

Overview
• Review – what constitutes a

thread

• Creating threads – general

• Creating threads – Java

• What happens if
synchronization is not
used?

• Assignment

What constitutes a thread?
• Instruction pointer

• Stack space (how much?)

• Registers/Local variables

• Auxiliary data
 Exception handling stack
 Priority
 Interruption status
 Thread-private data
 …

• Thread control block (TCB)

Creating Threads - general
• What has to be supplied to create a

thread?
 Always and most important: some

designation for the code it is to run
 Stack space
 Initial state
 Daemon status
 Human-readable identifier?
 Thread group?
 Initial priority?

Creating Threads - Java
• Built-in Thread class
• Supplying the code (1st

way)
 Subclass Thread and

override run() method
• class MyThread (Thread) {
 void run () {
 …this code can be run
as the body of a new
thread
}

}
MyThread mt = new
MyThread()

• At this point mt is a Thread
object but no new thread of
execution exists

Constructing Threads - Java
• Supplying the code (2nd way)

 Provide an object of a class
that implements Runnable
when creating a new Thread
object.
• class MyRunnable
implements Runnable {
 void run () {
 …this code can be run
as the body of a new
thread
}

}
MyThread mt = new
Thread(new MyRunnable())

• Again, mt is just a Thread object.
No new executable thread.

• What has to happen?

Creating an executing thread
• mt.start()

 Thread.start() method
constructs new stack and
tells JVM to call
runnable’s run() on the
new stack

• What happens if you just
call mt.run()?

Providing Initial State
• Why?

 Want many threads that are “almost the
same”

• How
 Some approaches allow parameters to the

run method, but not Java
 In Java, pass arguments to Runnable (or

Thread subclass) constructor then assign
to object data fields
• MyRunnable(int instanceNum) {
 this.instanceNum = instanceNum;
}

Stacksize testing Runnable
class StacksizeTest implements Runnable {
 int depth = 0;
 public void run() {
 try {
 doOverflow();
 } catch (StackOverflowError e) {
 System.out.println(“Overflow occurred at
depth ” + depth + “.”);
 }
 }
 void doOverflow() { depth += 1; doOverflow(); }
}

Example multi-threaded code (bad)

• This example is also used in the assignment

• Let's tour a program pointing out areas that may be
troublesome.

Racer

Assignment
1. Install java on the machine you’ll be using for the class (Eclipse or NetBeans or

BlueJ IDEs, jdk or openjdk for command line). Which one did you install?
2. Describe the machine that you are using: number of processor cores, physical

memory, 64 or 32 bit architecture.
3. What is the default stack size for threads in the Java environment that you

installed? (Dive into the documentation) How can it be changed? Can it be
changed per-thread?

4. What does this suggest as the maximum number of threads that will run well on
your machine using the default stack size? (Consider the available physical
memory and how much is used by each thread)

5. Write a test driver program to run the code of the following Runnable in a new
thread. How many stack frames does it succeed in creating before throwing
StackOverflow when using the default stack size?

6. For Thursday, 1/17: Bring your answers and a code listing for your stack overflow
test to discuss in class next time.

7. For Tuesday, 1/22: Compile and run the Race example code from
www.eecs.wsu.edu/~hauser/cs580/handouts/Race.java. You will get different
results on machines with different numbers of processors and different
compilers. See if you can start the JVM using only one processor if you have a
MP machine. Turn in a written report for both parts on the class turnin page.

8. Vary the number of iterations (class variable limit) until you regularly get an
error (or you give up trying – don’t give up too soon).

Note: Java “main” program

class foo {
public static void main(String argv[])
{
 … code for main program...
}

}

% javac foo.java

% java foo

Note: forcing uniprocessor execution

% taskset -c 0 <command>

% taskset -c 1 java Race
Note that on a hyper-threaded processor actual parallelism

will still occur

Next time

• Thread safety – what are the rules about accessing
shared variables in Java? (Chapter 2 in the Java
book).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

