
Erlang concurrencyErlang concurrency

Where were we?Where were we?
• Finished talking about sequential Erlang
• Left with two questions

Which exceptions are caught in try…catch. Only
th i th ithose in the FuncOrExpressionSequence i.e.
exactly as described and non-intuitive.

Concurrency mechanisms processesConcurrency mechanisms - processes
• Concurrent activities are called processes
• Erlang processes are implemented by the language

system, not the OS
Very lightweight even compared to Java threadsVery lightweight even compared to Java threads

• Processes are created with spawn/1
Pid = spawn(Function)
Function must be nullary (take 0 args)

• Or spawn/3
Pid (M d l F ti A Li t)Pid = spawn(Module, Function, ArgList)
Args is a list; Function must take that many args

Concurrency mechanisms mailboxesConcurrency mechanisms - mailboxes
• Every process has exactly one mailbox
• The mailbox contains messages. Messages simply

are Erlang values.
• Messages in the mailbox are in arrival order
• Sending messages
Pid ! Msg

• Note: (Pid ! Msg) =:= Msg

• Note also: sending is asynchronous – the sender
does not wait for the receiver

Concurrency mechanisms – selective
receivereceive

receive
Pattern1 [when Guard1] -> Exprs1;
Pattern2 [when Guard2] -> Exprs2;
…

[after
Time -> ExprsT]

end

Execution of receiveExecution of receive
1. For each message, m, in the mailbox, attempt to match it

t h f th tt / d f th i tito each of the patterns/guards of the receive operation
• If a match succeeds, the result of receive is the result of

evaluating the corresponding expression (the matched message
is removed from the mailbox)is removed from the mailbox)

2. Otherwise, wait and as new messages arrive test them
against the patterns/guards until one succeeds (and the
result comes from evaluating the corresponding
expression) or the timeout occurs (and the result comes
from the timeout expression.p

(Different, equivalent, explanation in the book.)

Erlang receive is powerfulErlang receive is powerful
• Many concurrent languages allow only the first message in

th ilb t b i dthe mailbox to be received
Erlang approach allows one mailbox to emulate many
(perhaps at some cost in execution time)
Erlang approach allows application to decide on message
priority without any special language mechanism

• Asynchronous paradigm is a good match for distribution• Asynchronous paradigm is a good match for distribution
and is relatively easy to implement

• Synchronous message passing is more powerful in some
ways, but is not a good match for distributed systems

Lurking under the coversLurking under the covers
• Synchronization

A processes mailbox is a shared data structure,
updated by more than one process

• Visibility
Are values that are sent to mailboxes fully visible
to receiving processes on modern memoryto receiving processes on modern memory
architectures

• These are Erlang implementation questions ratherThese are Erlang implementation questions, rather
than questions for the Erlang programmer

Client serverClient-server
• Client sends a request to server
• Server sends response to client
• Server usually services many clients

How does it know where to send the response message?How does it know where to send the response message?
Protocol includes client’s Pid as part of the request.
Obtain using self()
• A protocol is a set of rules for communicating

• Oops, and a client may use many servers or itself be a
server

Protocol also includes the server’s Pid in the response

Client skeletonClient skeleton
Server ! {self(), Request},
receive

{Server, Response} -> Response
end

Server skeleton
loop() ->

receive {From, Request} ->
F ! (lf() R t)From ! answer(self(), Request)

end,
loop()loop().

answer() -> …
• Start the server with Server = spawn(fun loop/0).p p

• Note: a server, inherently, does only one thing at a time; it
does synchronization
N t t t l• Note: stateless server

• Note: tail recursion; placement of recursive call

Software Engineering
D ’t t f th t l k lik li t• Don’t want every use of the server to look like our client
skeleton – can we write it once?

• Who starts the server?
• Answers: include code for these things in the server’s

module
start() -> spawn(fun loop/0). % result is Server
PidPid

rpc(Server, Request) ->
Server ! (self(), Request),
receive

(Server, Response) -> Response
end.end.

• Note: maybe still troublesome that client deals in Server Pid
rather than a Server object.

TimeoutsTimeouts
• Timeout alone (no patterns) -> sleep.
• Timeout 0

polling receive (don’t do this);
mailbox flushmailbox flush
priority receive – take a particular kind of message out of
order (receive processing matches each message to a
pattern; timeout 0 allows to process by matching allpattern; timeout 0 allows to process by matching all
patterns in turn to each message)

• Timeout infinityy
Equivalent to no after clause, but allows computed infinite
wait instead of static infinite wait

Registered ProcessesRegistered Processes
• A perennial problem in client-server computing is “How do

li t fi d th ?”clients find the server?”
• Two possible answers:

Clients are told about the servers as parameters when theClients are told about the servers as parameters when the
clients are started
• Lots of parameters; startup order dependency
Clients use a name service to locate the serversClients use a name service to locate the servers

• Erlang answer: registered processes
register(AnAtom, Pid)
Can then send to the atom as if it were a Pid.

• Note: mutable global state!

AssignmentAssignment
• due March 11 midnight

• How to build a ring so that P0 sends to P1 to … to Pn-1 to P0How to build a ring so that P0 sends to P1 to … to Pn 1 to P0
Use at most 2 static code bodies (P0 may be special) for the
processes in the ring
Think first about what each process needs to do – what
parameters does it require? Will each process spawn itsparameters does it require? Will each process spawn its
successor or will they all be spawned by a main function then
glued together?
If spawning all processes from a single point, construct the ring
elegantly – ideas: use map or a list comprehension or …g y p p

