
Sharing Objects – Ch. 3
• Visibility
• What is the source of the issue?
• Volatile

1

• Volatile
• Dekker’s algorithm
• Publication and Escape
• Thread Confinement
• Immutability
• Techniques of safe publication
• Assignment

Visibility
• To write correct shared-state concurrent programs

we have to know when changes made in one
thread become visible in other threads

2

thread become visible in other threads
• Our intuitions gained from sequential

programming provide the wrong answers!

Sequential Consistency
• Language definition assures you that if you assign to a

variable in one statement, the effect of that assig nment will
be visible in a later -executed statement

3

be visible in a later -executed statement
x = 1;
x = x+1;
if (x==2) { … }

• But only if the statements are executed in the same thr ead!
• Think how awful programming would be if this were n ot the

case!

Sequential consistency does not hold for
concurrent threads

• An assignment may never become visible in a
different thread

• Assignments done in some order in one thread

4

• Assignments done in some order in one thread
may become visible in arbitrary order in a differen t
thread and in different orders in different threads

y = 0; x = 1; x = 3; y = 2;
//
if (y==2) { // can’t assume that x==3 here }

Not even that x==1 || x == 3

Why?
• Compiler writers and computer architects pursue

speed in the usual case
� Keep variables in registers as much as possible

5

� Keep variables in registers as much as possible
� Re-order stores to exploit memory architecture
� Re-order instructions, move them out of loops,

etc. to improve performance
• These optimizations operate without knowledge of

any concurrent activity (esp. the hardware ones).

How do we fix this?
• Synchronization
• Control of visibility is a second role for

synchronization – the first was to provide atomicity

6

synchronization – the first was to provide atomicity
• The same mechanisms that provide atomicity also

fix the visibility problem
� Another synchronization mechanism called

“volatile” fixes visibility but not atomicity
• “stale” data is possible unless synchronization is

used for every access, read and write, to a variable

Out-of-thin-air safety
• Even if you don’t use synchronization for shared

variable accesses Java guarantees that what is
read will be something that was written by your

7

read will be something that was written by your
program (or automatically initialized)

• EXCEPTION: 64-bit longs and doubles
• NOTE: C/C++ do not make this guarantee even for

sequential code
• (Your program will not see values that appear out

of thin air)

Visibility Guarantee Provided by Intrinsic
Locks

• A thread holding a lock is guaranteed to see all
updates performed while any other thread
previously held the same lock.

8

previously held the same lock.
• Another reason for the rule: “every shared variable

should be protected by exactly one lock”

volatile variables
• Any data member variable or static variable can be

declared volatile
volatile int x;

9

volatile int x;
• Accesses to volatile variables require no locking

and hence cannot block
• After writing a volatile variable x in thread A and

reading it in thread B, thread B can see all writes
visible to A at the time of its write, not just the write
to x

Using a volatile variable instead of locks
• Writes to the variable do not depend on its

previous value or the variable is only updated in
one thread

10

one thread
• The variable is not related by an invariant to othe r

shared variables
• Locking is not needed for any other reason (if

locking is used, volatile is unnecessary)

Terminology and History
• A critical section is a general term for code

sequence that must be executed atomically for
correctness.

11

correctness.
• Synchronized blocks implement critical sections
• Before hardware implementations had explicit

synchronization instructions (test-and-set, e.g.)
programmers had to protect critical sections using
only normal memory reads and writes

Dekker’s synchronization algorithm
boolean enter1 = false;
boolean enter2 = false;
int turn = 1;
{ while(true) { /* Thread 1 */

/* Thread 2 */
{ while(true) {

12

{ while(true) { /* Thread 1 */
enter1 = true;
while (enter2) {

if (turn==2) {
enter1 = false;
while (turn==2) yield();
enter1 = true;

}
}
/* critical section */
enter1 = false; turn = 2;
/* non-critical section */

}}

{ while(true) {
enter2 = true;
while (enter1) {

if (turn==1) {
enter2 = false;
while (turn==1) yield();
enter2 = true;

}
}
/* critical section */
enter2 = false; turn = 1;
/* non-critical section */

}}

Discussion
• What has to be done to Dekker’s algorithm in

light of our previous discussion about visibility?
• Like other manually constructed synchronization

13

• Like other manually constructed synchronization
techniques, Dekker’s algorithm is intended to:

1. Provide mutual exclusion
2. Avoid deadlock
3. Avoid unnecessary delay – if one thread wants

in and the other doesn’t the first is not delayed
4. Ensure eventual entry – if a thread wants in it

eventually gets in

Assignment – Please, no handwritten
work

1. After inserting the necessary volatile
declarations, argue convincingly that Dekker’s
algorithm exhibits the four properties listed on

14

algorithm exhibits the four properties listed on
slide 13.

2. Based on what you know so far, how well does
Java’s intrinsic synchronization meet these
properties

3. Write sequential code that abuses the class
UnsafeStates in Fig. 3.6.

4. Turn in on web site turnin page by Jan. 31.

Publication – part 1: avoiding escape
• Publishing – making an object available outside of i ts

current scope
� Store it where other code can find it

15

� Store it where other code can find it
� Return it from a non-private method
� Pass it to a method of another class

• Escape – incorrect publication
� Publishing internal, private state (violates encaps ulation)
� Publishing an object also publishes objects referen ced by

its non-private fields
� Publishing an object to a different thread, while i t is being

constructed, violates thread safety

Unsafe approach to listener registration
– Fig. 3.7

public class ThisEscape {
public ThisEscape(EventSource source) {

source.registerListener(

16

source.registerListener(
new EventListener() {

public void onEvent(Event e) {
doSomething(e);

}
});

}
}

SafeListener – Fig. 3.8
public class SafeListener {

private final EventListener listener;
private SafeListener () {

listener = new EventListener() {

17

listener = new EventListener() {
public void onEvent(Event e) {

doSomething(e);
}

};
}
public static SafeListener newInstance(EventSource source) {

SafeListener safe = new SafeListener();
source.registerListener(safe.listener);
return safe;

}
}

2. Thread Confinement
• Recall that one approach to thread safety is to

not share state between threads
• How can we do that:

18

• How can we do that:
1. Only ever put object reference on the stack (in

local variables) – relies on the property of Java
that references to stack variables cannot be
obtained.

2. Use the ThreadLocal class: it’s getter and setter
store values s.t. each thread has its own copy

3. Ad hoc thread confinement

3. Immutability
• How to do immutability properly is itself a bit tri cky

– next time.

19

Publication Part 2: Safe publication
• Previously: how to avoid unwanted publication
• Now: how to safely publish when publication is

desired

20

desired

