CptS 483/580 Concurrent Programming
Assignment 6: Lift Modeling

Joe Armstrong,
Christian Schulte
Seif Haridi
Carl Hauser

April 13, 2009

Due date: April 27, 2009 11:59 PM

This lab assignment uses agents for simulating a simple lift scenario. It exercises modeling with agents, con-
currency, and message sending. Don’t be too intimidated by this project: the individual agents are not all that
complicated although there are several of them and care must be taken with each one to fully understand the
messages it must process and state changes it must make.

I suggest an approach of approaching each agent type, one by one, understanding what it must do, coding it,
and testing it in isolation (build a testing skeleton for each one — you can include this in the program file with
the agent code).

The skeleton files referred to below are all contained in the file
http://www.eecs.wsu.edu/~hauser/cs580/handouts/lifts.tgz

(and also . zip). In addition to the places in the files explicitly marked for you to add code you may add or
change anything else in the files. Files agent . erl, simulation.erl and cabin.erl do not require any
changes. Note also that the skeletons may not completely specify the contents of the state for all the agents —
it’s just an initial suggestion.

Submit your code as a zip file by the due date to the turnin page on the class web site. Some time following the
due date you will demonstrate your implementation for the TA.

The Lift Scenario

Assume we have a building with r lifts and m floors. When a lift is called, we wish to service the request in a
reasonable manner: the lift will be selected that can service the request as soon as possible.

Imagine for the time being a building with three lifts (n = 3) and five (m = 5) floors. Floors one and five have a
single call button, the remaining floors have two call buttons each for up and down respectively.

A lift is requested by pressing one of the buttons. A request is served by selecting a lift that stops at the floor. In
addition to that, each lift has five buttons (or, in general m buttons) inside labeled with the floor numbers. These
buttons will stop the lift at the appropriate floor.

Our task is now to write a program that controls the lift system. We will construct a solution that models lifts
and floors by agents that react to incoming messages and possibly send messages to other agents. It is known
to be good practice to model each problem agent by one program agent.

Scheduling Lifts

Suppose the up button is pressed on the fourth floor. We have to decide which lift should stop at the fourth floor.
We will use the following algorithm:

e The agent for floor 4 sends a message to each of the lift agents asking them how long it would take them
to get to floor 4.

e Each lift receiving this message works out how long it would take for it to get to floor 4 and replies with
a message containing the time (the waittime).

e The floor agent chooses the lift with the minimal proposed waittime and replies with a reserve mes-
sage. All other lifts are informed by a re ject message.

Initially, assume that a lift agent is locked after it has sent a time estimate and remains locked until it receives
either a reserve or re ject message (that is it will only accept a reserve or reject message when in
this state). This strategy works and does not lead to deadlocks if all request messages sent to lifts are received
by the lifts in the same order. Why? Does your implementation meet the requirement that all request messages
sent to lifts are received by the lifts in the same order? If not, you’ll have to rethink this design.

Modeling

We model the scenario with three different types of agents which includes of course the lift and floor agents
mentioned above together with agents who model the actual lift cabins’ behavior.

The Floor Agent. The only message a floor agent receives, initially, is that a button has been pressed. This is
modeled by either a message up or down depending on which button has been pressed. When a button
press is received, the best lift is selected as described above.

Initially, the state of a floor agent contains its floor number and a list of all lift agents. The state is encoded
astuple {N, Lifts) where N is the floor number and Lifts is the list of lift agents.

Once you have the basic logic working, extend the state of the floor agent to include lights on the buttons
and accept arrival messages to know when the button lights should be turned off.

The Lift Agent. A lift agent understands the following messages:

e {request, FloorNum, FloorAgent, Direction} which is sent by the floor agent for floor
FloorNum. D is either up or down depending on the button pressed at floor F1oorNum.

The lift agent responds with a tuple {propose, T} where T is the waittime.

The floor agent responds with either reject or reserve. The best lift agent gets a reserve while the
others get a re ject. If the lift agent gets a reserve, it must include the floor number I in the floors it
must visit (the list of floors to be visited is called Stoplist).

e {arrived, FloorNum} is sent by the cabin agent when the cabin has reached floor F1loorNum.
The lift agent now must determine which action the cabin agent takes next by sending to the cabin agent
either:

1. stop: the cabin will open and close the doors. This takes five time units.
2. up: the cabin moves up one floor. This takes one time unit.

3. down: the cabin moves down one floor. This takes one time unit.

4.

wait: the cabin stays where it is for one time unit.

Notice that all of the time delays are implemented by the cabin agent, not the lift agent. After the cabin
has executed its action, it sends another arrived message to the lift agent.

e {stop, FloorNum} requests the lift to stop a floor F1oorNum (coming from the buttons inside the
lift).

