TCP: Overview

O point-to-point:
O one sender, one receiver
J reliable, in-order byte
stream:
O ho "message boundaries”
O pipelined:
O TCP congestion and flow
control set window size

0 send & receive buffers

socket
door

RFCs: 793, 1122, 1323, 2018, 2581

3 full duplex data:

O bi-directional data flow
in same connection

O MSS: maximum segment
size

O conhnection-oriented:

O handshaking (exchange
of control msgs) init's
sender, receiver state
before data exchange

a flow controlled:

O sender will not
overwhelm receiver

socket
door

3: Transport Layer 3b-1

TCP segment structure

URG: urgent data

(generally not used)\ source port #

ACK: ACK #
valid

PSH: push data how—| }hzel(um

RST, SYN, FIN:— |

connection estab
(setup, teardown
commands)

Internet
checksum
(as in UDP)

———acknowledgement number

«-— 32bits

dest port #
sequence number

counting

by bytes

of data

(not segments!)

head ';"etj P[RISIF| rcvr window size

ptr urgent data

Opf/iaé (variable length)

bytes
revr willing
to accept

application
data
(variable length)

3: Transport Layer 3b-2

TCP seq. #'s and

ACKs

Seq. #'s:
O byte stream
“number"” of first Use

. g q=42’ ACK=
byte in segment's fypes W
data host ACKs

. receipt of
- 'C', echoes
O seq # of next byte back 'C
expected from
other side host ACKs
O cumulative ACK receipt Se
: hoed 9543, Ack-
Q: how receiver handles of ef:c, o¢ w’

out-of-order segments
O A: TCP spec doesn't
say, - up to
implementor

Host B 4@

r Se,

time
simple telnet scenario i

3: Transport Layer 3b-3

TCP:
reliable
data
transfer

Simplified
TCP
sender

00 sendbase = initial_sequence number
01 nextseqnum = initial_sequence number

03 loop (forever) {
04 switch(event)
05 event: data received from application above

06 create TCP segment with sequence number nextseqnum
07 start timer for segment nextseqnum

08 pass segment to IP

09 nextseqnum = nextseqnum + length(data)

10 event: timer timeout for segment with sequence number y

11 retransmit segment with sequence number y

12 compute new timeout interval for segment y

13 restart timer for sequence number y

14 event: ACK received, with ACK field value of y

15 if (y > sendbase) { /* cumulative ACK of all data up to y */
16 cancel all timers for segments with sequence numbers <y
17 sendbase =y

18 }

19 else { /* a duplicate ACK for already ACKed segment */
20 increment number of duplicate ACKs received for y

21 if (number of duplicate ACKS received for y == 3) {

22 /* TCP fast retransmit */

23 resend segment with sequence number y

24 restart timer for segment y

25

26 } /* end of loop forever */

3: Transport Layer 3b-4

TCP ACK generation [RFc 1122, RFC 2581]

Event

TCP Receiver action

in-order segment arrival,
no gaps,
everything else already ACKed

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

in-order segment arrival,
no gaps,
one delayed ACK pending

immediately send single
cumulative ACK

out-of-order segment arrival
higher-than-expect seq. #
gap detected

send duplicate ACK, indicating seq. #
of next expected byte

arrival of segment that
partially or completely fills gap

immediate ACK if segment starts
at lower end of gap

3: Transport Layer 3b-5

TCP: retransmission scenarios

<«— timeout—»
! >
v4
(@
%
-
& \\Oo 5

-

time lost ACK scenario

eq=100 fimeout—p|
* Seq=92 timeout—py

time

premature timeout,
cumulative ACKs

3: Transport Layer 3b-6

TCP Flow Control

flow control
sender won't overrun
receiver's buffers by
transmitting too much,
too fast

RevBuffer = size or TCP Receive Buffer

RcvWindow = amount of spare room in Buffer

#— RevWindow —

data from
IP

i buffer
i
4 RevBuffer ————4|

receiver buffering

application
o “ * process
7 2

receiver: explicitly
informs sender of
(dynamically changing)
amount of free buffer
space
O RcvWindow field in
TCP segment
sender: keeps the amount
of transmitted,
unACKed data less than

most recently received
RevWindow

3: Transport Layer 3b-7

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

O longer than RTT
O note: RTT will vary

O too short: premature
timeout
O uhnecessary
retransmissions

O too long: slow reaction
to segment loss

Q: how to estimate RTT?

0 SampleRTT: measured time from
segment transmission until ACK
receipt

O ignore refransmissions,
cumulatively ACKed segments

0 SampleRTT will vary, want
estimated RTT "smoother”

O use several recent
measurements, not just
current SampleRTT

3: Transport Layer 3b-8

TCP Round Trip Time and Timeout

EstimatedRTT = (1l-x)*EstimatedRTT + x*SampleRTT

0 Exponential weighted moving average
0 influence of given sample decreases exponentially fast
O typical value of x: 0.1

Setting the timeout

7 EstimtedRTT plus "safety margin”
O large variation in EstimatedRTT -> larger safety margin

Timeout = EstimatedRTT + 4*Deviation

Deviation = (1-x)*Deviation +
x* | SampleRTT-EstimatedRTT |

3: Transport Layer 3b-9

TCP Connection Management

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

O initialize TCP variables:

O seq. #s
o buffers, flow control
info (e.g. ReviWindow)

O client: connection initiator

Socket clientSocket = new
Socket ("hostname", "port

number") ;

0 server: contacted by client

Socket connectionSocket =
welcomeSocket.accept() ;

Three way handshake:

Step 1: client end system
sends TCP SYN control
segment to server

O specifies initial seq #

Step 2: server end system
receives SYN, replies with
SYNACK control segment

O ACKs received SYN
O allocates buffers

O specifies server->
receiver initial seq. #

3: Transport Layer 3b-10

TCP Connection Management (cont.)

@ client

close

Closing a connection:

SEPVET‘@

client closes socket:
clientSocket.close();

FIN

Step 1: client end system ROK
sends TCP FIN control e

segment to server

close

Step 2: server receives Ack
FIN, replies with ACK.
Closes connection, sends

FIN.

d wait

o time

close

3: Transport Layer 3b-11

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

o Enters “timed wait" -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

@ client server@

closin
9 Fin
cK .
B closing
3\
4+
'S ACk
2
3 closed
£
=
closed

3: Transport Layer 3b-12

receve FIN

TCP Connection Management (cont)

CLOSED . client application
.. initistes 3 TCP conne ctisn

g Y
\ send S1
I:‘:IM“T SYN_SENT
receive SYN & ACH
CH

I lifecycle

. initistes closa eonnection

Sond notng -______,-\n-urm B _ _\\H::’r:;;::ﬂ:m:"
TCP client send \

ALK send Al
FIN_WAIT_2 ESTABLISHED TCP server
/

ACK
nothing

lifecycle i
LAST_ACK [ueren |

send FIN send SYN & ACK

[|

/ receive ACK
- sand nothing

i
e FIN [eeTasLisreD —

3: Transport Layer 3b-13

