
Computer Organization

Douglas Comer

Computer Science Department
Purdue University

250 N. University Street
West Lafayette, IN 47907-2066

http://www.cs.purdue.edu/people/comer

 Copyright 2006. All rights reserved. This document may not
be reproduced by any means without written consent of the author.

XIX

Assessing Performance

CS250 -- Chapt. 19 1 2006

Measuring Computational Power

CS250 -- Chapt. 19 2 2006

Measuring Computational Power

d Difficult to assess computer performance

CS250 -- Chapt. 19 2 2006

Measuring Computational Power

d Difficult to assess computer performance

d Chief problems

CS250 -- Chapt. 19 2 2006

Measuring Computational Power

d Difficult to assess computer performance

d Chief problems

– Flexibility: computer can be used for wide variety of
computational tasks

CS250 -- Chapt. 19 2 2006

Measuring Computational Power

d Difficult to assess computer performance

d Chief problems

– Flexibility: computer can be used for wide variety of
computational tasks

– Architecture that is optimal for some tasks is suboptimal
for others

CS250 -- Chapt. 19 2 2006

Measuring Computational Power

d Difficult to assess computer performance

d Chief problems

– Flexibility: computer can be used for wide variety of
computational tasks

– Architecture that is optimal for some tasks is suboptimal
for others

– Memory and I/O costs can dominate

CS250 -- Chapt. 19 2 2006

The Point About Performance

Because a computer is designed to perform a wide variety of
tasks and no architecture is optimal for all tasks, the
performance of a system depends on the task being performed.

CS250 -- Chapt. 19 3 2006

Consequences

CS250 -- Chapt. 19 4 2006

Consequences

d Many groups try to assess computer performance

CS250 -- Chapt. 19 4 2006

Consequences

d Many groups try to assess computer performance

d A variety of performance measures exist

CS250 -- Chapt. 19 4 2006

Consequences

d Many groups try to assess computer performance

d A variety of performance measures exist

d No single measure suffices for all situations

CS250 -- Chapt. 19 4 2006

Measures Of Computational Power

d Two primary measures

d Integer computation speed

– Pertinent to most applications

– Example measure is millions of instructions per second
(MIPS)

d Floating point computation speed

– Used for scientific calculations

– Typically involve matrices

– Example measure is floating point operations per second
(FLOPS)

CS250 -- Chapt. 19 5 2006

Average Floating Point Performance

d Assume

– Addition or subtraction takes Q nanoseconds

– Multiplication or division takes 2Q nanoseconds

d Average cost of floating point operation is:

Tavg =
4

Q + Q + 2 Q + 2 Q333333333333333333333 = 1.5 Q ns per instr.

d Note: addition or subtraction costs 33% less than average,
and multiplication or division costs 33% more

CS250 -- Chapt. 19 6 2006

A Note About Average Execution Times

Because some instructions take substantially longer to execute
than others, the average time required to execute an instruction
only provides a crude approximation of performance. The
actual time required depends on which instructions are
executed.

CS250 -- Chapt. 19 7 2006

Application Specific Instruction Counting

d More accurate assessment of performance for specific
application

d Examine application to determine how many times each
instruction occurs

d Example: multiplication of two N × N matrices

– N 3 floating point multiplications

– N 3 − N 2 floating point additions

– Time required is:

Ttotal = 2 × Q × N 3 + Q × (N 3 − N 2)

CS250 -- Chapt. 19 8 2006

Weighted Average

d Alternative to precise count of operations

d Typically obtained by instrumentation

d Program run on many input data sets and instruction counts
averaged over all runs

CS250 -- Chapt. 19 9 2006

Example Of Instruction Counts

Instruction Type Count Percentage222

Add 8513508 72
Subtract 1537162 13
Multiply 1064188 9
Divide 709458 6

CS250 -- Chapt. 19 10 2006

Computation Of Weighted Average

d Uses instruction counts and cost of each instruction

d Example

Tavg′ = .72 × Q + .13 × Q + .09 × 2 Q + .06 × 2 Q

d Or

Tavg′ = 1.16 Q ns per instruction

d Note: weighted average is %23 less than uniform average
obtained above

CS250 -- Chapt. 19 11 2006

Instruction Mix

d Measure a large set of programs

d Obtain relative weights for each type of instruction

d Relative weights used to assess the performance of a given
architecture

d Try to choose set of programs that represent a typical
workload

CS250 -- Chapt. 19 12 2006

Use Of Instruction Mix

An instruction mix consists of a set of instructions along with
relative weights that have been obtained by counting instruction
execution in example programs. An architect can use an
instruction mix to assess how a proposed architecture will
perform.

CS250 -- Chapt. 19 13 2006

Standardized Benchmarks

d Provides workload used to measure computer performance

d Represent ‘‘typical’’ applications

d Independent corporation formed in 1980s to create
benchmarks

– Named Standard Performance Evaluation Corporation
(SPEC)

– Not-for-profit

– Avoids having each vendor choose benchmark that is
tailored to their architecture

CS250 -- Chapt. 19 14 2006

Examples Of Benchmarks Developed By SPEC

d SPEC cint2000

– Used to measure integer performance

d SPEC cfp2000

– Used to measure floating point performance

d Result of measuring performance on a specific architecture
is known as the computer’s SPECmark

CS250 -- Chapt. 19 15 2006

I/O And Memory Bottlenecks

d CPU performance is only one aspect of system performance

d Bottleneck can be

– Memory

– I/O

d Some benchmarks focus on memory operations or I/O
performance rather than computational speed

CS250 -- Chapt. 19 16 2006

Increasing Overall Performance

To optimize performance, move operations that account for the
most CPU time from software into hardware.

CS250 -- Chapt. 19 17 2006

Which Items Should Be Optimized?

d Adding additional hardware increases cost

d Architect cannot use high-speed hardware for all operations

d Computer architect Gene Amdahl observed that it is a waste
of resources to optimize functions that are seldom used

CS250 -- Chapt. 19 18 2006

Amdahl’s Law

The performance improvement that can be realized from faster
hardware technology is limited to the fraction of time the faster
technology can be used.

CS250 -- Chapt. 19 19 2006

Amdahl’s Law And Parallel Systems

d Amdahl’s law

– Applies directly to parallel systems

– Explains why adding processors does not always
increase performance

CS250 -- Chapt. 19 20 2006

Summary

d A variety of performance measures exist

d Simplistic measures include MIPS and FLOPS

d More sophisticated measures use a weighted average

d Weights can be derived by counting the instructions in a
program or set of programs

d Set of weights corresponds to an instruction mix

CS250 -- Chapt. 19 21 2006

Summary
(continued)

d Benchmark refers to a standardized program or set of
programs used to measure performance

d Best-known benchmarks, known as SPECmarks, are
produced by the SPEC Corporation

d Amdahl’s Law helps architects select functions to be
optimized (moved from software to hardware)

CS250 -- Chapt. 19 22 2006

Questions?

