
Computer Organization

Douglas Comer

Computer Science Department
Purdue University

250 N. University Street
West Lafayette, IN 47907-2066

http://www.cs.purdue.edu/people/comer

 Copyright 2006. All rights reserved. This document may not
be reproduced by any means without written consent of the author.

XVI

A Programmer’s View
Of I / O

And
Buffering

CS250 -- Chapt. 16 1 2006

Device Driver

d Piece of software

d Responsible for communicating with specific device

d Usually part of operating system

d Classified as low-level code

d Manipulates device’s CSRs

d Handles interrupts from device

CS250 -- Chapt. 16 2 2006

Purposes Of Device Driver

d Device independence: application is not written for specific
device(s)

d Encapsulation and hiding: details of device hidden from
other software

CS250 -- Chapt. 16 3 2006

Conceptual Parts Of A Device Driver

d Lower half

– Handler code that is invoked when the device interrupts

– Communicates with device

d Upper half

– Functions that are invoked by applications

– Allow application to request I/O operations

d Shared variables

– Used by both halves to coordinate

CS250 -- Chapt. 16 4 2006

Illustration Of Device Driver Organization

shared
variables

upper half
invoked by

applications

applications programs

lower half
invoked by
interrupts

device hardware

CS250 -- Chapt. 16 5 2006

Types Of Devices

d Character-oriented

– Transfer one byte at a time

– Examples

* Keyboard

* Mouse

d Block-oriented

– Transfer block of data at a time

– Examples

– Disk

– Network interface

CS250 -- Chapt. 16 6 2006

Example Flow Through A Device Driver

computer

application

upper half

variables

lower half

device

operating
system

external
hardware

Steps Taken

1. The application writes data

2. The OS passes control to the driver

3. The driver records information

4. The driver waits for the device

5. The driver starts the transfer

6. The driver returns to the application

7. The device interrupts

1

2

3

4

5

6

7

CS250 -- Chapt. 16 7 2006

Queued Output Operations

d Used by most device drivers

d Shared variable area contains queue of requests

d Upper-half places request on queue

d Lower-half services request from queue

CS250 -- Chapt. 16 8 2006

Illustration Of A Device Driver Request Queue

upper half

lower half

request
queue

d Queue is shared among both halves

CS250 -- Chapt. 16 9 2006

Steps Taken On Output

d Initialization (computer system starts)

– Initialize input queue to empty

d Upper half (application performs write)

– Deposit data item in queue

– Use the CSR to request an interrupt

– Return to application

d Lower half (interrupt occurs)

– If the queue is empty, stop the device from interrupting

– If the queue is nonempty, extract an item and start
output

– Return from interrupt

CS250 -- Chapt. 16 10 2006

Forcing An Interrupt

d A device has a CSR bit, B, that is used to force the device
to interrupt

d If the device is idle, setting bit B causes the device to
generate an interrupt

d If the device is currently performing an operation, setting bit
B has no effect

d Above makes device driver code especially elegant

CS250 -- Chapt. 16 11 2006

Queued Input Operations

d Initialization (computer system starts)

– Initialize input queue to empty

– Force the device to interrupt

d Upper half (application performs read)

– If input queue is empty, temporarily stop the application

– Extract the next item from the input queue

– Return the item to the application

d Lower half (interrupt occurs)

– If the queue is not full, start another input operation

– If an application is stopped, allow the application to run

– Return from interrupt

CS250 -- Chapt. 16 12 2006

Devices That Support Bi-Directional Transfer

d Most devices include two-way communication

d Example: although printer is primarily an output device,
most printers allow the processor to check status

d Drivers can

– Treat device as two separate devices, one used for input
and one used for output

– Treat the device as a single device that handles two
types of commands, one for input and one for output

CS250 -- Chapt. 16 13 2006

Asynchronous Vs. Synchronous Paradigm

d Synchronous programming

– Used for many applications

– Processor follows single path through the code

d Asynchronous programming

– Used for interrupts

– Programmer writes set of handlers

– Each handler invoked when corresponding event occurs

– More challenging than synchronous programming

CS250 -- Chapt. 16 14 2006

Mutual Exclusion

d Needed for asynchronous events

d Guarantees only one operation will be performed at a time

d For device drivers: must provide mutual exclusion between
processor and smart device that change shared data

CS250 -- Chapt. 16 15 2006

I/O As Viewed By An Application

d Few programmers write device drivers

d Most programmers use high-level abstractions

– Files

– Windows

– Documents

d Compiler generates calls to run-time library functions

d Chief advantage: I/O hardware and/or device drivers can
change without changing applications

CS250 -- Chapt. 16 16 2006

Conceptual Arrangement Of Library And OS

application

run-time library

device driver

device hardware

interface 1

interface 2

d Well-known example

– Standard I/O library

– Unix kernel

CS250 -- Chapt. 16 17 2006

Functions In the Unix Operating System’s
Open/Read/Write/Close Paradigm

Operation Meaning222

open Prepare a device for use (e.g., power up)
read Transfer data from the device to the application
write Transfer data from the application to the device
close Terminate use of the device
seek Move to a new location of data on the device
ioctl Miscellaneous control functions (e.g., change volume)

CS250 -- Chapt. 16 18 2006

Cost Of I/O Operations

The overhead involved in using a system call to communicate
with a device driver is extremely high; a system call is much
more expensive than a conventional procedure call, such as the
call used to invoke a library function.

