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Device Driver

d Piece of software

d Responsible for communicating with specific device

d Usually part of operating system

d Classified as low-level code

d Manipulates device’s CSRs

d Handles interrupts from device
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Purposes Of Device Driver

d Device independence: application is not written for specific
device(s)

d Encapsulation and hiding: details of device hidden from
other software
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Conceptual Parts Of A Device Driver

d Lower half

– Handler code that is invoked when the device interrupts

– Communicates with device

d Upper half

– Functions that are invoked by applications

– Allow application to request I/O operations

d Shared variables

– Used by both halves to coordinate
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Illustration Of Device Driver Organization
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Types Of Devices

d Character-oriented

– Transfer one byte at a time

– Examples

* Keyboard

* Mouse

d Block-oriented

– Transfer block of data at a time

– Examples

– Disk

– Network interface
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Example Flow Through A Device Driver
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Queued Output Operations

d Used by most device drivers

d Shared variable area contains queue of requests

d Upper-half places request on queue

d Lower-half services request from queue
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Illustration Of A Device Driver Request Queue
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request
queue

d Queue is shared among both halves
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Steps Taken On Output

d Initialization (computer system starts)

– Initialize input queue to empty

d Upper half (application performs write)

– Deposit data item in queue

– Use the CSR to request an interrupt

– Return to application

d Lower half (interrupt occurs)

– If the queue is empty, stop the device from interrupting

– If the queue is nonempty, extract an item and start
output

– Return from interrupt
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Forcing An Interrupt

d A device has a CSR bit, B, that is used to force the device
to interrupt

d If the device is idle, setting bit B causes the device to
generate an interrupt

d If the device is currently performing an operation, setting bit
B has no effect

d Above makes device driver code especially elegant
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Queued Input Operations

d Initialization (computer system starts)

– Initialize input queue to empty

– Force the device to interrupt

d Upper half (application performs read)

– If input queue is empty, temporarily stop the application

– Extract the next item from the input queue

– Return the item to the application

d Lower half (interrupt occurs)

– If the queue is not full, start another input operation

– If an application is stopped, allow the application to run

– Return from interrupt
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Devices That Support Bi-Directional Transfer

d Most devices include two-way communication

d Example: although printer is primarily an output device,
most printers allow the processor to check status

d Drivers can

– Treat device as two separate devices, one used for input
and one used for output

– Treat the device as a single device that handles two
types of commands, one for input and one for output
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Asynchronous Vs. Synchronous Paradigm

d Synchronous programming

– Used for many applications

– Processor follows single path through the code

d Asynchronous programming

– Used for interrupts

– Programmer writes set of handlers

– Each handler invoked when corresponding event occurs

– More challenging than synchronous programming
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Mutual Exclusion

d Needed for asynchronous events

d Guarantees only one operation will be performed at a time

d For device drivers: must provide mutual exclusion between
processor and smart device that change shared data
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I/O As Viewed By An Application

d Few programmers write device drivers

d Most programmers use high-level abstractions

– Files

– Windows

– Documents

d Compiler generates calls to run-time library functions

d Chief advantage: I/O hardware and/or device drivers can
change without changing applications
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Conceptual Arrangement Of Library And OS

application

run-time library

device driver

device hardware

interface 1

interface 2

d Well-known example

– Standard I/O library

– Unix kernel
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Functions In the Unix Operating System’s
Open/Read/Write/Close Paradigm

Operation Meaning22222222222222222222222222222222222222222222222222222222222222222

open Prepare a device for use (e.g., power up)
read Transfer data from the device to the application
write Transfer data from the application to the device
close Terminate use of the device
seek Move to a new location of data on the device
ioctl Miscellaneous control functions (e.g., change volume)
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Cost Of I/O Operations

The overhead involved in using a system call to communicate
with a device driver is extremely high; a system call is much
more expensive than a conventional procedure call, such as the
call used to invoke a library function.
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Reducing System Call Overhead

