WASHINGTON STATE
@UMVERSM

World Class. Face to Face.

Introducing the Erlang Language

* Why Erlang?
= Exemplifies the “you can have code and
concurrency that is free from side effects...there
Is ho other way” perspective

* Real language used to build real systems

= A pretty good, practical book exists to use as a
text

= Multi-core applications
» Fault-tolerant applications

World Class. Face to Face.

Erlang is a Functional Language

* Lots of definitions but some implications

= Computation is primarily done by evaluating functions
that take immutable values as inputs and produce
immutable values as outputs

= Programs are written by defining functions (in terms of
other functions)

= Functions are side-effect free

* Other functional languages: Haskell, Standard ML, LISP (in
some variants)

* You can program functionally in imperative languages (e.g.
C, Java, etc.) but some make it easier than others

* Automatic storage management (GC) is almost always a
feature of functional languages (but not vice-versa)

World Class. Face to Face.

Erlang values

Numbers
» Integers with arbitrary precision (dd*)
» Floating point (d*d.dd*)

* Tuples §
= {value [, value]*} ; 1-tuple allowed and different from the contained
value: 1 != {1}
» Tuple models data structures of known fixed size
* Atoms Car

= Alphanumeric sequences starting with lower-case letter (may contain
but not start with _and @)

= Any sequence enclosed in single quotes ‘Arotar Adom

» The value of an atom is itself

Lists

= Sequence of values of unknown size

= Compare to python tuples and lists — Erlang lists are not mutable!

O\,)AJQQ‘\“
J

An Erlang idiom using tuples ©¢

struct person { char *first; char *last }; -- C

{person, {first, “carl}, {last, “hauser”}} — this is just
a value; note the use of atoms as tags in the tuples

Erlang is a dynamically, strongly typed language.

Using tags helps people keep things straight about
programs. Compare {“carl”, “hauser’}

‘ ot
eon b cond car o vele unamectly

g as SWM s

WASHINGTON STATE
@UMVERSIW

World Class. Face to Face.

More about lists

» List values can be written directly — [value, value,
..., value] or created one element at a time using
the list constructor [value, ..., value | list]

= The first element of a list is called the head
= Everything else is the fail

))

[_1\ 2 3 ‘-\—_&
m’T—/ L z,sl%l

World Class. Face to Face.

ecll
Strings

* Erlang strings are really just lists of integers
*(5> J'abc".

* Shell has a special rule for printing lists that contain only
printable characters

* The integer for a character can be written $c
. a.

97
* This feels like a hack to me

WASHINGTON STATE

@UMVERSIW
World Class. Face to Face.

s R

bow"‘é‘ . X o\:\‘ww
Erlang variables

e Start with upper-case letter (enforced convention
for human beings sake)

* Are write-once
= A new variable is called unbound
= After assighment a variable is said to be bound
and cannot be further changed (limits the

possibility for side effects!)

- “assignment” is technically the wrong term — more
properly called binding

World Class. Face to Face.

Erlang approach to binding: assertion of
equality

Idea: a form such as X = {1, 3} is an assertion of equality
between X and I1 , 3}. If somethlng equals something else
then they can’t later be not equal. Hence the bind-once rule.

9> X ={1,3}.
{1,3}
10> X.

11> X.

ALy
5ok ={1,3.%
i1143 }x ={1,4}. £

** exception error: no match of right hand side value {1,4}

World Class. Face to Face.

Binding using pattern matching

* You may recall this idea from 355 if you talked about ML there
* What if the LHS is not a single variable but something that looks like a value but

with iables embedded at some place
17@%&#/ P~ iter
{1,3}

18> Y.
1
19> Z.
3

* You may have also noticed this in Python
>>>a=[123]
>>> [d,efl]=a
>>>d
1
>>> e
2
>>> f

3

WASHINGTON STATE
@[MVERSITY

World Class. Face to Face.

More pattern matching - lists "
22> L1=[0,1,2,34]. _ & w‘f‘

W
AR,

[01234
24> H

.
(2)5> T. - 'X ,,K/'L‘&

[1,2,3,4] AN

World Class. Face to Face.

Assignment

* Before next class --thatis, for Feb. 19 class.
= Skim Chapters 2-5; read chapter 7 (f using the Armstrong book)
* Install Erlang and work through (at the very least)

the examples in Chapter 6

* Don’t worry about the version: whatever precompiled
version is available for your system should be fine

If you have the kangaroo book, read chapters 2 and 3 for next time and do the
exercises in those chapters.