CS250 -- Chapt. 16 19 2006

Reducing System Call Overhead

To reduce overhead and optimize I/O performance, a
programmer must reduce the number of system calls that an
application invokes. The key to reducing system calls involves
transferring more data per system call.

CS250 -- Chapt. 16 20 2006

Buffering

d Important optimization

d Used heavily

d Automated and usually invisible to programmer

d Key idea: make large I/O transfers

– Accumulate outgoing data before transfer

– Transfer large block of incoming data and then extract
items

CS250 -- Chapt. 16 21 2006

Automating Buffering

d Typically performed with library functions

d Application

– Uses functions in the library for all I/O

– Transfers data in arbitrary size blocks

d Library functions

– Buffer data from applications

– Transfer data to underlying system in large blocks

CS250 -- Chapt. 16 22 2006

Example Library Functions For Output

Operation Meaning22

setup Initialize the buffer
input Perform an input operation

output Perform an output operation
terminate Discontinue use of the buffer

flush Force contents of buffer to be written

d Functions are analogous to those provided by operating
system

CS250 -- Chapt. 16 23 2006

Use Of Library

d Setup

– Called to initialize buffer

– May allocate buffer

– Typical buffer sizes 8K to 128K bytes

d Output

– Called when application needs to emit data

– Data sent to OS only when buffer is full

d Terminate

– Called when all data has been emitted

– Forces remaining data to be sent to OS

CS250 -- Chapt. 16 24 2006

Implementation Of Output Buffer Functions

Setup(N)
1. Allocate a buffer of N bytes.

2. Create a global pointer, p, and initialize p to the
address of the first byte of the buffer.

Output(D)
1. Place data byte D in the buffer at the position

given by pointer p, and move p to the next byte.

2. If the buffer is full, make a system call to write
the contents of the entire buffer, and reset
pointer p to the start of the buffer.

CS250 -- Chapt. 16 25 2006

Implementation Of Output Buffer Functions
(continued)

Terminate
1. If the buffer is not empty, make a system call to

write the contents of the buffer prior to pointer
p.

2. If the buffer was dynamically allocated,
deallocate it.

CS250 -- Chapt. 16 26 2006

Flushing A Buffer

d Allows a programmer to control buffering

d Needed for interactive programs

d When flush is called

– If buffer contains data, library sends to OS

– If buffer is empty, flush has no effect

CS250 -- Chapt. 16 27 2006

Implementation Of Flush

Flush

1. If the buffer is currently empty, return to the caller
without taking any action.

2. If the buffer is not currently empty, make a system
call to write the contents of the buffer and set the
global pointer p to the address of the first byte of
the buffer.

CS250 -- Chapt. 16 28 2006

Implementation Of Terminate

d Call flush

d Proceed to deallocate buffer

CS250 -- Chapt. 16 29 2006

Summary Of Buffer Flushing

A programmer uses a flush function to specify that outgoing
data in a buffer should be sent to the device driver in the
operating system. A flush operation has no effect if a buffer is
currently empty.

CS250 -- Chapt. 16 30 2006

Buffering On Input

Setup(N)
1. Allocate a buffer of N bytes.

2. Create a global pointer, p, and initialize p to
indicate that the buffer is empty.

Input(N)
1. If the buffer is empty, make a system call to fill

the entire buffer, and set pointer p to the start of
the buffer.

2. Extract a byte, D, from the position in the buffer
given by pointer p, move p to the next byte, and
return D to the caller.

Terminate
1. If the buffer was dynamically allocated,

deallocate it.

CS250 -- Chapt. 16 31 2006

Important Note About Implementation

d Both input and output buffering are straightforward

d Only a trivial amount of code needed

CS250 -- Chapt. 16 32 2006

Effectiveness Of Buffering

d Buffer of size N reduces number of system calls by a factor
of N

d Example

– Minimum size buffer is typically 8K bytes

– Resulting number of system calls is S / 8192, where S is
the original number of system calls

CS250 -- Chapt. 16 33 2006

Buffering In An Operating System

d Buffering is used extensively inside the OS

d Important part of device drivers

d Goal: reduce number of external transfers

d Reason: external transfers are slower than system calls

CS250 -- Chapt. 16 34 2006

Relation Between Buffering And Caching

d Closely related concepts

d Chief difference

– Cache handles random access

– Buffer handles sequential access

CS250 -- Chapt. 16 35 2006

Buffering Example
(The Unix Standard I/O Library)

d Widely used

d Speeds I/O considerably

CS250 -- Chapt. 16 36 2006

Functions In The Unix Standard I/O Library

Function Meaning222

fopen Set up a buffer
fgetc Buffered input of one byte
fread Buffered input of multiple bytes
fwrite Buffered output of multiple bytes
fprintf Buffered output of formatted data
fflush Flush operation for buffered output
fclose Terminate use of a buffer

CS250 -- Chapt. 16 37 2006

Summary

d Two aspects of I/O pertinent to programmers

– Device details important to systems programmers who
write device drivers

– Application programmer must understand relative costs
of I/O

d Device driver divided into three parts

– Upper-half called by application

– Lower-half handles device interrupts

– Shared data area accessed by both halves

CS250 -- Chapt. 16 38 2006

Summary
(continued)

d Buffering

– Fundamental technique used to enhance performance

– Useful with both input and output

d Buffer of size n reduces system calls by a factor of N

CS250 -- Chapt. 16 39 2006

Questions?

