
3: Transport Layer 3b-1

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

❒ full duplex data:
❍ bi-directional data flow

in same connection
❍ MSS: maximum segment

size
❒ connection-oriented:

❍ handshaking (exchange
of control msgs) init’s
sender, receiver state
before data exchange

❒ flow controlled:
❍ sender will not

overwhelm receiver

❒ point-to-point:
❍ one sender, one receiver

❒ reliable, in-order byte
stream:

❍ no “message boundaries”
❒ pipelined:

❍ TCP congestion and flow
control set window size

❒ send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

3: Transport Layer 3b-2

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

rcvr window size
ptr urgent datachecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

3: Transport Layer 3b-3

TCP seq. #’s and ACKs
Seq. #’s:

❍ byte stream
“number” of first
byte in segment’s
data

ACKs:
❍ seq # of next byte

expected from
other side

❍ cumulative ACK
Q: how receiver handles

out-of-order segments
❍ A: TCP spec doesn’t

say, - up to
implementor

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

3: Transport Layer 3b-4

TCP:
reliable
data
transfer

00 sendbase = initial_sequence number
01 nextseqnum = initial_sequence number
02
03 loop (forever) {
04 switch(event)
05 event: data received from application above
06 create TCP segment with sequence number nextseqnum
07 start timer for segment nextseqnum
08 pass segment to IP
09 nextseqnum = nextseqnum + length(data)
10 event: timer timeout for segment with sequence number y
11 retransmit segment with sequence number y
12 compute new timeout interval for segment y
13 restart timer for sequence number y
14 event: ACK received, with ACK field value of y
15 if (y > sendbase) { /* cumulative ACK of all data up to y */
16 cancel all timers for segments with sequence numbers < y
17 sendbase = y
18 }
19 else { /* a duplicate ACK for already ACKed segment */
20 increment number of duplicate ACKs received for y
21 if (number of duplicate ACKS received for y == 3) {
22 /* TCP fast retransmit */
23 resend segment with sequence number y
24 restart timer for segment y
25 }
26 } /* end of loop forever */

Simplified
TCP
sender

3: Transport Layer 3b-5

TCP ACK generation [RFC 1122, RFC 2581]

Event

in-order segment arrival,
no gaps,
everything else already ACKed

in-order segment arrival,
no gaps,
one delayed ACK pending

out-of-order segment arrival
higher-than-expect seq. #
gap detected

arrival of segment that
partially or completely fills gap

TCP Receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single
cumulative ACK

send duplicate ACK, indicating seq. #
of next expected byte

immediate ACK if segment starts
at lower end of gap

3: Transport Layer 3b-6

TCP: retransmission scenarios
Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

time lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

Host A

Seq=100, 20 bytes data

ACK=100

Se
q=

92
 t

im
eo

ut

time premature timeout,
cumulative ACKs

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Se
q=

10
0

ti
m

eo
ut

ACK=120

3: Transport Layer 3b-7

TCP Flow Control
receiver: explicitly

informs sender of
(dynamically changing)
amount of free buffer
space

❍ RcvWindow field in
TCP segment

sender: keeps the amount
of transmitted,
unACKed data less than
most recently received
RcvWindow

sender won’t overrun
receiver’s buffers by

transmitting too much,
too fast

flow control

receiver buffering

RcvBuffer = size or TCP Receive Buffer

RcvWindow = amount of spare room in Buffer

3: Transport Layer 3b-8

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

❒ longer than RTT
❍ note: RTT will vary

❒ too short: premature
timeout

❍ unnecessary
retransmissions

❒ too long: slow reaction
to segment loss

Q: how to estimate RTT?
❒ SampleRTT: measured time from

segment transmission until ACK
receipt

❍ ignore retransmissions,
cumulatively ACKed segments

❒ SampleRTT will vary, want
estimated RTT “smoother”

❍ use several recent
measurements, not just
current SampleRTT

3: Transport Layer 3b-9

TCP Round Trip Time and Timeout

EstimatedRTT = (1-x)*EstimatedRTT + x*SampleRTT

❒ Exponential weighted moving average
❒ influence of given sample decreases exponentially fast
❒ typical value of x: 0.1

Setting the timeout
❒ EstimtedRTT plus “safety margin”
❒ large variation in EstimatedRTT -> larger safety margin

Timeout = EstimatedRTT + 4*Deviation

Deviation = (1-x)*Deviation +
x*|SampleRTT-EstimatedRTT|

3: Transport Layer 3b-10

TCP Connection Management

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

❒ initialize TCP variables:
❍ seq. #s
❍ buffers, flow control

info (e.g. RcvWindow)
❒ client: connection initiator
Socket clientSocket = new
Socket("hostname","port

number");

❒ server: contacted by client
Socket connectionSocket =
welcomeSocket.accept();

Three way handshake:
Step 1: client end system

sends TCP SYN control
segment to server

❍ specifies initial seq #

Step 2: server end system
receives SYN, replies with
SYNACK control segment

❍ ACKs received SYN
❍ allocates buffers
❍ specifies server->

receiver initial seq. #

3: Transport Layer 3b-11

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control
segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t

3: Transport Layer 3b-12

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

❍ Enters “timed wait” -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

ti
m

ed
 w

ai
t

closed

3: Transport Layer 3b-13

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

