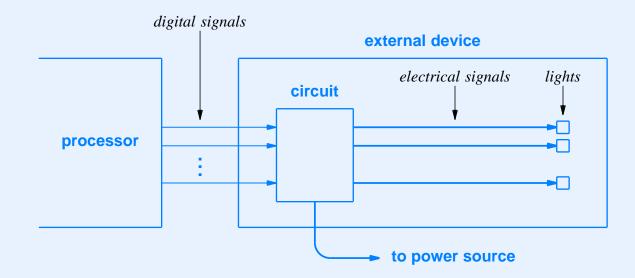
Computer Organization

Douglas Comer

Computer Science Department Purdue University 250 N. University Street West Lafayette, IN 47907-2066

http://www.cs.purdue.edu/people/comer

© Copyright 2006. All rights reserved. This document may not be reproduced by any means without written consent of the author.


XIII

Input/Output Concepts And Terminology

I/O Devices

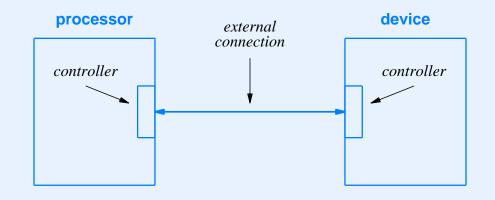

- Third major component of computer system
- Wide range of types
 - Keyboards
 - Mice
 - Monitors
 - Hard disks
 - Printers
 - Cameras
 - Audio speakers

Illustration Of Early I/O Device

- Independent of processor
- Connected by digital signals

Illustration Of Modern Interface Controller

- Needed at each end of physical connection
- Allows arbitrary voltage and signal on connection

Two Types Of Interfaces

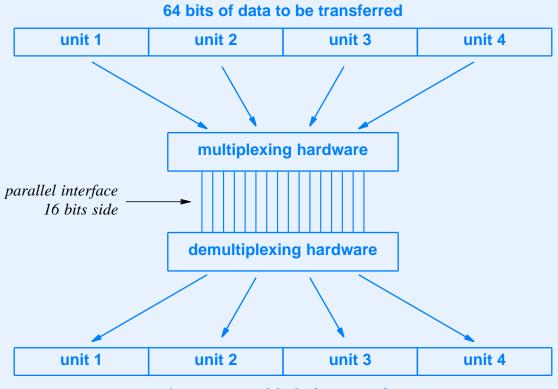
- Parallel interface
 - Composed of many wires
 - Each wire carries one bit at any time
 - *Width* is number of wires
- Serial interface
 - Single signal wire (also need ground)
 - Bits sent one-at-a-time
 - Slower than parallel interface

Self-Clocking Data

- Ends of connection use separate clocks
- Transmission is *self-clocking* if signal encoded in such a way that receiver can determine boundary of bits

Duplex Terminology

- Full-duplex
 - Simultaneous, bi-directional transfer
 - Example disk drive supports simultaneous *read* and *write*
- Half-duplex
 - Transfer in only one direction at a time
 - Interfaces must negotiate access before transmitting


Latency And Throughput

The latency of an interface is a measure of the time required to perform a transfer, the throughput of an interface is a measure of the data that can be transferred per unit time.

Data Multiplexing

- Fundamental idea
- Arises from hardware limits on parallelism (pins or wires)
- Allows sharing
- Multiplexor
 - Accepts input from many sources
 - Sends small amount from one source before accepting another
- Demultiplexor
 - Receives transmission of pieces
 - Sends each piece to appropriate destination

Illustration Of Multiplexing

data reassembled after transfer

• Sixty-four bits of data multiplexed over 16-bit path

Multiplexing And I/O Interfaces

Multiplexing is used to construct an I/O interface that can transfer arbitrary amounts of data over a fixed number of parallel wires. Multiplexing hardware divides the data into blocks, and transfers each block independently.

Multiple Devices Per External Interface

- Cannot afford separate interface per device
 - Too many wires
 - Not enough pins on processor chip
- We will see how sharing occurs

Processor's View Of I/O

A processor does not access external devices directly. Instead, the processor uses a programming interface to pass requests to an interface controller, which translates the requests into the appropriate external signals.

Questions?