
Distributed Programming (Ch. 10)



Why Distributed
• Natural decomposition of the problem

Examples: 
• chat system – user agents and server; 
• storefront – customer agent and store server; 
• file sharing – peer-to-peer interactions between hosts that have files 

and hosts that want them
• Performance

Apply multiple processors to get the work done faster
• Availability

Backup resources to take over if primary fails
• Scalable problems – more resources for larger problems



Erlang approaches
• “Distributed Erlang” 

simple extension of the Erlang programming model to run 
on multiple computers (Erlang nodes)
Nodes are authenticated: to participate in a cluster a node 
must possess the cluster cookie
Nodes are trusted: fundamentally a node will do whatever 
another node in its cluster asks it to do
•rpc:call(bilbo@hauser-office, erlang, halt, []).

• Socket-based distribution
Nodes have an explicitly identified set of services that 
they are willing to perform for other nodes



Distributed Erlang
• What is a node?

A running instance of erl
• Has a name given with -sname or -name switch
• Has a hostname obtained from the machine on which it 

is running
• A host may have many erlang nodes

• Primitives
spawn(Node, Fun) spawn(Node, M, F, A)
spawn_link(Node, Fun) etc.
Query functions for node identities, 
connectedness, etc. pp. 175-6



Example
-module(echo).
-export([start/0, server/0]).

start() ->
register(echo, spawn(fun() -> server() end)).

server() ->
receive

{Client, M} ->
Client ! M,
io:format("~p~n", [M])

end,
server()
.

On another node
spawn(‘bilbo@hauser-desktop’, echo, start, []).
{echo, ‘bilbo@hauser-desktop’} ! “abc”.
S2 = spawn(‘bilbo@hauser-desktop’, echo, server, []).
S2 ! 17.



Socket-based Distribution
• Node’s available services defined in a configuration file
{port, Portnum}
{service, S, password, P, mfa, Mod, Func, 
ArgsS}

•lib_chan:start_server(Conf)
•lib_chan:connect(Host, Port, S, P, ArgsC)

Called on client
Returns {ok, Pid}
Pid is a local proxy for talking to the server

• When client connects call on the server:
Mod:Func(MM, ArgsC, ArgsS)



Socket-based distribution (2)
• The server code has to be prepared to receive and 

send very specific messages – the socket 
distribution protocol (see pp. 181-182)

Client sends X to the proxy, server sees {chan, 
MM, X}
Server replies by sending {send, Result} to MM.
Server may see {chan_closed, MM} in mailbox 
meaning client disconnected

• Main thing to note: server only interacts with 
clients who know the password for that service 
and node only exposes specific service



Security Concerns
• Distributed Erlang

“Cookie” knowledge gives node right to join 
group
Once in a group a node can do *anything at all* 
on other nodes

• Socket-based distribution
Per-service password (specified in config file)
All clients must know password – so all clients 
can disclose password



Security Discussion
• Protocols are typically designed to *do something*

I.e., designed primarily to be obeyed
Security-specific protocols usually consider the behavior 
of attackers, but functionality-oriented protocols don’t

• Protocol implementations
Work correctly on messages that obey the protocol
What do they do on messages that don’t obey the 
protocol?

• Implementors’ psychology? How should we as instructors 
teach students to approach implementation with security in 
mind?


	Distributed Programming (Ch. 10)
	Why Distributed
	Erlang approaches
	Distributed Erlang
	Example
	Socket-based Distribution
	Socket-based distribution (2)
	Security Concerns
	Security Discussion

