Composable Shared Memory Transactions
Lecture 20-2

April 3, 2008

This was actually the 21st lecture of the class, but I messed up the naming of subsequent
notes files so I'll just call this one 20-2.

This lecture is based on Composable Memory Transactions, by Harris, Marlow, Peyton
Jones, and Herlihy, ACM PPoPP, June 15-17, 2005.

There are a number of issues related to concurrency and transactions that were not
solved in the STM paper that we discussed last time.

1. As we noted last time no mechanism is provided to wait for some condition to
become true. Thus data structures like bounded buffers, resource managers, etc.
can only be implemented by busy waiting.

2. The “usual” ways of concurrent programming using locks and conditions (e.g.
the Java model) do not support composition of actions. A client cannot use a “get
the first element” method implemented by a queue to get the first two elements
by calling the method twice in the presence of concurrency — another thread
make sneak in between the two calls.

3. How should external actions be handled? If a “withdraw $100” transaction aborts
and restarts you don’t want the ATM to spit out $100 on each try. Existing DB
systems have ad hoc mechanisms to help solve this problem.

4. Finally, what if we want to do either of two actions (whichever one becomes
enabled first), a form of non-deterministic choice. This is what the select
operation does in your programming assignment.

This paper presents elegant solutions to all these issues in a language called Haskell.
It is strongly, statically typed, purely functional, and lazy. Being purely functional and
also doing IO is a challenge — IO does not satistfy our usual understanding of what it
means to be functional. In Haskell this problem is solved by so-called monadic IO,
and this solution will also be what we need to elegantly solve the isolation of external
actions from transactions (issue three above).



Monadic 10

Haskell clearly separates 10 evaluation of functions from performing IO actions. The
separation is enforced by the type system. A Haskell program contains a unique main
function that must have type IO a for some type a. A value of type IO a is called
an 10 action. Until it is performed an 10 action is just a value. Actions can be com-
posed from other actions using do notation that allows results of one IO action (input)
to be made available to other IO actions, and to use inputs as function arguments.

main :: IO () // main is a value with type unit IO action (i.e it pro
// no input to other IO actions; this is just a type de
main = putChar ’'x’ // putChar is a function that takes a character and re

// an IO action

When a program is run the IO action of its main is performed. (Note that the IO action
can be compound, composed of many other 1O actions.)

forkIO :: IO a —> IO ThreadId // ForkIO creates a concurrent thread
main = do { forkIO (print ’'x’); print 'y’ }

do composes IO actions sequentially and in order. do { print ’x’; print
"y’ '} isan IO action that first prints x then y. Using forkIO allows the IO action
of its argument to run concurrently with performance of the forking action. Again,
notice that the type system enforces that IO actions are only performed as a result of
performing the main action. Evaluation of functions does not result in performing 10
actions so there is strong containment of IO side effects of a program to only the 10
actions.

STM in Haskell

The same linguistic machinery used for IO can also be applied to transactions: we end
up with now 3 boxes: transactional actions, IO actions, and function evaluation, and
again the type system allows only carefully designed interactions between them.

The idea is best illustrated with an example. The paper calls it a resource manager, but
it has operations that are familiar to us as semaphores.

type Resource = TVar Int // TVar is a transactional variable; TVar Int is
// transactional integer
putR :: Resource -> Int —-> STM () // put a number of resources into a Res
// variable; result is an STM action
putR r i = do { v <- readTVar r; writeTVar r (v+i) }



An STM action (such as the result of putR) is, like an IO action, merely a value. It
doesn’t do anything until it is performed. Unlike an IO action, an STM action is per-
formed using the function atomic which converts an STM action to an IO action that
when performed performs the STM action.

atomic :: STM a —-> I0 a
main = do { ...; atomic (putR r 3) ; ... }

atomic is a primitive of Haskell’s STM system. When the action is a performed it

e checks that no conflicting updates have been committed to TVars read by the
transaction; if a conflict is detected it repeats the transaction from the beginning

e atomically commits the transaction’s changes to T Vars written by the transaction

The type system guarantees that IO actions cannot be performed inside a transaction
so no visible side effects can occur while the transaction is still abortable solving issue
3 above. Also STM actions cannot be performed outside of an IO action, (so STM
actions occur in a definite order wrt to IO actions — something that is not true of the
“outside” purely functional world.)

Waiting (issue 1 above) and Composability (issue 2)

Waiting for another thread to make some (abstract) condition true is not supported in
our previous discussion of STM. Composable memory transactions address waiting
using retry, an STM action that when performed aborts the transaction, waits for at
least one TVar read by the transaction to be updated, then starts the transaction from
the beginning. Example:

getR :: Resource —-> Int -> STM ()

getR r 1 = do { v <- readTVar r;
if (v<i) then retry
else writeTVar r (v-1i) }

Note that the transaction aborted by the ret ry is not merely the enclosingdo {. ..},
but everything in the atomic that uses getR, so in

atomic (do {getR rl 3; getR r2 7})

failure to get 7 units from r2 gives up the 3 units obtained from rl and then we try
again. The claim is that STM transactions compose serially in a way that monitor-
based concurrent actions do no.

Finally, note that this approach raises questions of efficiency. retry tries again when
any referenced TVar changes in any way. So executions may be tried that are doomed
to fail — for example if more resources are taken from r2 in the above example, or if
changes are made to rl. The authors note that as compensation the mechanisms are
easy to use correctly in comparison to conventional synchronization mechanisms.



Choice (issue 4)

Finally, many conventional concurrency systems (but not all) and the STM mechanisms
do not provide good support for composable choice. This paper introduces orElse
as a primitive for composable choice.

atomic (getR rl 3 ‘orElse' getR r2 7)

means try to perform (getR rl 3). If it succeeds we’re done; otherwise (that is, it
retries) try to perform (getR r2 7). If it succeeds we’re done; otherwise (it retries)
retry the whole transaction waiting on the union of the referenced variables from both
operands of orElse. (The backquotes are just a Haskell-ism that allows use of an
arbitrary function as an infix operator.)

With orElse it is possible to implement non-blocking operations in terms of blocking
ones and vice-versa.

nonBlockGetR :: Resource —-> Int —-> STM Bool
nonBlockGetR r i = do {getR r 1i; return True} ‘orElse’

The idea of nonBlockGetR is that if getR would block it returns False indicating
failure to get the resource, but it doesn’t block. Similarly, given nonBlockGetR you
can implement blockGetR which has the same behavior as the original getR using:

{return False}

blockGetR r i = do { s <- nonBlockGetR r i; if s then return ()

Note that:

retry ‘orElse' M === M
M ‘orElse' retry === M

for any M.

Section 4 of the paper contains additional examples. Finally a few notes on implemen-
tation.

atomic when performed, allocates a stack from containing a new log, then performs
its contained actions. When the actions return to the frame containing the log,
the log is validated by checking for conflicting changes to referenced TVars and
committed or aborted accordingly. References to TVars always check the log
first so a transaction sees its own changes while it is executing.

else retr



retry when performed unwinds back to the atomic frame, then waits for a change to
one of the variables that the transaction has referenced. Note that it knows this
because all references have to be recorded in the log associated with the atomic
frame.

orElse when performed starts a nested transaction — a separate log. Note that each
of the subtransactions of an orElse may itself involve further composition.
When both branches retry orE1lse handles promote the logged variables to the
containing transaction.



