
Computer Organization

Douglas Comer

Computer Science Department
Purdue University

250 N. University Street
West Lafayette, IN 47907-2066

http://www.cs.purdue.edu/people/comer

 Copyright 2006. All rights reserved. This document may not
be reproduced by any means without written consent of the author.

XVIII

Pipelining

CS250 -- Chapt. 18 1 2006

Concept Of Pipelining

d One of the two major hardware optimization techniques

d Information flows through a series of stations (processing
components)

d Each station can

– Inspect

– Interpret

– Modify

CS250 -- Chapt. 18 2 2006

Illustration Of Pipelining

stage 1 stage 2 stage 3 stage 4

information
arrives

information
leaves

CS250 -- Chapt. 18 3 2006

Characteristics Of Pipelines

d Hardware or software implementation

d Large or small scale

d Synchronous or asynchronous flow

d Buffered or unbuffered flow

d Finite chunks or continuous bit streams

d Automatic data feed or manual data feed

d Serial or parallel path

d Homogeneous or heterogeneous stages

CS250 -- Chapt. 18 4 2006

Implementation

d Pipeline can be implemented in hardware or software

d Software pipeline

– Programmer convenience

– More efficient than intermediate files

d Hardware pipeline

– Much higher performance

CS250 -- Chapt. 18 5 2006

Scale

d Range of scales

d Example of small scale: pipeline within an ALU

d Example of large scale: pipeline composed of programs
running on separate computers connected by the Internet

CS250 -- Chapt. 18 6 2006

Synchrony

d Synchronous pipeline

– Operates like an assembly line

– Items move at exactly the same time

d Asynchronous pipeline

– Each station forwards whenever it is ready

– Slow stage may block previous stages

CS250 -- Chapt. 18 7 2006

Buffering

d Buffered flow

– Buffer placed between each pair of stages

– Useful when processing time per item varies

d Unbuffered flow

– Stage blocks until next stage can accept item

– Works best if processing time per stage is constant

CS250 -- Chapt. 18 8 2006

Size Of Items

d Finite chunks

– Discrete items pass through pipeline

– Example: sequence of Ethernet packets

d Continuous bit stream

– Stream of bits flows through pipeline

– Example: video feed

CS250 -- Chapt. 18 9 2006

Data Feed Mechanism

d Automatic

– Built into pipeline

d Manual

– Separate hardware to move items

CS250 -- Chapt. 18 10 2006

Width Of Data Path

d Serial

– One bit at a time

d Parallel

– N bits at a time

CS250 -- Chapt. 18 11 2006

Homogeneity Of Stages

d Homogeneous

– All stages are the same

– Example: five identical processors

d Heterogeneous

– Stages can differ

– Example: each stage optimized for one function

CS250 -- Chapt. 18 12 2006

Software Pipelining

d Popularized by Unix command interpreter (shell)

d User can specify pipeline as a command

d Example

cat x | sed ’s/friend/partner/g’ | more

CS250 -- Chapt. 18 13 2006

Software Pipeline Performance And Overhead

d Consider the pipeline

cat x | sed ’s/friend/partner/g’ | sed ’/W/d’ | more

d Substitutes ‘‘partner’’ for ‘‘friend’’

d Deletes lines that contain ‘‘W’’

d Can be optimized (swap sed commands)

CS250 -- Chapt. 18 14 2006

Implementation Of Software Pipeline

d Uniprocessor

– Each stage is a process or task

d Multiprocessor

– Each stage executes on separate processor

– Hardware assist can speed inter-stage data transfer

CS250 -- Chapt. 18 15 2006

Hardware Pipelining

d Two broad categories

– Instruction pipeline

– Data pipeline

CS250 -- Chapt. 18 16 2006

Instruction Pipeline

d Covered in Chapter 5

d Recall

– Instruction processed in stages

– Exact details and number of stages depend on instruction
set and operand types

CS250 -- Chapt. 18 17 2006

Data Pipeline

d Data passes through pipeline

d Each stage handles data item and passes item to next stage

d Usually requires programmer to divide code into stages

d Among the most interesting uses of pipelining

CS250 -- Chapt. 18 18 2006

Hardware Pipelining And Performance

d A data pipeline can dramatically increase performance
(throughput)

d To see why, consider an example

– Internet router handles packets

– Assume

* Router processes one packet at at time

* Performs six functions on a packet

CS250 -- Chapt. 18 19 2006

Example Of Internet Router Algorithm

1. Receive a packet (i.e., transfer the packet into memory).

2. Verify packet integrity (i.e., verify that no changes occurred
between transmission and reception).

3. Check for routing loops (i.e., decrement a value in the
header, and reform the header with the new value).

4. Route the packet (i.e., use the destination address field to
select one of the possible output networks and a destination
on that network).

