
CPTS 260

INTERRUPTS II

How does the processor know which device is interrupting?

Interrupt Vectors

Each device is assigned a unique number
which is recognized by the bus.

Processor hardware interrupts the number
as an index into an array of pointers at a
reserved location in memory.

The interrupt handler reads the item in this
array to handle the device, thus we say
interrupts are vectored.

Multiple Levels of Interrupts

How do we handle multiple types of devices?
Some interrupts require interrupts be serviced in

short time and others do not need it now!
We need them to have Priorities.
We operating at a priority level K, a processor can

only be interrupted by a device that has been
assigned to level k+1 or higher.

A processor can have interrupt priorities level 0 to
N and they assign 0 to application programs and
can have N interrupts in progress at a time.
However only ONE interrupt can be in progress at
any priority level.

Assignment of Interrupts Vectors &
Priorities

Fixed: Manual assignment, used on small
scale and embedded systems.

 Example: Some devices are manufactured with physical
switches on circuit board, and interrupt vector address is
entered in these switches.

Flexible: Automated assignment used on
general purpose system.

 Example: When user connect a new device the PC
automatically assigns the interrupt vector assignment.

USB Devices?

Smart Devices & Improved I/O

Smart device does not interrupt as often
and does not require the processor to
handle each step.

 Example: A disc device.

The Interrupt processing is complex and
when an error occurs the processor must
access the CSR and determine which
operation is successful and which is not
and proceed.

Direct Memory Access (DMA)

Allows external devices to access memory
without processor intervention

Requires a DMA interface device
Must be “set up” or programmed and transfer

initiated

DMA Interface

CPU

Memory Disk Address

Memory Address

Count

Command

Status

 CPU:
fetch instruction
decode
fetch operand
operate

DMA
Cycle
Steal

DMA controller

Example: DMA Transfer from disk
Process (running)
…
fread(…)
/* will free CPU? */
//(non-blocking
I/O?)

Device Driver
told to
transfer data
from disk to
memory
buffer

Disk
Controller
Initiates
transfer
Sends bytes to
DMA controller

DMA Controller
Transfers bytes
to memory buffer
When completed,
interrupts the CPU

Interrupt

CPU

(running
other processes)
…
ISR

Benefits of DMA

DMA: saves CPU time by controlling data
transfer between I/O device and memory.

Advantages of DMA
Computer system performance is improved by

direct transfer of data between memory and I/O
devices, bypassing the CPU.

CPU is free to perform operations that do not
use system buses.

Disadvantages of DMA
In case of Burst Mode data transfer, the CPU is

rendered inactive for relatively long periods of
time.

Buffer Chaining

Can we optimize DMA? YES!
Smart I/O devices use buffer chaining (The

processor allocated multiple buffers, and
creates a linked list in memory, the
processor then passes the list to I/O device
and allows devices to fill each buffer).

The technology used to create new
operation is called operation chaining.
(Addition to buffer chaining it includes a
read or write operation with the block
number).

SUMMARY

Programmed I/O and Interrupt driven I/O
Interrupts and Interrupt Vectors
Interrupt priorities.
Benefits of Interrupts driven I/O
Smart I/O
DMA
Buffer chaining

