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Measuring Computational Power

d Difficult to assess computer performance

d Chief problems

– Flexibility: computer can be used for wide variety of
computational tasks

– Architecture that is optimal for some tasks is suboptimal
for others

– Memory and I/O costs can dominate
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The Point About Performance

Because a computer is designed to perform a wide variety of
tasks and no architecture is optimal for all tasks, the
performance of a system depends on the task being performed.
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Consequences

d Many groups try to assess computer performance

d A variety of performance measures exist

d No single measure suffices for all situations
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Measures Of Computational Power

d Two primary measures

d Integer computation speed

– Pertinent to most applications

– Example measure is millions of instructions per second
(MIPS)

d Floating point computation speed

– Used for scientific calculations

– Typically involve matrices

– Example measure is floating point operations per second
(FLOPS)
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Average Floating Point Performance

d Assume

– Addition or subtraction takes Q nanoseconds

– Multiplication or division takes 2Q nanoseconds

d Average cost of floating point operation is:

Tavg  =  
4

Q  +  Q  +  2 Q  +  2 Q333333333333333333333  =  1.5 Q   ns per instr.

d Note: addition or subtraction costs 33% less than average,
and multiplication or division costs 33% more
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A Note About Average Execution Times

Because some instructions take substantially longer to execute
than others, the average time required to execute an instruction
only provides a crude approximation of performance. The
actual time required depends on which instructions are
executed.
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Application Specific Instruction Counting

d More accurate assessment of performance for specific
application

d Examine application to determine how many times each
instruction occurs

d Example: multiplication of two N × N matrices

– N 3 floating point multiplications

– N 3  −  N 2 floating point additions

– Time required is:

Ttotal   =  2 × Q × N 3  +  Q × (N 3  −  N 2)
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Weighted Average

d Alternative to precise count of operations

d Typically obtained by instrumentation

d Program run on many input data sets and instruction counts
averaged over all runs
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Example Of Instruction Counts

Instruction Type Count Percentage22222222222222222222222222222222222222222

Add 8513508 72
Subtract 1537162 13
Multiply 1064188 9
Divide 709458 6
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Computation Of Weighted Average

d Uses instruction counts and cost of each instruction

d Example

Tavg′  = .72 × Q + .13 × Q + .09 × 2 Q + .06 × 2 Q

d Or

Tavg′   =  1.16 Q  ns per instruction

d Note: weighted average is %23 less than uniform average
obtained above
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Instruction Mix

d Measure a large set of programs

d Obtain relative weights for each type of instruction

d Relative weights used to assess the performance of a given
architecture

d Try to choose set of programs that represent a typical
workload
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Use Of Instruction Mix

An instruction mix consists of a set of instructions along with
relative weights that have been obtained by counting instruction
execution in example programs. An architect can use an
instruction mix to assess how a proposed architecture will
perform.
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Standardized Benchmarks

d Provides workload used to measure computer performance

d Represent ‘‘typical’’ applications

d Independent corporation formed in 1980s to create
benchmarks

– Named Standard Performance Evaluation Corporation
(SPEC)

– Not-for-profit

– Avoids having each vendor choose benchmark that is
tailored to their architecture
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Examples Of Benchmarks Developed By SPEC

d SPEC cint2000

– Used to measure integer performance

d SPEC cfp2000

– Used to measure floating point performance

d Result of measuring performance on a specific architecture
is known as the computer’s SPECmark
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I/O And Memory Bottlenecks

d CPU performance is only one aspect of system performance

d Bottleneck can be

– Memory

– I/O

d Some benchmarks focus on memory operations or I/O
performance rather than computational speed
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Increasing Overall Performance

To optimize performance, move operations that account for the
most CPU time from software into hardware.
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Which Items Should Be Optimized?

d Adding additional hardware increases cost

d Architect cannot use high-speed hardware for all operations

d Computer architect Gene Amdahl observed that it is a waste
of resources to optimize functions that are seldom used
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Amdahl’s Law

The performance improvement that can be realized from faster
hardware technology is limited to the fraction of time the faster
technology can be used.
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Amdahl’s Law And Parallel Systems

d Amdahl’s law

– Applies directly to parallel systems

– Explains why adding processors does not always
increase performance
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Summary

d A variety of performance measures exist

d Simplistic measures include MIPS and FLOPS

d More sophisticated measures use a weighted average

d Weights can be derived by counting the instructions in a
program or set of programs

d Set of weights corresponds to an instruction mix
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Summary
(continued)

d Benchmark refers to a standardized program or set of
programs used to measure performance

d Best-known benchmarks, known as SPECmarks, are
produced by the SPEC Corporation

d Amdahl’s Law helps architects select functions to be
optimized (moved from software to hardware)
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Questions?