5. Prepare for transmission (i.e. compute information that will
be used to verify packet integrity).

6. Transmit the packet (i.e., transfer the packet to the output
device).

CS250 -- Chapt. 18 20 2006

Illustration Of A Processor In
A Router And The Algorithm Used

processor
input

from one
network

outputs

...

do forever {

Wait to receive packet

Verify integrity

Check for loops

Route packet

Prepare for transmission

Enqueue packet for output

}
(a) (b)

CS250 -- Chapt. 18 21 2006

A Pipeline Implementation Of A
Processor In A Router

verify
integrity

check
for loops

route
packet

prepare for
transmission

packets
arrive

packets
leave

CS250 -- Chapt. 18 22 2006

The Bad News

A data pipeline passes data through a series of stages that each
examine or modify the data. If it uses the same speed
processors as a nonpipeline architecture, a data pipeline will
not improve the overall time needed to process a given data
item.

CS250 -- Chapt. 18 23 2006

The Good News

Even if a data pipeline uses the same speed processors as a
nonpipeline architecture, a data pipeline has higher overall
throughput (i.e., number of data items processed per second).

CS250 -- Chapt. 18 24 2006

Pipelining Can Only Be Used If

d It is possible to partition processing into independent stages

d Overhead required to move data from one stage to another is
insignificant

d The slowest stage of the pipeline is faster than a single
processor

CS250 -- Chapt. 18 25 2006

Understanding Pipeline Speed

d Assume

– The task is packet processing

– Processing a packet requires exactly 500 instructions

– A processor executes 10 instructions per µsec

d Total time required for one packet is:

time =
10 instr. per µsec
500 instructions3333333333333333 = 50 µsec

d Throughput for a non-piplined system is:

Tnp =
50 µsec
1 packet33333333 =

50 sec
1 packet × 106
3333333333333 = 20,000 packets per second

CS250 -- Chapt. 18 26 2006

Understanding Pipeline Speed
(continued)

d Suppose the problem can be divided into four stages and
that the stages require:

– 50 instructions

– 100 instructions

– 200 instructions

– 150 instructions

d The slowest stage takes 200 instructions

d So, the time required for the slowest stage is:

total time =
10 inst / µsec

200 inst333333333333 = 20 µsec

CS250 -- Chapt. 18 27 2006

Understanding Pipeline Speed
(continued)

d Throughput of the pipeline is limited by the slowest stage

d Overall throughput can be calculated:

Tp =
20 µsec
1 packet33333333 =

20 sec
1 packet × 106
3333333333333 = 50,000 packets per second

d Note: throughput of pipelined version is 150% greater than
throughput of the non-pipelined version!

CS250 -- Chapt. 18 28 2006

Conceptual Division Of Processing

h()g()f()
f()
g()
h()

(a) (b)

d (a) shows a single processor handling all functions

d (b) shows processing divided into a pipeline

CS250 -- Chapt. 18 29 2006

Pipeline Architectures

d Refer to architectures that are primarily formed around
pipelining

d Most often used for special-purpose systems

d Less relevant to general-purpose computers

CS250 -- Chapt. 18 30 2006

Pipeline Setup, Stall, And Flush

d Setup time

– Refers to time required to start the pipeline initially

d Stall time

– Refers to time required to restart the pipeline after a
stage blocks to wait for a previous stage

d Flush time

– Refers to time that elapses between the cessation of
input and the final data item emerging from the pipeline
(i.e., the time required to shut down the pipeline)

CS250 -- Chapt. 18 31 2006

Superpipelining

d Most often used with instruction pipelining

d Subdivides a stage into smaller stages

d Example: subdivide operand processing into

– Operand decode

– Fetch immediate value or value from register

– Fetch value from memory

– Fetch indirect operand

CS250 -- Chapt. 18 32 2006

Summary

d Pipelining

– Broad, fundamental concept

– Can be used with hardware or software

– Applies to instructions or data

– Can be synchronous or asynchronous

– Can be buffered or unbuffered

CS250 -- Chapt. 18 33 2006

Summary
(continued)

d Pipeline performance

– Unless faster processors are used, data pipelining does
not decrease the overall time required to process a single
data item

– Using a pipeline does increase the overall throughput
(items processed per second)

– The stage of a pipeline that requires the most time to
process an item limits the throughput of the pipeline

CS250 -- Chapt. 18 34 2006

Questions?

