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This lecture is based on Composable Memory Transactions, by Harris, Marlow, Peyton Jones, and Herlihy, ACM PPoPP, June
15-17, 2005.

There are a number of issues related to concurrency and transactions that were not solved in the STM paper that we discussed
last time.

1. As we noted last time no mechanism is provided to wait for some condition to become true. Thus data structures like
bounded buffers, resource managers, etc. can only be implemented by busy waiting.

2. The “usual” ways of concurrent programming using locks and conditions (e.g. the Java model) do not support com-
position of actions. A client cannot use a “get the first element” method implemented by a queue to get the first two
elements by calling the method twice in the presence of concurrency – another thread make sneak in between the two
calls.

3. How should external actions be handled? If a “withdraw $100” transaction aborts and restarts you don’t want the ATM
to spit out $100 on each try. Existing DB systems have ad hoc mechanisms to help solve this problem.

4. Finally, what if we want to do either of two actions (whichever one becomes enabled first), a form of non-deterministic
choice. This is what the select operation does in your programming assignment.

This paper presents elegant solutions to all these issues in a language called Haskell. It is strongly, statically typed, purely
functional, and lazy. Being purely functional and also doing IO is a challenge – IO does not satisfy our usual understanding
of what it means to be functional. In Haskell this problem is solved by so-called monadic IO, and this solution will also be
what we need to elegantly solve the isolation of external actions from transactions (issue three above).

Haskell types and expressions

For you to be able to understand what follows I need to explain a little bit about Haskell notation. Haskell shares with
Standard ML some notations that are quite different from what we’re used to in imperative languages (Java, C) and even
untyped functional languages (Erlang, LISP). The expression

foo :: T
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is to be read “value foo has type T” where foo is a name and T is a type expression.

There are two aspects of type expressions that you most critically need to understand, function types and polymorphic types
(and combinations of the two) as well as a few primitive types. A function type is written T1 -> T2 and represents the type
of functions from values of type T1 to values of type T2. You will often see function types that have more than one arrow:
T1 -> T2 -> T3. Strictly speaking this is the type of functions that take a single argument of type T1 returning a
value of type T2 -> T3, but it is often appropriate to (sloppily) think of it as the type of functions taking two arguments, the
first of type T1 the second of type T2 and returning a value of type T3.

Primitive types of interest include Int – the type of integers and () – pronounced “unit” – which is a type with only one
value, also called “unit” and written (). You have to pay attention to the context to know when you see () whether it is a
type or a value. Unit is very similar to the type void in C – for example a void-returning function in C would be a unit-returning
function in Haskell. (The use of void* in C is another matter entirely.)

Polymorphic type expressions involve one or more type variables (written with lower-case) letters. The type variables can be
instantiated with different concrete types in different settings to yield a concrete type. An example is List a which is a
polymorphic type that can stand for any of the types List Int, List Char, List List Int, etc. The two
main polymorphic types we will see below are IO a and STM a respectively being the types of IO actions that
yield values of type a and transactional memory values that yield values of type a.

Haskell expressions are can be either prefix or infix. Function application is typically written using prefix notation without
parentheses or commas: so foo x y is application of function foo to arguments x and y. On the other hand x+y
is how you write addition.

Values are bound to identifiers with the binding operator = . And functions can be defined and bound in one go
using

functionname arg1 arg2 ... argn = <some expression involving arg1...argn>

Separating IO from functional computation

Haskell clearly separates IO evaluation of functions from performing IO actions. The separation is enforced by the type
system. A Haskell program contains a unique main value that must have type IO a for some type a. A value of type IO
a is called an IO action. Until it is performed an IO action is just a value. Actions can be composed from other actions
using do notation that allows results of one IO action (input) to be made available to other IO actions, and to use as inputs as
function arguments.

main :: IO () // main is a value with type unit IO action (i.e it provides
// no input to other IO actions; this is just a type decl)

main = putChar ’x’ // putChar is a function that takes a character and returns
// an IO action

When a program is run the IO action of its main is performed. (Note that the IO action can be compound, composed of many
other IO actions in a do {...}. do composes IO actions sequentially and in order, thus do { print ’x’; print
’y’ } is an IO action that first prints x then y.) do { c <- getChar; putChar c } is an IO action that reads
a character binding it to the variable c then prints that character.
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There is one other way to get an IO action performed and that is to pass it to the function forkIO. At this point you
should be able to read the type declaration for forkIO below and understand that it takes an arbitrary IO action
and returns an IO action of type IO ThreadId. Being itself an IO action this value is only useful in a context
where it will be performed such as being part of a compound IO action that is bound to main.

forkIO :: IO a -> IO ThreadId // ForkIO creates a concurrent thread
main = do { forkIO (putChar ’x’); putChar ’y’ }

Using forkIO allows the IO action of its argument to run concurrently with performance of the thread that called forkIO.
Again, notice that the type system enforces that IO actions are only performed as a result of performing the main action.
Evaluation of functions does not result in performing IO actions so there is strong containment of IO side effects of a program
to only the IO actions.