The state of the lift agent is a tuple {Now, StopList} where Now is the floor where the lift agent is
currently located (this is known from messages sent by the cabin agent) and StopList is the stoplist.
The stoplist is a list of integers describing at which floors the lift agent must stop. Initially, the stoplist is
empty. Floor numbers are inserted into the stoplist whenever a lift agent has received a request message
and subsequently also has been confirmed that its offer has been the best. Closely related to managing
the stoplist is computing the waittime. The waittime is determined by where the floor would be inserted
into the stoplist and considering the times that the cabin agent will pause the lift for each stop as well as
the times taken to travel between floors.

1 Agents With State

We use the agent module to create agents. It implements an agent as a process that serves incoming messages.

-module (agent) .
—export ([newAgent/2]) .
newAgent (Update, InitState) ->

spawn (fun () —-> serve(Update, InitState) end).
serve (Update, InitState) ->
receive
M -> serve (Update, Update (Message, InitState))
end.

Here the behavior of an agent is given by a binary function Update, taking a Message and an InitState
as input and returning a new state. This code is available as agent .erl.

A Simple Memory Cell Agent. As an example of a simple agent consider the memory cell programmed as
follows:

—-module (memoryCell) .
—export ([newMemoryCell/1]) .

memoryCell ({read, Requestor}, State) >
Requestor ! State,
State

7
memoryCell ({write, NewVal}, _State) -> NewVal

14

memoryCell ({swap, Requestor, NewVal}, State) ->
Requestor ! State,
NewVal

newMemoryCell (Initval) ->

agent :newAgent (fun memoryCell/2, InitVal)

The state is implemented as a single value .

The code for the memory cell agent is in memoryCell.erl. Itis only an example, not part of the program-
ming assignment.

2 Inserting Floors into the Stoplist

Implement a function insert (Stoplist, Now, Dir, Floor} thatreturnsanew stoplist. Here Stoplist
is the current stoplist, Now is the floor where the lift agent is currently located, Dir is either up or down de-
pending on which button has been pressed at floor Floor.

It is important to compute a new stoplist that minimizes time until the lift arrives at the desired floor. Take the
following possibilities into account:

e Floor is already contained in the stoplist.

e The lift is already at Floor.

o If the lift moves from floor A to B with A<Floor<B and Dir is up, insert between A and B.

e If the lift moves down from floor A to B with A>Floor>B and Dir is down, insert between A and B.

e Insert Floor as much to the front of the stoplist as possible while following the above rules.
For example,
insert ([], 3, up, 6)
returns [6], whereas
insert ([5, 7, 9, 31, 4, up, 6)
returns [5, 6, 7, 9, 31,and
insert ([5, 7, 9, 31, 4, down, 6)

returns [5, 7, 9, 6, 31.
Store the function in the file 1iftUtils.erl.

Hint. In order to test your scenario you might want to consider a simple implementation of insert first.

3 Computing the Waittime

Implement a function waitTime (Stoplist, Now, Dir, Floor} that returns the waittime before a
request can be served. Here Stoplist is the current stoplist, Now is where the lift is currently located, Dir
is either up or down depending on which button has been pressed at floor Floor.

As mentioned above, stopping the lift takes five time units whereas moving the lift by one floor takes one time
unit. The waittime must be computed with the same rules as for insertion into the stoplist (do NOT duplicate
the code!).

For example,

waitTime ([5, 7, 9, 31, 4, up, 6)
returns 7, and

waitTime ([5, 7, 9, 31, 4, down, 6)

returns 2 3.

Store the function in the file 1i ftUtils.erl.

4 Pressing a Lift Button

Implement a function stopAt (Stoplist, Now, Floor) that returns a new stoplist when a button for
Floor is pressed inside the lift. Here Stoplist is the current stoplist, and Now is the floor where the lift
agent is currently located. Follow the same rules to insert F1oor into the stoplist as for Insert.

Store the function in the file 1i ftUtils.erl.

5 The Lift Agent

Implement a function 1iftProcess (Message, State) for the lift agent which returns a new state.

The file 11 ft .erl already contains code fragments to give you a start.

6 The Floor Agent

Implement a function floor (Message, State) for the floor agent which returns a new state.

The code for selecting the lift with shortest waittime (given that you know the waittime for each lift) is outlined
in the selectBest function in this file.

The file f1oor.erl contains code fragments to give you a start.

7 Putting Everything Together

The provided files simulation.erl and cabin.erl contain the remainder of the simulation. The file
simulation.erl creates a complete lift simulation scenario for a given number of floors and lifts. Feed the
following to erl:

[)

= simulation:newScenario(3,5). % creates the simulation
now you can feed other statements like those found at the bottom of
simulation.erl to drive your lifts

o° N

o\

You can simulate pressing buttons by sending the appropriate messages to the lift or floor agents. I will provide
a main.erl and cabin.erl that show a graphical simulation of the lifts (not yet finished). For now, use io:format
to provide output about what your lifts are doing.

Acknowledgments

The problem has been taken from: Joe Armstrong, Robert Virding, Claes WikstrAom, and Mike Williams,
Concurrent Programming in Erlang, second edition. Prentice Hall, London, UK, 1996, and adapted for Oz by
Christian Schulte, re-adapted for Erlang by Carl Hauser.