To reduce overhead and optimize I/O performance, a
programmer must reduce the number of system calls that an
application invokes. The key to reducing system calls involves
transferring more data per system call.
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Buffering

d Important optimization

d Used heavily

d Automated and usually invisible to programmer

d Key idea: make large I/O transfers

– Accumulate outgoing data before transfer

– Transfer large block of incoming data and then extract
items
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Automating Buffering

d Typically performed with library functions

d Application

– Uses functions in the library for all I/O

– Transfers data in arbitrary size blocks

d Library functions

– Buffer data from applications

– Transfer data to underlying system in large blocks
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Example Library Functions For Output

Operation Meaning222222222222222222222222222222222222222222222222

setup Initialize the buffer
input Perform an input operation

output Perform an output operation
terminate Discontinue use of the buffer

flush Force contents of buffer to be written

d Functions are analogous to those provided by operating
system
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Use Of Library

d Setup

– Called to initialize buffer

– May allocate buffer

– Typical buffer sizes 8K to 128K bytes

d Output

– Called when application needs to emit data

– Data sent to OS only when buffer is full

d Terminate

– Called when all data has been emitted

– Forces remaining data to be sent to OS
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Implementation Of Output Buffer Functions

Setup(N)
1. Allocate a buffer of N bytes.

2. Create a global pointer, p, and initialize p to the
address of the first byte of the buffer.

Output(D)
1. Place data byte D in the buffer at the position

given by pointer p, and move p to the next byte.

2. If the buffer is full, make a system call to write
the contents of the entire buffer, and reset
pointer p to the start of the buffer.
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Implementation Of Output Buffer Functions
(continued)

Terminate
1. If the buffer is not empty, make a system call to

write the contents of the buffer prior to pointer
p.

2. If the buffer was dynamically allocated,
deallocate it.
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Flushing A Buffer

d Allows a programmer to control buffering

d Needed for interactive programs

d When flush is called

– If buffer contains data, library sends to OS

– If buffer is empty, flush has no effect
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Implementation Of Flush

Flush

1. If the buffer is currently empty, return to the caller
without taking any action.

2. If the buffer is not currently empty, make a system
call to write the contents of the buffer and set the
global pointer p to the address of the first byte of
the buffer.
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Implementation Of Terminate

d Call flush

d Proceed to deallocate buffer
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Summary Of Buffer Flushing

A programmer uses a flush function to specify that outgoing
data in a buffer should be sent to the device driver in the
operating system. A flush operation has no effect if a buffer is
currently empty.
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Buffering On Input

Setup(N)
1. Allocate a buffer of N bytes.

2. Create a global pointer, p, and initialize p to
indicate that the buffer is empty.

Input(N)
1. If the buffer is empty, make a system call to fill

the entire buffer, and set pointer p to the start of
the buffer.

2. Extract a byte, D, from the position in the buffer
given by pointer p, move p to the next byte, and
return D to the caller.

Terminate
1. If the buffer was dynamically allocated,

deallocate it.
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Important Note About Implementation

d Both input and output buffering are straightforward

d Only a trivial amount of code needed
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Effectiveness Of Buffering

d Buffer of size N reduces number of system calls by a factor
of N

d Example

– Minimum size buffer is typically 8K bytes

– Resulting number of system calls is S / 8192, where S is
the original number of system calls
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Buffering In An Operating System

d Buffering is used extensively inside the OS

d Important part of device drivers

d Goal: reduce number of external transfers

d Reason: external transfers are slower than system calls
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Relation Between Buffering And Caching

d Closely related concepts

d Chief difference

– Cache handles random access

– Buffer handles sequential access
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Buffering Example
(The Unix Standard I/O Library)

d Widely used

d Speeds I/O considerably
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Functions In The Unix Standard I/O Library

Function Meaning222222222222222222222222222222222222222222222

fopen Set up a buffer
fgetc Buffered input of one byte
fread Buffered input of multiple bytes
fwrite Buffered output of multiple bytes
fprintf Buffered output of formatted data
fflush Flush operation for buffered output
fclose Terminate use of a buffer
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Summary

d Two aspects of I/O pertinent to programmers

– Device details important to systems programmers who
write device drivers

– Application programmer must understand relative costs
of I/O

d Device driver divided into three parts

– Upper-half called by application

– Lower-half handles device interrupts

– Shared data area accessed by both halves
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Summary
(continued)

d Buffering

– Fundamental technique used to enhance performance

– Useful with both input and output

d Buffer of size n reduces system calls by a factor of N
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Questions?