STM in Haskell

The same linguistic machinery used for IO can also be applied to transactions though with a different notion of how transac-
tions get performed. The type introduced for this is call STM a where STM stands for “shared transactional memory”.
STM actions can be composed using do in the same way that IO actions are. And an STM a is performed by
converting it to an IO action using the atomic function. More later on this.

We end up with 3 boxes: transactional actions, IO actions, and function evaluation, and again the type system allows only
carefully designed interactions between them.

The other key type involved in the transactional memory scheme is TVar a, the type of transactional variables containing
values of type a (for any type a of course). The operations are on values of type TVar are:

readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

Note that readTVar and writeTVar are primitives in this system – you can’t implement them in Haskell if they
don’t already exist as part of the language.

The idea is best illustrated with an example. The paper calls it a resource manager, but it has operations that are familiar to us
as semaphores.

type Resource = TVar Int // TVar is a transactional variable; TVar Int is a
// transactional integer variable

putR :: Resource -> Int -> STM () // put some number of resources into a Resource
// variable; result is an STM action

putR r i = do { v <- readTVar r; writeTVar r (v+i) } // implementation of putR

An STM action (such as the result of putR) is, like an IO action, merely a value. It doesn’t do anything until it is performed. An
STM action is performed by using the function atomic which converts an STM action to an IO action that when performed
performs the STM action.
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atomic :: STM a -> IO a
main = do { ...; atomic (putR r 3) ; ... }

atomic is also a primitive of Haskell’s STM system. When an STM action is performed it:

• checks that no conflicting updates have been committed to TVars read by the transaction; if a conflict is detected it
repeats the transaction from the beginning

• atomically commits the transaction’s changes to TVars written by the transaction

The type system guarantees that IO actions cannot be performed inside a transaction so no visible side effects can occur while
the transaction is still abortable solving issue 3 above. Also STM actions cannot be performed outside of an IO action, (so
STM actions occur in a definite order wrt to IO actions – something that is not true of the purely functional world.)

Waiting (issue 1 above) and Composability (issue 2)

Waiting for another thread to make some (abstract) condition true is not supported in our previous discussion of STM. Compos-
able memory transactions address waiting using retry, a primitive STM action that when performed aborts the transaction,
waits for at least one TVar read by the transaction to be updated, then starts the transaction from the beginning. Example:

getR :: Resource -> Int -> STM ()
getR r i = do { v <- readTVar r;

if (v<i) then retry
else writeTVar r (v-i) }

Note that the transaction aborted by the retry is not merely the immediately enclosing do {...}, but everything in the
atomic that uses getR, so in

atomic (do {getR r1 3; getR r2 7})

failure to get 7 units from r2 gives up the 3 units obtained from r1 and then we try again. The claim is that STM transactions
compose serially in a way that monitor-based concurrent actions do not.

Finally, note that this approach raises questions of efficiency. retry tries again when any referenced TVar changes in any
way. So executions may be tried that are doomed to fail – for example if more resources are taken from r2 in the above
example, or if changes are made to r1. The authors note that as compensation the mechanisms are easy to use correctly in
comparison to conventional synchronization mechanisms.

Choice (issue 4)

Finally, many conventional concurrency systems (but not all) and the STM mechanisms do not provide good support for
composable choice. This paper introduces orElse as a primitive for composable choice.

atomic (getR r1 3 ‘orElse‘ getR r2 7)

4



means try to perform (getR r1 3). If it succeeds we’re done; otherwise (that is, it retries) try to perform (getR r2 7). If it
succeeds we’re done; otherwise (it retries) retry the whole transaction waiting on the union of the referenced variables from
both operands of orElse. (The backquotes around orElse are just a Haskell-ism that allows use of an arbitrary function
as an infix operator.)

orElse :: STM a -> STM a -> STM a

With orElse it is possible to implement non-blocking operations in terms of blocking ones and vice-versa. (return is a
Haskell-ism for converting ordinary values to STM or IO values, depending on context.)

nonBlockGetR :: Resource -> Int -> STM Bool
nonBlockGetR r i = do {getR r i; return True} ‘orElse‘ return False

The idea of nonBlockGetR is that if getR would block it returns False indicating failure to get the resource, but it doesn’t
block. Similarly, given nonBlockGetR you can implement blockGetR which has the same behavior as the original getR
using:

blockGetR r i = do { s <- nonBlockGetR r i; if s then return () else retry }

Note that:

retry ‘orElse‘ M === M
M ‘orElse‘ retry === M

for any M.

Section 4 of the paper contains additional examples. Finally a few notes on implementation.

atomic when performed, allocates a stack from containing a new log, then performs its contained actions. When the actions
return to the frame containing the log, the log is validated by checking for conflicting changes to referenced TVars and
committed or aborted accordingly. References to TVars always check the log first so a transaction sees its own changes
while it is executing.

retry when performed unwinds back to the atomic frame, then waits for a change to one of the variables that the transaction
has referenced. Note that it knows this because all references have to be recorded in the log associated with the atomic
frame.

orElse when performed starts a nested transaction – a separate log. Note that each of the subtransactions of an orElse
may itself involve further composition. When both branches retry orElse handles promote the logged variables to the
containing transaction.
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