

Refer to Figures 1 and 2 in the paper for how to use the DSTM primitives.

Why does consistency
have to be checked at
each open()? Otherwise
a transaction (that would
have to be aborted) could
read conflicting values
committed by different
transactions; this could
lead to null pointer
dereference or other
nastiness; so the
decision is made to abort
as soon as the need is

Refer to Figure 3 for the representation of transactional objects and figures 4 and 5 for what happens when an object
is opened for writing in the two cases that the most recent opener for write has committed or aborted. If the most
recent opener is still active then we either need to abort it or wait awhile and try again (contention policy management
decision).

Refer to Figure 6 for performance analysis. The top graph is not very interesting in my opinion. The most striking thing about the
lower graph is how much, much, (much*) worse in ALL of the concurrent versions are than the single-threaded test case.

The lesson that I take is that performance improvement from parallelism is doomed when operations on shared data represent too
large a fraction of the total operations performed, regardless of whether one uses locking or STM methods. It is interesting that the
STM methods do perform better than the locking methods beginning at a modest level of concurrency.

