2

3

...

d Example block size is 4

d Only block numbered i can be placed in cache slot i

CS250 -- Chapt. 12 37 2006

Illustration Of Tags

memory

cache

tag value

0

1

2

3

block

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

tag 0

tag 1

tag 2

tag 3

d Use of tags saves space

CS250 -- Chapt. 12 38 2006

Using Powers Of Two

tag block offset

d Using powers of two means bits of address specify tag,
block, and offset

CS250 -- Chapt. 12 39 2006

Algorithm For Cache Lookup

Given:
A memory address

Find:
The data byte at that address

Method:

Extract the tag number, t, block number, b, and offset,
o, from the address.

Examine the tag in slot b of the cache. If the tag
matches t, extract the value from slot b of the cache.

If the tag in slot b of the cache does not match t, use
the memory address to extract the block from
memory, place a copy in slot b of the cache, replace
the tag with t, and use o to select the appropriate byte
from the value.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
22

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
122

CS250 -- Chapt. 12 40 2006

Set Associative Memory Cache

d Alternative to direct mapping memory cache

d Uses parallel hardware

d Maintains multiple, independent caches

CS250 -- Chapt. 12 41 2006

Illustration Of Set Associative Cache

tag tagvalue value

0

1

2

3

0

1

2

3

Hardware For Parallel Test

CS250 -- Chapt. 12 42 2006

Advantage Of Set Associative Cache

d Assume two memory addresses A1 and A2

– Both have block number zero

– Have different tags

d In direct mapped cache

– A1 and A2 contend for single slot

– Only one can be cached at a given time

d In set associative cache

– A1 and A2 can be placed in separate caches

– Both can be cached at a given time

CS250 -- Chapt. 12 43 2006

Fully Associative Cache

d Many parallel caches

d Each cache has exactly one slot

d Slot can hold arbitrary item

CS250 -- Chapt. 12 44 2006

Continuum Of Caches

d No parallelism corresponds to direct mapped cache

d Some parallelism corresponds to set associative cache

d Full parallelism corresponds to Content Addressable
Memory

CS250 -- Chapt. 12 45 2006

Consequences For Programmers

d In many programs caching works well without extra work

d To optimize cache performance perform all operations on
one data item before moving to another data item

CS250 -- Chapt. 12 46 2006

Summary

d Caching is fundamental optimization technique

d Cache intercepts requests, automatically stores values, and
answers requests quickly, whenever possible

d Caching can be used with both physical and virtual memory
addresses

CS250 -- Chapt. 12 47 2006

Summary
(continued)

d Memory cache uses hierarchy

– L1 onboard processor

– L2 between processor and memory

– L3 built into memory

d Two technologies used for memory cache

– Direct mapped

– Set associative

CS250 -- Chapt. 12 48 2006

Questions?

