
Interrupts

CPTS 260

Synchronization
If processor issues instructions too rapidly,

the results can be un predictable .

We can prevent such problems via
synchronization.

Processor operates faster than an I/O
Device, programmed I/O requires the
processor to synchronize with the device
that is being controlled.

Polling

Basic form of synchronization.
Requires the processor to ask the device

whether the operation has been completed
before sending next operation.

Advantage of Programmed I/O devices:
inexpensive.

Disadvantage of Programmed I/O devices:
Computational Overhead.

Interrupt Driven I/O

I/O Device Hardware: Operate independent
ly from the control of a processor.

Bus Architecture: Bus must support two
way communication between processor
and device.

Processor Architecture: Process to stop
normal program temporarily and handle
the device.

Programming Paradigm: Synchronous and
Asynchronous style!

ProgramProgram

Definition

Event that disrupts the normal execution
of a program and causes the execution of
special instructions

ProgramProgram

Interrupt Service RoutineInterrupt Service Routine

InterruptInterrupt

ProgramProgram

time ttime t

INTERRUPTS

An interrupt is any service request that causes the CPU to stop its
current execution stream and to execute an instruction stream that
services the interrupt

When the CPU finishes servicing the interrupt, it returns to the
original execution stream at the point where it left off.

INTERRUPTS CAN BE
REQUESTED FROM ANY OF THE
FOLLOWING SOURCES:

•Hardware driven (Focus on this)
•Software interrupts (programmed interrupt requests
(PIRs))

a program using interrupts is usually structured as
follows
Ex:

•Exceptions, such as page faults

Interrupts & Fetch-Execution

Repeat Forever{

 Test: If any device has requested
interrupt, handle and then continue with
next iteration.

Fetch: Access the next step of the program

from the location where the program is
stored.

Execute: Perform the next step of the
program

}

Interrupt Request (IRQ)
 An interrupt is a signal from one part of the

computer to the processor indicating that a
service or special action be taken that only
the CPU can perform.

 When a device needs the CPU to perform a
task, transfer data from memory, issue an
I/O, etc., it signals the CPU using its IRQ line.

 Each device is assigned a specific IRQ
number so that the processor knows the
device to which it needs to respond.

Interrupt Request (IRQ) (Cont.)
 Interrupt requests are sent to a special

system component, called an interrupt
controller.

 The interrupt controller receives and verifies
requests and passes them on to the
processor.

Handling An Interrupt

Save the current execution state.
Determine which device interrupted.
Call the procedure that handles the device.
Clear the interrupt signal on the bus.
Restore the current execution state.

Interrupts: Overview

Complex hardware setup
Needed for multitasking/multiprogramming

OS

D e v i c e
A

D e v i c e
B

I n t e r r u p t
C o n t r o l l e r C P UI R Q

I R Q
i n t e r r u p t

e n a b l e b i t

B u s

Interrupts : An example

InterruptInterrupt

ProgramProgram

time ttime t

mov R1, centmov R1, cent

mul R1, 9mul R1, 9 div R1, 5div R1, 5 add R1, 32add R1, 32 mov fahr, R1mov fahr, R1

Far.= (cent *) +32Far.= (cent *) +3299
55

Interrupts

ProgramProgram

Interrupt Service RoutineInterrupt Service Routine

InterruptInterrupt

ProgramProgram

time ttime t

mov R1, centmov R1, cent mul R1, 9mul R1, 9

mov R1, 0x90mov R1, 0x90 mov sensor, R1mov sensor, R1 retret

Interrupts

ProgramProgram
Save Save

ContextContext Interrupt Interrupt
Service Service
RoutineRoutine

Restore Restore
ContextContext

InterruptInterrupt

ProgramProgram

time ttime t

mov R1, centmov R1, cent mul R1, 9mul R1, 9

Interrupts

ProgramProgram
Save Save

ContextContext Interrupt Interrupt
Service Service
RoutineRoutine

Restore Restore
ContextContext

InterruptInterrupt

ProgramProgram

time ttime t

mov R1, centmov R1, cent mul R1, 9mul R1, 9

eg push R1eg push R1 eg pop R1eg pop R1

When an Interrupt Occurs
Finish the current instruction
Save minimal state information on stack
Transfer to the interrupt handler, also

known as the interrupt service routine (ISR)
But there is more to it than this…How do
we know which device interrupted?

And what happens if two (or more) devices
request an interrupt at the same time?

Control & Status Registers

They are set of addresses a device uses.

Control Register: Corresponds to a
contiguous set of addresses that respond
to a store operation.

Status Register: Corresponds to a
contiguous set of addresses that respond
to a fetch.

Interrupt Response Time

Interrupt LatencyInterrupt Latency

Interrupt Response Time= Interrupt Latency + Time in Interrupt RoutineInterrupt Response Time= Interrupt Latency + Time in Interrupt Routine

Advantages of Interrupts

I/O is important aspect for
communicating.

Interrupt driven I/O automatically overlaps
computation and the programmer need not
take any special action.

Interrupt adapts to the processor speed
and I/O device automatically.(Never
underestimate or overestimate).

Summary

An interrupt is any service request that
causes the CPU to stop its current
execution stream and to execute an
instruction stream that services the
interrupt

When the CPU finishes servicing the
interrupt, it returns to the original
execution stream at the point where it left
off.

